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Introduction, Recently C. A.Rogers (2, Theorem 4) proved the following 
theorem which applies to many problems in geometry of numbers: 

Let f(Xi,X2, . . . , Xk) be a non-negative B or el-measurable function in the 
nk-dimensional space of points {X\,X2, . . . , -X*). Further, let Ao be the funda
mental lattice, 0 a linear transformation of determinant 1, F a fundamental region 
in the space of linear transformations of determinant 1, defined with respect 
to the subgroup of unimodular transformations and /x(Q) the invariant measure1 

on the space of linear transformations of determinant 1 in Rn. Then, if 1 < k 
< n - 1, 

f E f(Xl9 . . . ,Xt) <fc(0) = /(0, . . . , 0) + f. . . ff(X1, . . . ,Xk) 

dX\. . . dXk 

+ I É I O^")* f • f/(f 7̂ « Z^«) 
(y;/i) (7=1 2> \ <± / t/ t/ i» l 2 i=\ 0 

dXi . . . ^Xm, 
fo/A ŝ 'des having perhaps the value + °°. 77&e 0&/er swm 0W /Ae ri^A/ side is 
over all divisions (v',n) = {v\, . . . , vm; MI> . . . , M*-m) 0/ ^ numbers 1,2, . . . , & 
iwfo faew sequences vi, . . . ,vm and MI, . . . , M̂ -m wiJA 1 < m < & — 1 

1 < V\ < V2 < • • • < Vm < k, 1 < Ml < M2 < • • • < Hk-m < A 

(2) 
Vi 9e fjLj, 1 < i < m ; 1 < j < & — m. 

The inner sum is over all m X k-matrices D with integral elements, having 
highest common factor relatively prime to q, and with 

diVj = qôij, 1 < £ < w; 1 < j < m 
(3) 

diN = 0 if My < vu 1 < i < m; 1 < j < & — ra. 

Finally, N{D,q) is the number of sets of integers (ai,a2, . . . , am) with 0 < at < q 
and 

m 

^2 dijai = 0 (mod q), 1 < i < k. 

Received January 29, 1957. 
1F and the invariant measure are defined in (5). 
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Rogers (2) wrote 

*1 

2 

(euq) and eb , em are the elementary divisors of D. By Lemma 

— instead of -

where et 

1 of (2), 

• • • m 

Another proof of Rogers' theorem is given in (4). 
We write (p;<r) < (v;/z) if 

( p ^ ) = (Pl> . . . , Pmî 0"1> • • • i 0"fc-m)j ( P J M ) = (^1> • • • > ^roî Ml» • • • » Mfc-ro) 

and pi = vu p2 = V2, . . . , pi-i = PJ_I, pi < vz for some / < m. If m < k and 
D is a w X ^-matrix, then we denote by D(V;JJ) the square submatrix with 
columns vi,v2, . . . , vm and by detD(V,ju) the absolute value of the deter
minant of D{v\ii). 

In this paper we prove two theorems: 

THEOREM 1. Rogers' theorem remains true, if (3) is replaced by 

D(v\n) = ql, 
(4) detP(p;o-) < detD(v;n) for any (p;a) = (pi, . . . , pm; au • . . , crfc_TO) 

detD(p;<7) < detD(v,n) if (p;<r) < 0;/x). 

Theorem 1 provides better estimates for the sum in (1), since (4) permits 
only matrices D with \itj\ < q. We further prove 

THEOREM 2. If / (Xi , . . . , Xfc) is bounded and vanishes outside a bounded 
region of space, then both sides of (1) are finite. 

Theorem 2 is an improvement of Rogers' result, that (1) is finite, under the 
stated conditions, if n > [\k2] + 2. Theorem 2 guarantees finiteness for all 
cases of Rogers' theorem, that is, for k < n. No results are known2 for n = k 
or n < k. 

1. LEMMA 1. If f(Xu . . . J t ) > 0 , then 

(5) £ / (*!>. . .>**) 

-^> » + z [&&:.* ™-fc J / ( * ! , . . . ,X*) 

(6) + E Ê S E Yh . . . , Yme A 
dim(Fi, . . . , Fm) = w 

f ) dijYt/qe A 
1—. i=l -J 

Ê — F 

77^ swm extends over al J Z) w/w'cA satisfy (4). 

