ON THE CONVERGENCE OF MEAN VALUES
OVER LATTICES

WOLFGANG SCHMIDT

Introduction. Recently C. 4. Rogers (2, Theorem 4) proved the following
theorem which applies to many problems in geometry of numbers:

Let f(X1,Xs, ...,X:) be a non-negative Borel-measurable function in the
nk-dimensional space of points (X1,Xs, ..., X:). Further, let Ao be the funda-
mental lattice, Q a linear transformation of determinant 1, F a fundamental region
in the space of linear transformations of determinant 1, defined with respect
to the subgroup of unimodular transformations and u(Q) the invariant measure!
on the space of linear transformations of determinant 1 in R,. Then, if 1 <k
<n-—1,

L > f(Xl,...,Xk)dy(Q)=f(0,...,0)+f...ff(X1,...,Xk)

X;€eQA

) dX;...dX;

+T 3 X (N%Dm’q—))nf...ff(i‘%xi,...,zm} %EX,)

(v;p) ¢=1 D =

dX:...dXn,
both sides having perhaps the value + . The outer sum on the right side is
over all divisions (viu) = (v1, ..., Vm} B1y « « « » Bx—m) Of the numbers 1,2, ...,k
into tWo SeqUences vi, . . . , Uy GNA P1, . o oy Pp—m With 1 <K m < kB — 1

1< rm<r<...<v, <k, Il<im<mw<. .. <un<k

(2)
Vi Uy 1<:<m1<K<j<k—m.

The inner sum is over all m X k-matrices D with integral elements, having
highest common factor relatively prime to q, and with

div; = @by, 1<i<m1Kjs<m
(3)
diw; = 0if p; <wy 1<i<ml1<j<k—m.
Finally, N(D,q) is the number of sets of integers (a,as, . .., an) with0 <a; <g
and
Z dija; =0 (mod g), 12Kk
i=1
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1F and the invariant measure are defined in (5).
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Rogers (2) wrote
=... Zﬁ instead of ]—v~—74~,

where ¢; = (€;,¢) and ey, . . ., €, are the elementary divisors of D. By Lemma
1 of (2),

a  en _ N(Dyg)
e ot

Another proof of Rogers’ theorem is given in (4).
We write (p;o) < (v;u) if

(p;a) = (Ply ey Pmy 01y 0. ey Uk—m)) (Vm) = (Vlv ey Vmy M1y e yﬂk—m)
and p1 = v1, p2 = Ve, ..., p1m1 = vi_1, p1 < v; for some I < m. If m < k and
D is a m X k-matrix, then we denote by D(v;u) the square submatrix with
columns vy, ..., v, and by detD(y;u) the absolute value of the deter-

minant of D(y;u).
In this paper we prove two theorems:

THEOREM 1. Rogers’ theorem remains true, 1f (3) is replaced by

D(viu) = 4qI,
4) detD(p;o) < detD(v;u) for any (p;0) = (P1y -+« + s Pmi Oy « + « » Tk—m)
detD(p;0) < detD(v;u) if (p30) < (viu).

Theorem 1 provides better estimates for the sum in (1), since (4) permits
only matrices D with |d,;| < g. We further prove

TaEOREM 2. If f(X1, ..., X)) is bounded and vanishes outside a bounded
region of space, then both sides of (1) are finite.

Theorem 2 is an improvement of Rogers’ result, that (1) is finite, under the v
stated conditions, if # > [%k%] 4 2. Theorem 2 guarantees finiteness for all
cases of Rogers’ theorem, that is, for £ < n. No results are known? for n = %

or n < k.
1. LemMma 1. If f( X4, ..., Xy) > 0, then
X €A

=0,...,0 + X [jﬂ;;l'()'(‘h’f’f;f:): o

- Ylv"',YmEA (m dil
1 - Yi,‘..,
© +(vzu;)qz=121>2 dim(Yy, ..., V) =m A2 q
Z_:l diy Yi/q€ A 2_:1 % Yi>.

The sum extends over all D which satisfy (4).

