ON THE CONVERGENCE OF MEAN VALUES OVER LATTICES

WOLFGANG SCHMIDT

Introduction. Recently C. A. Rogers (2, Theorem 4) proved the following theorem which applies to many problems in geometry of numbers:

Let $f(X_1, X_2, \ldots, X_k)$ be a non-negative Borel-measurable function in the nk-dimensional space of points (X_1, X_2, \ldots, X_k) . Further, let Λ_0 be the fundamental lattice, Ω a linear transformation of determinant 1, F a fundamental region in the space of linear transformations of determinant 1, defined with respect to the subgroup of unimodular transformations and $\mu(\Omega)$ the invariant measure¹ on the space of linear transformations of determinant 1 in R_n . Then, if $1 \leq k \leq n-1$,

(1)
$$\int_{F} \sum_{X_{j} \in \Omega \Lambda_{0}} f(X_{1}, \dots, X_{k}) d\mu(\Omega) = f(0, \dots, 0) + \int \dots \int f(X_{1}, \dots, X_{k}) dX_{1} \dots dX_{k}$$
$$+ \sum_{(\nu;\mu)} \sum_{q=1}^{\infty} \sum_{D} \left(\frac{N(D,q)}{q^{m}} \right)^{n} \int \dots \int f(\sum_{i=1}^{m} \frac{d_{i1}}{q} X_{i}, \dots, \sum_{i=1}^{m} \frac{d_{ik}}{q} X_{i}) dX_{1} \dots dX_{m}$$

both sides having perhaps the value $+\infty$. The outer sum on the right side is over all divisions $(\nu;\mu) = (\nu_1, \ldots, \nu_m; \mu_1, \ldots, \mu_{k-m})$ of the numbers $1,2, \ldots, k$ into two sequences ν_1, \ldots, ν_m and μ_1, \ldots, μ_{k-m} with $1 \le m \le k-1$

(2)

$$1 \leqslant \nu_1 < \nu_2 < \ldots < \nu_m \leqslant k, \qquad 1 \leqslant \mu_1 < \mu_2 < \ldots < \mu_{k-m} \leqslant k$$

$$1 \leqslant i \leqslant m; 1 \leqslant j \leqslant k - m.$$

The inner sum is over all $m \times k$ -matrices D with integral elements, having highest common factor relatively prime to q, and with

$$d_{i\nu_j} = q\delta_{ij}, \qquad \qquad 1 \leqslant i \leqslant m; \ 1 \leqslant j \leqslant m$$

(3)

$$d_{i\mu_j} = 0 \text{ if } \mu_j < \nu_i, \qquad \qquad 1 \leqslant i \leqslant m; 1 \leqslant j \leqslant k - m$$

Finally, N(D,q) is the number of sets of integers (a_1,a_2,\ldots,a_m) with $0 \leq a_i < q$ and

$$\sum_{i=1}^{m} d_{ij} a_i \equiv 0 \pmod{q}, \qquad \qquad 1 \leqslant i \leqslant k.$$

Received January 29, 1957.

 $^{{}^{1}}F$ and the invariant measure are defined in (5).

Rogers (2) wrote

$$\frac{e_1}{q}\ldots \frac{e_m}{q}$$
 instead of $\frac{N(D,q)}{q^m}$,

where $e_i = (\epsilon_i, q)$ and $\epsilon_1, \ldots, \epsilon_m$ are the elementary divisors of *D*. By Lemma 1 of (2),

$$\frac{e_1}{q}\ldots\frac{e_m}{q}=\frac{N(D,q)}{q^m}\,.$$

Another proof of Rogers' theorem is given in (4).

We write $(\rho;\sigma) \prec (\nu;\mu)$ if

$$(\rho;\sigma) = (\rho_1,\ldots,\rho_m;\sigma_1,\ldots,\sigma_{k-m}), (\nu;\mu) = (\nu_1,\ldots,\nu_m;\mu_1,\ldots,\mu_{k-m})$$

and $\rho_1 = \nu_1, \rho_2 = \nu_2, \ldots, \rho_{l-1} = \nu_{l-1}, \rho_l < \nu_l$ for some $l \leq m$. If m < k and D is a $m \times k$ -matrix, then we denote by $D(\nu;\mu)$ the square submatrix with columns ν_1,ν_2,\ldots,ν_m and by $\det D(\nu;\mu)$ the absolute value of the determinant of $D(\nu;\mu)$.