' .)• 

2In 2 Theorem 5, w > 2 should be replaced by n > 2. 
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Lemma 1 is analogous to a formula of Rogers, where D satisfies (3). 

Proof of Lemma 1. The set of points 0,0, . . . , 0 occurs in the term 
/(0,0, . . . , 0) and if Xh . . . , Xk are linearly independent, then/(Xi , . . . , Xk) 
will occur just once in the sum 

E Xi, . . . , Xk Ç A ., v v v 

LdimpTi Xk) = k\}{Xl Xk)-
If 0 < dim(Xi, . . . , Xk) = m < k, then Xly . . . , Xk span an m-dimensional 

space S. If 0;/x) = Oi, . . . , vm\ m, . . . , /**-«)t then let d(v]fjL;Xu . . . Xk) 
be the volume of the ra-dimensional parallelepiped spanned by 

There exists a uniquely determined (*>;/x) so that 

d(p)a;Xu . . . , X*) < d(v;p;Xu . . . , X*) for any (p;<r) 

and 

d(p;<r;Xi, . . . , X*) < dO;ju;Xi, . . . , X*) if (p;a) < (v;p). 

Every point Xj can be expressed uniquely in the form 
m m j 

Xj = 2^/ CijXVi — 2s ~XVi 
i = l 2=1 0 

where ctj are rationals and d^, a > 0 are integers so that the highest common 
factor of the dtj is relatively prime to q. Clearly, D = (dtj) and q satisfy (4). 

Further, if we take 

Ys = X„ 

then Fi, F2, . . . , FOT are linearly independent points of A, and the points 

Xj = E - J i r , 
z=i ? 

are points of A. Consequently, there is a term 

/ ( £ ~ F4l .. . , E ^f F4) =/(X1( . . . ,XJ 
z=i # Î=I q 

in the sum (6), corresponding to the points Xi, . . . , Xk. It is clear that 
(p;/x)> 9 a n < i ^ a r e uniquely determined by the points Xi,X2, . . . , Xk. So 
corresponding to each &-tuple of points Xi,X2, . . . , Xk there will be just 
one term in the sum (6). 

Conversely, it is easy to see that each term in (6) corresponds to just one 
term in (5). Since fis non-negative, Lemma 1 follows. 

Proof of Theorem 1. We make use of the following theorem of Rogers 
(2, Theorem 3): 
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Let f(Xi, . . . , Xm) be a B or el-measurable function which is integrable in the 
Lebesgue sense over the whole Xi, . . . , Xm-space. Then the lattice function 

/(A) 
X\, . . . , Xm e A 
dim(Xi, . . . ,Xm) = m 

m 

^2 dij/qXi e A 

f(Xi, . . . ,Xm) 

is B or el-measurable in the space of lattices of determinant 1 and 

JV(QAo) d/*(0) = (~-^L~)W J • • • jf(X1} ...,Xm)dX1... dXm. 

A combination of this theorem and Lemma 1 gives (1), where the sum 
is extended over all D with (4). This proves Theorem 1. 

2. Some properties of systems of linear congruences. There exist 
many papers on this subject (for example, (1)), but it seems desirable to 
develop the theory in a way which is most suitable for our purposes. 

Let Cti,ct2, . . . , dm be integral vectors, pl a power of a prime. We define the 
rank rip1) of cti,a2, . . . , am (mod p%) to be k, if there exists a subset R of k 
vectors 

G * i » G * 2 » • • • » Gfjfe, 

so that each vector is (mod p%) a linear combination of vectors of R, and if 
k is the least integer with this property. We say R is a basis of Cti,ct2, . . . , ctm 

(mod p%). If H is an integral matrix, then we define the rank riH,pl) to be the 
rank r(p%) of the rows of H. 