2[n 2 Theorem 5, #n > 2 should be replaced by n > 2.
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Lemma 1 is analogous to a formula of Rogers, where D satisfies (3).
Proof of Lemma 1. The set of points 0,0,...,0 occurs in the term

f(0,0,...,0)and if Xy, ..., X; are linearly independent, then (X1, ..., X))
will occur just once in the sum

X1,...,X€ A
2 [dim(Xl, LX) = k]f(Xl, e X0

If0 < dim(Xy,...,X;) = m < k,then X}, ..., X; span an m-dimensional
space S. If (v;u) = (v1,+ .., ¥m} HB1y .-« Mi—m), then let d(v;u; Xy, ... X})
be the volume of the m-dimensional parallelepiped spanned by

X0 Xy o ooy X0

There exists a uniquely determined (v;u) so that

d(p;o: X1, ..., Xy) < dlu; Xy, ..., X;) for any (p;0)
and

dlpiei Xy, ..., Xy) <duw:Xy, ..., X if (p;0) < (v;p).

Every point X ; can be expressed uniquely in the form

m

X;= Z ciy Xy = Z (_ile"i

i=1 =1 q

where ¢;; are rationals and d;;, ¢ > 0 are integers so that the highest common

factor of the d;; is relatively prime to g. Clearly, D = (d;;) and ¢ satisfy (4).
Further, if we take

V=X,
then Y1,V ..., Y, are linearly independent points of A, and the points
X, = Z ﬁijz Y,
i=1 q
are points of A. Consequently, there is a term
= d = d
f( lefy---yziyi)=f(X1y"-)Xk)
i=1 g i=1 ¢
in the sum (6), corresponding to the points X3, ..., X; It is clear that
(v;u), ¢ and D are uniquely determined by the points X1,X,, ..., X So
corresponding to each k-tuple of points X1,X., ..., X; there will be just

one term in the sum (6).
Conversely, it is easy to see that each term in (6) corresponds to just one
term in (5). Since f is non-negative, Lemma 1 follows.

Proof of Theorem 1. We make use of the following theorem of Rogers
(2, Theorem 3):
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Let f(X1,...,Xn) be a Borel-measurable function which is integrable in the
Lebesgue sense over the whole X1, . .., Xy-space. Then the lattice function
X}, e ,Xm € A

fA) = 2| dmXy ..., X)) =m |fXy ..., Xn)
;d”/quéA

15 Borel-measurable in the space of lattices of determinant 1 and

fpf(ﬂAo) dp(Q) = (N D ’9)> f f F(Xy, . X)) dXy . . . dX .

A combination of this theorem and Lemma 1 gives (1), where the sum
is extended over all D with (4). This proves Theorem 1.

2. Some properties of systems of linear congruences. There exist
many papers on this subject (for example, (1)), but it seems desirable to
develop the theory in a way which is most suitable for our purposes.

Let a0, . . ., a, be integral vectors, p* a power of a prime. We define the
rank 7(p") of ai,a,, ..., a, (mod p*) to be k, if there exists a subset R of k
vectors

Qipy iy « o oy O,y

so that each vector is (mod p*) a linear combination of vectors of R, and if
k is the least integer with this property. We say R is a basis of ay,as, . . ., an
(mod p*%. If H is an integral matrix, then we define the rank 7(H,p?) to be the
rank 7(p?) of the rows of H.

We investigate the set H(u,v;r1,7s, ..., 7,;p) of matrices H which have u
rows, v columns and r(H,p?) =r; (1 <7< ¥). If
H € H(uw; 11,79, .. o, 75P),

then there exist bases R; of all rows (mod p7), consisting of 7; rows. R; has
(mod p?~1) rank s,1 <7;-1 and a basis S,; (mod p’') consisting of s;_1

rows. (s;—1 < 7;-1 follows from the fact that if vectors by, . . ., b, are linearly
dependent on ¢y, . . ., ¢; (mod p?%), then there is a subset of s vectors

biu LIRS | hiu
so that by, ..., b, are linearly dependent on

by ..., b, (mod po).