In this paper we prove two theorems:

THEOREM 1. Rogers' theorem remains true, if (3) is replaced by

(4)
$$D(\nu;\mu) = qI,$$

$$\det D(\rho;\sigma) \leq \det D(\nu;\mu) \text{ for any } (\rho;\sigma) = (\rho_1, \ldots, \rho_m; \sigma_1, \ldots, \sigma_{k-m})$$

$$\det D(\rho;\sigma) < \det D(\nu;\mu) \text{ if } (\rho;\sigma) \prec (\nu;\mu).$$

Theorem 1 provides better estimates for the sum in (1), since (4) permits only matrices D with $|d_{ij}| \leq q$. We further prove

THEOREM 2. If $f(X_1, \ldots, X_k)$ is bounded and vanishes outside a bounded region of space, then both sides of (1) are finite.

Theorem 2 is an improvement of Rogers' result, that (1) is finite, under the stated conditions, if $n \ge \lfloor \frac{1}{4}k^2 \rfloor + 2$. Theorem 2 guarantees finiteness for all cases of Rogers' theorem, that is, for k < n. No results are known² for n = k or n < k.

1. LEMMA 1. If
$$f(X_1, \ldots, X_k) \ge 0$$
, then

(5)
$$\sum_{X_{i} \in \Lambda} f(X_{1}, \ldots, X_{k})$$

$$= f(0, \ldots, 0) + \sum \begin{bmatrix} X_{1}, \ldots, X_{k} \in \Lambda \\ \dim(X_{1}, \ldots, X_{k}) = k \end{bmatrix} f(X_{1}, \ldots, X_{k})$$
(6)
$$+ \sum_{(\nu, \mu)} \sum_{q=1}^{\infty} \sum_{D} \sum \begin{bmatrix} Y_{1}, \ldots, Y_{m} \in \Lambda \\ \dim(Y_{1}, \ldots, Y_{m}) = m \\ \sum_{i=1}^{m} d_{ij} Y_{i}/q \in \Lambda \end{bmatrix} f\left(\sum_{i=1}^{m} \frac{d_{i1}}{q} Y_{i}, \ldots, \sum_{i=1}^{m} \frac{d_{ik}}{q} Y_{i}\right).$$

The sum extends over all D which satisfy (4).

²In **2** Theorem 5, $n \ge 2$ should be replaced by n > 2.

Lemma 1 is analogous to a formula of Rogers, where D satisfies (3).

Proof of Lemma 1. The set of points $0,0,\ldots,0$ occurs in the term $f(0,0,\ldots,0)$ and if X_1,\ldots,X_k are linearly independent, then $f(X_1,\ldots,X_k)$ will occur just once in the sum

$$\sum \begin{bmatrix} X_1, \ldots, X_k \in \Lambda \\ \dim(X_1, \ldots, X_k) = k \end{bmatrix} f(X_1, \ldots, X_k).$$

If $0 < \dim(X_1, \ldots, X_k) = m < k$, then X_1, \ldots, X_k span an *m*-dimensional space S. If $(\nu;\mu) = (\nu_1, \ldots, \nu_m; \mu_1, \ldots, \mu_{k-m})$, then let $d(\nu;\mu;X_1, \ldots, X_k)$ be the volume of the *m*-dimensional parallelepiped spanned by

$$X_{\nu_1}, X_{\nu_2}, \ldots, X_{\nu_m}$$

There exists a uniquely determined $(\nu;\mu)$ so that

$$d(\rho;\sigma;X_1,\ldots,X_k) \leqslant d(\nu;\mu;X_1,\ldots,X_k)$$
 for any $(\rho;\sigma)$

and

$$d(\rho;\sigma;X_1,\ldots,X_k) < d(\nu;\mu;X_1,\ldots,X_k) \text{ if } (\rho;\sigma) \prec (\nu;\mu).$$