We investigate the set iJ(w,y;ri,r2, . • . , rt\p) of matrices i l which have u 
rows, y columns and r(Hyp

j) = rj (1 < j < £). If 

H e H(u,v; rXjr2, . . . , rt\p), 

then there exist bases Rj of all rows (mod pj), consisting of r j rows. Rj has 
(mod £ i - 1) rank Sj-i < r ; - i and a basis Sj-i (mod ^:/_1) consisting of Sj-i 
rows. (s^_i < Tj-i follows from the fact that if vectors bi, . . . , bh are linearly 
dependent on Ci, . . . , cs (mod p*), then there is a subset of 5 vectors 

U ^ , . . . | Uisj 

so that bi, . . . , hh are linearly dependent on 

b f l, . . . , bis (mod pl). 

This fact can be verified similarly to the corresponding proofs in vector-
algebra.) Each row is a linear combination of rows of Rj (mod p}), hence a 
fortiori (mod p^1). Consequently, 5^_i is a basis Rj-i (mod pj~l) of all 
rows of H and we have Sy_i = r ;_i, Rj-i Ç Rjt If therefore H Ç H iu>v; 
Y\, . . . , rt\p), then there exists a sequence of bases Rj (mod £j)> each con
sisting of r j rows and with R\ Ç i?2 C . . . C Rt. 
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We define G(u,v\ri,r2j . . . , rt;p) to be the subset of those H Ç H(u,v; 
ri,r2, . . . y rùp) which have a sequence of bases R\ Ç . . . C Rt so that Rj 
consists of the first r} rows 

ï}lil)2, • • • > $TJ 

of H (1 < j < / ) . If NH(u,v,ri, . . . ,rt\p) is the number oî H £ H(u}v\ru 

- - • * ft'jp) (mod £') and NG(u,v;ri, ... ,rt;p) is the number oî H £ G(u,v;ri, 
. . . , r(;£) (mod £')> then 

(7) NH(u,v\rlt . . . , r«;/>) < u\ N'G(u9vtru . . , r«#)-

LEMMA 2. If H £ G{u,v\r\, . . . , rt;p) has the rows ï)i,ï)2, . • • , fyM, awd i/* 

(8) $ s 2 ^ ( m o d ^ ) 

£&e?z /^ere exis£ d* (1 < i < ry), so that 

(9) I) s ^ t)4i (mod />') 0 < dt < pj~e if i > re, 

where 1 < e < j < t + 1; we ?wzïe r0 = 0, r*+i = u. 

Proof of Lemma 2. The lemma is true if 
Crl+1 ~ ^ n + 2 = • • • = CTj — 0 . 

Using induction on / , we assume it to be true for 

(10) Crf+l = Crf+2 = • • . = CTj = 0 

and prove it for 

( 1 1 ) £ r / + i + l — Crf+i+2 — • • • = CTj = 0 . 

If (11) holds, then 
Tf +1 

& = Z) W i (mod^"7)-

If r , < i < r / + i , then 

&* = Z^ w,^ , + p\i (mod ^ ) . 
z=i 

Therefore, 
Tf Tf+l Tf 

Ï) = Z) i)iCt+ 23 Œ w , ^ , + />/9<V< (mod/>0-
i= l i=rf+l 1=1 

If we take dt = c* (mod £ w ) > 0 < d< < £ ' w (rr + 1 < i < r / + 1) , then 

(12) ï) ^ Ï)' + i f M< (mod £') 

where f)' can be written in the form (8) with (10), whence by induction in the 
form (9). Therefore and by (12) we proved Lemma 2 for all h with (8) and 

ai). 
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LEMMA 3. 

(13) NH(u,v;ru . . . , rt;p) < u\p(u+vHn+ ' ' ' + '*-*-'**- • • • - "2. 

Proof of Lemma 3. Because of (7) it suffices to prove 

N0(u,v;n, . . . , rt;p) < p^^+ • • • +">-'i*- . . . - V 

If f)i, . . . , f)M are the rows of If £ G(w,v;ri, . . . , rt;p) and if r, < s < r ; + i , 
then ï)s can be written in the form (8), hence by Lemma 2 in the form (9). 
There are 

(pj)n(pj~l)iT2~Tl)(pj~2)(T3~r2) . . . £(rJ-r>-l) = £ r i + r 2+. . . + im

possibilities for the coefficients d. If therefore f)i, . . . , f)s_i are given, we have 

pri+ . . . +TJ possibilities for t)s (mod pj), times p^-n* possibilities if we fix i)s 