This fact can be verified similarly to the corresponding proofs in vector-
algebra.) Each row is a linear combination of rows of R; (mod p7), hence a
fortiori (mod p?1). Consequently, S;_1 is a basis R;_; (mod p’~!) of all
rows of H and we have s;; = 7,1, R;_1 © R, If therefore H € H (u,;
71, . .., ryp), then there exists a sequence of bases R; (mod p?), each con-
sisting of 7; rows and with R;, C R, C ... C R,
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We define G(u,0;r1,r9,...,7,;p) to be the subset of those H € H(u,v;
71,72 - - ., ¥4;p) which have a sequence of bases Ry C ... C R, so that R;
consists of the first 7; rows

blvb?y e ey bfj
of H1<Lji<t). If Ny(uopry,...,rsp) is the number of H € H(u,wr,,
L rap) (mod p?) and Ng(u,v;ir1, . . ., 7,;p) is the number of H € G(u,;r1,
-, 75;p) (mod p’), then
(7 Ng(uwiry, ..., r5p0) < u! Ne(upiry, ..., 750).
LemMmA 2. If H € G(uw;ir1, . .., rp) has the rows Yu,bs, . . ., by, and if
(8) h= 4:,1 hics (mod Pj)

then there exist d; (1 < 1 < 7;), so that

9) h= ) hed, (mod p7) 0<di<p™cifi>r,

where 1 < e <j<t+1; wewrite ro =0, 741 = u.
Proof of Lemma 2. The lemma is true if
Coat1 = Cry2 = ...=¢;; = 0.
Using induction on f, we assume it to be true for
(10) Cr1 = Crppa = ... =¢;,; =0
and prove it for
(11) Crppt4l = Crpppe = oo = Cp; = 0.
If (11) holds, then
7f+1
b= 3% it (mod 4.
If r, < 2 < 7z41, then

vy
b= %;1 wih, + Plgi (mod P])-

Therefore,

b= 3 et 3, (2": wils + p8)ce (mod 2.
If we take d; = ¢; (mod ), 0 < d; < p*7 (r;+ 1 <7 < 741, then
(12) b=t + ﬁ: s (mod £

i=rs+
where §)’ can be written in the form (8) with (10), whence by induction in the
form (9). Therefore and by (12) we proved Lemma 2 for all » with (8) and

(11).
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LeMMma 3.
(13) Nulupir, . .. rap) < u!p(u+v)(n+. B 1) e S E o P S n":

Proof of Lemma 3. Because of (7) it suffices to prove

Ng(u,v;rl, e 7’1;17) < P(u+v)(n+ C ) —r— —n?‘
If by, ..., b, are the rows of H € G(uw;ry,...,7r;p) and if r; < s < 741,
then b, can be written in the form (8), hence by Lemma 2 in the form (9).
There are
(Pf)n(p:i-l)(r2—r1)(Pj—2)(rs—rz) L P(Tj—rj—l) — pn+rz+ Al

possibilities for the coefficients d. If therefore b, . . ., §;_1 are given, we have

p™t - i possibilities for §; (mod p7), times p¢*=?? possibilities if we fix
(mod p?). This gives p™it - - - +7i+(=D? pogsibilities. Hence,

N(;(uﬂ'fl 7’:'1") < p”” P[n+(l—1)v](r2—n)
p[n+r2+(t—2)v](ra—rz) p[n+ c ol (u—ry)
- p("+”)(71+ P B
LEMMA 4. If Zg(uiry, . . ., 7o) is the maximal number of solutions (mod
pY) of an equation
(14) b1 + . .. + b, = 0 (mod p*),
where H1,Ys, . . ., by are the rows of a matrix H € H(u,v;ry, ..., 7r;p), then
(15) Za(upiry, ... rop) < pUTTT T

Proof of Lemma 4. It is enough to prove (15) for H € G(u,w;r1, ..., r4p).
First we choose
xr¢+1y ey Xy

arbitrarily. This gives p'® " possibilities (mod #*). The number of solutions
of (14) with fixed

Xritly » ooy Xy

is at most equal to the number of solutions of the homogeneous equation

(16) byes + ... + b, = 0 (mod p").