Every point X_j can be expressed uniquely in the form

$$X_{j} = \sum_{i=1}^{m} c_{ij} X_{\nu_{i}} = \sum_{i=1}^{m} \frac{d_{ij}}{q} X_{\nu_{i}}$$

where
$$c_{ij}$$
 are rationals and d_{ij} , $q > 0$ are integers so that the highest common factor of the d_{ij} is relatively prime to q . Clearly, $D = (d_{ij})$ and q satisfy (4).

Further, if we take

$$Y_{\mathfrak{s}} = X_{\mathfrak{v}_{\mathfrak{s}}}$$

then Y_1, Y_2, \ldots, Y_m are linearly independent points of Λ , and the points

$$X_j = \sum_{i=1}^m \frac{d_{ij}}{q} Y_i$$

are points of Λ . Consequently, there is a term

$$f(\sum_{i=1}^{m} \frac{d_{i1}}{q} Y_{i}, \ldots, \sum_{i=1}^{m} \frac{d_{ik}}{q} Y_{i}) = f(X_{1}, \ldots, X_{k})$$

in the sum (6), corresponding to the points X_1, \ldots, X_k . It is clear that $(\nu;\mu)$, q and D are uniquely determined by the points X_1, X_2, \ldots, X_k . So corresponding to each k-tuple of points X_1, X_2, \ldots, X_k there will be just one term in the sum (6).

Conversely, it is easy to see that each term in (6) corresponds to just one term in (5). Since f is non-negative, Lemma 1 follows.

Proof of Theorem 1. We make use of the following theorem of Rogers (2, Theorem 3):

WOLFGANG SCMHIDT

Let $f(X_1, \ldots, X_m)$ be a Borel-measurable function which is integrable in the Lebesgue sense over the whole X_1, \ldots, X_m -space. Then the lattice function

$$f(\Lambda) = \sum \begin{bmatrix} X_1, \dots, X_m \epsilon \Lambda \\ \dim(X_1, \dots, X_m) = m \\ \sum_{i=1}^m d_{ij}/q X_i \epsilon \Lambda \end{bmatrix} f(X_1, \dots, X_m)$$

is Borel-measurable in the space of lattices of determinant 1 and

$$\int_{F} f(\Omega \Lambda_{0}) d\mu(\Omega) = \left(\frac{N(D,q)}{q^{m}}\right)^{n} \int \dots \int f(X_{1},\dots,X_{m}) dX_{1}\dots dX_{m}.$$

A combination of this theorem and Lemma 1 gives (1), where the sum is extended over all D with (4). This proves Theorem 1.

2. Some properties of systems of linear congruences. There exist many papers on this subject (for example, (1)), but it seems desirable to develop the theory in a way which is most suitable for our purposes.

Let $\mathfrak{a}_1,\mathfrak{a}_2,\ldots,\mathfrak{a}_m$ be integral vectors, p^t a power of a prime. We define the rank $r(p^t)$ of $\mathfrak{a}_1,\mathfrak{a}_2,\ldots,\mathfrak{a}_m \pmod{p^t}$ to be k, if there exists a subset R of k vectors

$$\mathfrak{a}_{i_1}, \mathfrak{a}_{i_2}, \ldots, \mathfrak{a}_{i_k},$$

so that each vector is $(\mod p^t)$ a linear combination of vectors of R, and if k is the least integer with this property. We say R is a basis of $\mathfrak{a}_1,\mathfrak{a}_2,\ldots,\mathfrak{a}_m$ $(\mod p^t)$. If H is an integral matrix, then we define the rank $r(H,p^t)$ to be the rank $r(p^t)$ of the rows of H.

We investigate the set $H(u,v;r_1,r_2,\ldots,r_i;p)$ of matrices H which have u rows, v columns and $r(H,p^j) = r_j$ $(1 \le j \le t)$. If

$$H \in H(u,v; r_1,r_2,\ldots,r_t;p),$$

then there exist bases R_j of all rows (mod p^j), consisting of r_j rows. R_j has (mod p^{j-1}) rank $s_{j-1} \leq r_{j-1}$ and a basis $S_{j-1} \pmod{p^{j-1}}$ consisting of s_{j-1} rows. $(s_{j-1} \leq r_{j-1}$ follows from the fact that if vectors $\mathfrak{b}_1, \ldots, \mathfrak{b}_h$ are linearly dependent on $\mathfrak{c}_1, \ldots, \mathfrak{c}_s \pmod{p^i}$, then there is a subset of s vectors

$$\mathfrak{b}_{i_1},\ldots,\mathfrak{b}_{i_s},$$

so that $\mathfrak{b}_1, \ldots, \mathfrak{b}_h$ are linearly dependent on

$$\mathfrak{b}_{i_1},\ldots,\mathfrak{b}_{i_s} \pmod{p^i}$$

This fact can be verified similarly to the corresponding proofs in vectoralgebra.) Each row is a linear combination of rows of $R_j \pmod{p^j}$, hence a fortiori (mod p^{j-1}). Consequently, S_{j-1} is a basis $R_{j-1} \pmod{p^{j-1}}$ of all rows of H and we have $s_{j-1} = r_{j-1}$, $R_{j-1} \subseteq R_j$. If therefore $H \in H$ (u,v; $r_1, \ldots, r_i; p)$, then there exists a sequence of bases $R_j \pmod{p^j}$, each consisting of r_j rows and with $R_1 \subseteq R_2 \subseteq \ldots \subseteq R_i$.

We define $G(u,v;r_1,r_2,\ldots,r_t;p)$ to be the subset of those $H \in H(u,v;r_1,r_2,\ldots,r_t;p)$ which have a sequence of bases $R_1 \subseteq \ldots \subseteq R_t$ so that R_j consists of the first r_j rows

$$\mathfrak{h}_1, \mathfrak{h}_2, \ldots, \mathfrak{h}_{r_i}$$

of $H(1 \leq j \leq t)$. If $N_H(u,v;r_1,\ldots,r_t;p)$ is the number of $H \in H(u,v;r_1,\ldots,r_t;p)$ (mod p^t) and $N_G(u,v;r_1,\ldots,r_t;p)$ is the number of $H \in G(u,v;r_1,\ldots,r_t;p)$ (mod p^t), then

(7)
$$N_H(u,v;r_1,\ldots,r_i;p) \leqslant u! N_G(u,v;r_1,\ldots,r_i;p).$$

LEMMA 2. If $H \in G(u,v;r_1,\ldots,r_i;p)$ has the rows $\mathfrak{h}_1,\mathfrak{h}_2,\ldots,\mathfrak{h}_u$, and if

(8)
$$\mathfrak{h} \equiv \sum_{i=1}^{r_j} \mathfrak{h}_i c_i \pmod{p^i}$$

then there exist d_i $(1 \leq i \leq r_i)$, so that

(9)
$$\mathfrak{h} \equiv \sum_{i=1}^{r_j} \mathfrak{h}_i d_i \pmod{p^j} \qquad 0 \leqslant d_i < p^{j-e} \text{ if } i > r_e,$$

where $1 \leq e < j \leq t + 1$; we write $r_0 = 0$, $r_{t+1} = u$.