Since ki, ..., k, have rank r, (mod p?), all x; have to be multiples of p,
that is, x; = py; (1 <j < r,). Hence we have the new system

(17) Biyr 4 -+ . 4 Bryr, = v (mod p7).

System (17) is similar to (14), we only substituted 7, for », ¢ — 1 for ¢. By
repeated application of this argument we see that

. . tu—r)+(t=D(rg—re -1+ . o . +(rg—r1) __ L tu—711— . .. 712
Zli(uvvyrlv ceey rlvP) < P - p .

If
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then we define the set of matrices

Y11,,712y « « « y T1cg
721,722y « « « 5 T2cy i

u,v; .. iq| = Huwipiq) = n Huyay -« oy Tic;iPi)-
Piis - ey Pl =1

Let Ng(u,w;p;q) be the number of H € H(u,v;p;q) (mod q) and Zg(u,v;p;q)
the maximal number of solutions (mod ¢) of

(18) ber + ... 4+ by = 0 (mod q)
where B1,h,, ..., b, are rows of an H € H(u,v;p;q).
We observe
l
(19) Ng(upip;g) = I_Il Nu(uoira, - . 7ie3Ps)
and
l
(20) Zu(uvipyg) = 131 Zu Ui, -« TicsiD)-
3. Proof of Theorem 2. If f(Xi ...,X;) is a non-negative Borel-

measurable function, then (1) holds. We are going to show that if, in addition,
f is bounded and vanishes outside a bounded region of space, then both sides
of (1) are finite.

There is only a finite number of divisions (v;u). Hence it suffices to prove
the convergence of the sum for a given (v;u). Finally we observe that, under
the stated conditions, the integrals

m d{l miii
(21) J‘...ff(;qu,...,Z qu)Xm...de

i=1

are less than a fixed constant. Therefore it remains to show the convergence

of
Py (N(D,q))"
¢=1 D qm
where (vin) = (1, ..., ¥m} B1y- .., Mr_m) is given and D runs through all

matrices satisfying (4). D has m rows, k& columns.
If D € H(m,k;p:q),

l
q = Ii-=II Piﬁy
then, by definition of N(D,q), N(D,q) < Zy(m,k;p;q). How many matrices
D in H(m,k;p;q) satisfy (4)? Since the columns
dvlvdvgy L ) dvm

are fixed and = 0 (mod ¢), there are < Ny(m,k — m;p;q) possibilities modulo
g and because of |di] < ¢ at most 3"*™Ny(m,k — m;p;q) possibilities.
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Consequently, by (19) and (20),

Dv " m(k—m : Z vk;iy~~‘y ici P "
Z(Z_V_(F_Q) <3(k )H(H(m i1 rtp))

D =1 P

NH(mrk = M3Tity . ooy Viggs pi).

The summation is taken over all D € H(m,k; p; ¢) which satisfies (4).
By summation over all ¢,p, we obtain

@ I3 (N%> <3l [1 e &

¢=1 I<ri< . . L Lre<m
(Zy(m,k;h, .

Pcm. <y 7’c§P)> Ng(mk — miry, . .. ,Tc;P)] .

The sum on the right hand side of (22) is over all sequences 1 < 7; < 7y <
... <r, < m with arbitrary ¢. We have 7; > 1, because 7, = 0 would imply
that all elements of D are multiples of p, and p, D were not relatively prime.
It is a consequence of (13) and (15) that

: Za(mkiry, ..., rep) \"
(23) ( H( ;cm P)> NH(m,k — M’y ..., 7’c;p)
pcm-n— « oo —Tc\N N N

< (____Fn_ (k _ m>!Pk(n+ R ) ot & KN N

— (k _ m)!P—(n—k)(n+ e =2 — L L =72
We have

SRS TSN S S N N —[(n—k) 14121 1

(24) 1K< Z <rc<mp B I;Il <z2=0 ? )

—1<J] @420 "P") — 1 < cp o+

=1
where C is a constant. Finally, the product

[ (1 €= =)

4

is convergent. This fact, together with (22), (23) and (24), yields Theorem 2.
By estimates for the integrals (21), provided by (3), it would be posible
to find good bounds for (1).
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