Proof of Lemma 2. The lemma is true if

 $c_{r_{1}+1} = c_{r_{1}+2} = \ldots = c_{r_{i}} = 0.$

Using induction on f, we assume it to be true for (10) $c_{rf+1} = c_{rf+2} = \ldots = c_{rj} = 0$ and prove it for

 $c_{rf+1+1} = c_{rf+1+2} = \ldots = c_{rj} = 0.$

If (11) holds, then

$$\mathfrak{h} \equiv \sum_{i=1}^{r_{f+1}} \mathfrak{h}_i c_i \pmod{p^i}.$$

If $r_f < i \leq r_{f+1}$, then

$$\mathfrak{h}_i \equiv \sum_{l=1}^{\tau_f} w_{li} \mathfrak{h}_l + p^f \mathfrak{g}_i \pmod{p^j}.$$

Therefore,

(11)

$$\mathfrak{h} \equiv \sum_{i=1}^{T'} \mathfrak{h}_i c_i + \sum_{i=r_f+1}^{T_f+1} (\sum_{l=1}^{T'} w_{li} \mathfrak{h}_l + p^f \mathfrak{g}_i) c_i \pmod{p^j}.$$

If we take $d_i \equiv c_i \pmod{p^{j-f}}, \ 0 \le d_i < p^{j-f} \ (r_f + 1 \le i \le r_{f+1})$, then (12) $h = h' + \sum_{j=1}^{j+1} h_j \pmod{p^j}$

(12)
$$\mathfrak{h} \equiv \mathfrak{h}' + \sum_{i=r_f+1}^{r_f+1} \mathfrak{h}_i d_i \pmod{p^i}$$

where \mathfrak{h}' can be written in the form (8) with (10), whence by induction in the form (9). Therefore and by (12) we proved Lemma 2 for all h with (8) and (11).

WOLFGANG SCHMIDT

Lemma 3.

(13)
$$N_H(u,v;r_1,\ldots,r_t;p) \leqslant u!p^{(u+v)(r_1+\ldots+r_t)-r_1^2-r_2^2-\ldots-r_t^2}.$$

Proof of Lemma 3. Because of (7) it suffices to prove

$$N_G(u,v;r_1,\ldots,r_t;p) \leqslant p^{(u+v)(r_1+\ldots+r_t)-r_1^2-\ldots-r_t^2}.$$

If $\mathfrak{h}_1, \ldots, \mathfrak{h}_u$ are the rows of $H \in G(u,v;r_1, \ldots, r_t;p)$ and if $r_j < s \leq r_{j+1}$, then \mathfrak{h}_s can be written in the form (8), hence by Lemma 2 in the form (9). There are

$$(p^{j})^{r_{1}}(p^{j-1})^{(r_{2}-r_{1})}(p^{j-2})^{(r_{3}-r_{2})}\cdots p^{(r_{j}-r_{j-1})} = p^{r_{1}+r_{2}+\cdots+r_{j}}$$

possibilities for the coefficients d. If therefore $\mathfrak{h}_1, \ldots, \mathfrak{h}_{s-1}$ are given, we have $p^{r_1+\cdots+r_j}$ possibilities for $\mathfrak{h}_s \pmod{p^j}$, times $p^{(t-j)\,\mathfrak{v}}$ possibilities if we fix $\mathfrak{h}_s \pmod{p^t}$. This gives $p^{r_1+\cdots+r_j+(t-j)\,\mathfrak{v}}$ possibilities. Hence,

$$N_{G}(u,v;r_{1},\ldots,r_{t};p) \leq p^{tvr_{1}} \cdot p^{[r_{1}+(t-1)v](r_{2}-r_{1})} \cdot p^{[r_{1}+r_{2}+(t-2)v](r_{3}-r_{2})} \cdot p^{[r_{1}+\ldots+r_{t}](u-r_{t})} = p^{(u+v)(r_{1}+\ldots+r_{t})-r_{1}^{2}-\ldots-r_{t}^{2}}.$$

LEMMA 4. If $Z_H(u,v;r_1,\ldots,r_t;p)$ is the maximal number of solutions (mod p^t) of an equation

(14)
$$\mathfrak{h}_1 x_1 + \ldots + \mathfrak{h}_u x_u \equiv 0 \pmod{p^t}$$

where $\mathfrak{h}_1,\mathfrak{h}_2,\ldots,\mathfrak{h}_u$ are the rows of a matrix $H \in H(u,v;r_1,\ldots,r_i;p)$, then

(15) $Z_H(u,v;r_1,\ldots,r_t;p) \leqslant p^{tu-r_1-\ldots-r_t}.$

Proof of Lemma 4. It is enough to prove (15) for $H \in G(u,v;r_1,\ldots,r_t;p)$. First we choose

$$x_{r_t+1},\ldots,x_u$$

arbitrarily. This gives $p^{t(u-r_t)}$ possibilities (mod p^t). The number of solutions of (14) with fixed

$$x_{r_{i}+1}, \ldots, x_{u}$$

is at most equal to the number of solutions of the homogeneous equation

(16)
$$\mathfrak{h}_1 x_1 + \ldots + \mathfrak{h}_{r_t} x_{r_t} \equiv 0 \pmod{p^t}.$$

Since h_1, \ldots, h_{r_t} have rank $r_t \pmod{p^t}$, all x_j have to be multiples of p, that is, $x_j = py_j$ $(1 \le j \le r_t)$. Hence we have the new system

(17)
$$\mathfrak{h}_1 y_1 + \ldots + \mathfrak{h}_{r_t} y_{r_t} \equiv \upsilon \pmod{p^{t-1}}.$$

System (17) is similar to (14), we only substituted r_t for v, t - 1 for t. By repeated application of this argument we see that

$$Z_{H}(u,v;r_{1},\ldots,r_{t};p) \leqslant p^{t(u-r_{t})+(t-1)(r_{t}-r_{t-1})+\cdots+(r_{2}-r_{1})} = p^{tu-r_{1}-\cdots-r_{t}}.$$
If

$$q = \prod_{i=1}^{l} p_i^{c_i},$$

then we define the set of matrices

$$H\begin{pmatrix}r_{11},r_{12},\ldots,r_{1c_1}\\r_{21},r_{22},\ldots,r_{2c_2}\\u,v;\ldots,r_{ic_i};q\\r_{i1},r_{i2},\ldots,r_{ic_i};q\end{pmatrix}=H(u,v;\rho;q)=\bigcap_{i=1}^l H(u,v;r_{i1},\ldots,r_{ic_i};p_i).$$

Let $N_H(u,v;\rho;q)$ be the number of $H \in H(u,v;\rho;q) \pmod{q}$ and $Z_H(u,v;\rho;q)$ the maximal number of solutions (mod q) of

(18)
$$\mathfrak{h}_1 x_1 + \ldots + \mathfrak{h}_u x_u \equiv 0 \pmod{q}$$

where $\mathfrak{h}_1, \mathfrak{h}_2, \ldots, \mathfrak{h}_u$ are rows of an $H \in H(u, v; \rho; q)$. We observe

(19)
$$N_H(u,v;\rho;q) = \prod_{i=1}^l N_H(u,v;r_{i1},\ldots,r_{ic_i};p_i)$$

and

(20)
$$Z_H(u,v;\rho;q) = \prod_{i=1}^l Z_H(u,v;r_{i1},\ldots,r_{ic_i};p_i).$$

3. Proof of Theorem 2. If $f(X_1, \ldots, X_k)$ is a non-negative Borelmeasurable function, then (1) holds. We are going to show that if, in addition, f is bounded and vanishes outside a bounded region of space, then both sides of (1) are finite.

There is only a finite number of divisions $(\nu;\mu)$. Hence it suffices to prove the convergence of the sum for a given $(\nu;\mu)$. Finally we observe that, under the stated conditions, the integrals

(21)
$$\int \dots \int f(\sum_{i=1}^m \frac{d_{i1}}{q} X_i, \dots, \sum_{i=1}^m \frac{d_{ik}}{q} X_i) dX_1 \dots dX_m$$

are less than a fixed constant. Therefore it remains to show the convergence of

$$\sum_{q=1}^{\infty} \sum_{D} \left(\frac{N(D,q)}{q^m} \right)^n$$

where $(\nu;\mu) = (\nu_1, \ldots, \nu_m; \mu_1, \ldots, \mu_{k-m})$ is given and D runs through all matrices satisfying (4). D has m rows, k columns.

If $D \in H(m,k;\rho;q)$,

$$q = \prod_{i=1}^{l} p_i^{c_i},$$

then, by definition of N(D,q), $N(D,q) \leq Z_H(m,k;\rho;q)$. How many matrices D in $H(m,k;\rho;q)$ satisfy (4)? Since the columns

$$d_{\nu_1}, d_{\nu_2}, \ldots, d_{\nu_m}$$

are fixed and $\equiv 0 \pmod{q}$, there are $\leq N_H(m,k-m;\rho;q)$ possibilities modulo q and because of $|d_{ij}| \leq q$ at most $3^{m(k-m)}N_H(m,k-m;\rho;q)$ possibilities.

Consequently, by (19) and (20),

$$\sum_{D} \left(\frac{N(D,q)}{q^{m}} \right)^{n} \leq 3^{m(k-m)} \prod_{i=1}^{l} \left(\frac{Z_{H}(m,k;r_{i1},\ldots,r_{ic_{i}};p_{i})}{p_{i}^{c_{i}m}} \right)^{n} N_{H}(m,k-m;r_{i1},\ldots,r_{ic_{i}};p_{i}).$$

The summation is taken over all $D \in H(m,k;\rho;q)$ which satisfies (4).

By summation over all q,ρ , we obtain

(22)
$$\sum_{q=1}^{\infty} \sum_{D} \left(\frac{N(D,q)}{q^m} \right)^n \leq 3^{m(k-m)} \prod_p \left[1 + \sum_{1 \leq r_1 \leq \cdots \leq r_c \leq m} \left(\frac{Z_H(m,k;r_1,\ldots,r_c;p)}{p^{cm}} \right)^n N_H(m,k-m;r_1,\ldots,r_c;p) \right].$$

The sum on the right hand side of (22) is over all sequences $1 \le r_1 \le r_2 \le \ldots \le r_c \le m$ with arbitrary c. We have $r_1 \ge 1$, because $r_1 = 0$ would imply that all elements of D are multiples of p, and p, D were not relatively prime. It is a consequence of (13) and (15) that

(23)
$$\begin{pmatrix} \frac{Z_H(m,k;r_1,\ldots,r_c;p)}{p^{cm}} \end{pmatrix}^n N_H(m,k-m;r_1,\ldots,r_c;p) \\ \leq \begin{pmatrix} \frac{p^{cm-r_1-\ldots-r_c}}{p^{cm}} \end{pmatrix}^n (k-m)! p^{k(r_1+\ldots+r_c)-r_1^2-\ldots-r_c^2} \\ = (k-m)! p^{-(n-k)(r_1+\ldots+r_c)-r_1^2-\ldots-r_c^2}.$$

We have

(24)
$$\sum_{1 \leqslant r_1 \leqslant \ldots \leqslant r_c \leqslant m} p^{-(n-k)(r_1 + \ldots + r_c) - r_1^2 - \ldots - r_c^2} = \prod_{l=1}^m \left(\sum_{t=0}^\infty p^{-[(n-k)l+l^2]t} \right) - 1 < \prod_{l=1}^m (1 + 2p^{-(n-k)l-l^2}) - 1 < Cp^{-(n-k+1)}$$

where *C* is a constant. Finally, the product

$$\prod_{p} \left(1 + \frac{C(k-m)(k-m)!}{p^{n-k+1}} \right)$$

is convergent. This fact, together with (22), (23) and (24), yields Theorem 2.

By estimates for the integrals (21), provided by (3), it would be possible to find good bounds for (1).

References

- 1. A. T. Butson and B. M. Stewart, Systems of linear congruences, Can. J. Math., 7 (1955), 358-368.
- 2. C. A. Rogers, Mean values over the space of lattices, Acta Math., 94 (1955), 249-287.

A single integral inequality, to appear in the Journal of the London Math. Soc.
 W. Schmidt, Mittelwerte über Gitter, Monatshefte f. Math., 61 (1957), 000-000.

5. C. L. Siegel, A mean value theorem in geometry of numbers, Annals of Math., 46 (1945), 340-347.

Montana State University