(modp*). This givespTl+ • • • +W*-#» possibilities. Hence, 
tvn . [r i+( «—!)»] (r2—ri) 

+ r2+(*-2)t>](r8-7 

,(u+v) ( r i+ • • • +r«) —nz— . . . — r* 

p . . . p 

LEMMA 4. If ZH(u,v;riy . . . , rt;p) is the maximal number of solutions (mod 
pl) of an equation 

(14) faxi + . . . + U 3 0 (mod />'), 

wAere t)i,t)2, . . . , t)M are ^ e r̂ W5 of a matrix H £ H(u,v;ri, . . . , rt\p), then 

(15) Z H ( « , » ; n , . . . , r l # ) < ^ l w - r l - - • • - ' * . 

Proof of Lemma 4. It is enough to prove (15) for H £ G(u,v;ri, . . . , rt;p). 
First we choose 

3Crt + l> • • • J %u 

arbitrarily. This gives p^u~r^ possibilities (mod pl). The number of solutions 
of (14) with fixed 

X p ^ - j - i , • • • j J("U 

is at most equal to the number of solutions of the homogeneous equation 

(16) t)iXi + . . . + §rtxTt = 0 (modp*). 

Since hi, ... , hrt have rank rt (mod p%), all x;- have to be multiples of p, 
that is, Xj = £y^ (1 < j < r*). Hence we have the new system 

(17) hyi + . . . + ï ^ r , s u (mod ^ < " 1 ) . 

System (17) is similar to (14), we only substituted rt for v, t — 1 for /. By 
repeated application of this argument we see that 

ZH(u,V;rh . . . , rt;P) < /,«C«-rf)+C*-l>Crf-r.-i>+ . . . +Cr t-n) = ^ - n -

If 

g = II />/' -
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then we define the set of matrices 

rn,r12, . . . , rlci 

r2i,r22, . • • , r2C2 

u,v; . . . ;qj = H(u,v;p;q) = M H(u,v;riU . . . , riei;pt). 
^11/12, • • • > Vici 

Let NH(u,v;p;q) be the number of H G H(u,v,p;q) (mod g) and ZH(u,v;p;q) 
the maximal number of solutions (mod q) of 

(18) ï)iffi + . . . + ijuxu = 0 (mod g) 

where ï)i,t)2, . . . , Ï)M are rows of an i l G H(u,v;p;q). 
We observe 

z 
(19) NH(u,v\p\q) = n NH(utv\riU . . • , r *><#<) 

z = l 

and 
z 

(20) ZH(u,v;p;q) = f l ZH(u,v',rn, . . . , riei;pt). 
t=i 

3. Proof of Theorem 2. If / (Xi , . . . , J Q is a non-negative Borel-
measurable function, then (1) holds. We are going to show that if, in addition, 
/ is bounded and vanishes outside a bounded region of space, then both sides 
of (1) are finite. 

There is only a finite number of divisions (*>;/*). Hence it suffices to prove 
the convergence of the sum for a given (i>;/z). Finally we observe that, under 
the stated conditions, the integrals 

(21) ... /(£ ^xt D ^xt)dXx...dxn 
J %=i q i=i q 

are less than a fixed constant. Therefore it remains to show the convergence 
of 

Q=i D \ q / 2 
where (v\fx) — (vi, . . . , ) is given and J9 runs through all 
matrices satisfying (4). D has m rows, k columns. 

IÎ D e H(m,k;p;q), 

? = ri pi*, 
i=i 

then, by definition of N(D,q), N(D,q) < ZH(m,k;p;q). How many matrices 
D in H(m,k',p',q) satisfy (4)? Since the columns 

dvi,<Xj»2» • • • » ^vm 

are fixed and = 0 (mod q), there are < NH(m,k — m;p;g) possibilities modulo 
g and because of \dtj\ < g at most Zm(k~m)NH(m,k — m;p;q) possibilities. 
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(22) U D \ 4 1+ £ 
K r i < . . . <,Tc<,m 

. fc(ri+ . . . +rc) — ri2-
c»~. i i K. — in, i : H 

,-(n-k)(n+ . . . + r c ) - n 2 -

Consequently, by (19) and (20), 

V / ^ ( A g ) Y ^ om(*-m) T-T /' ZH{ni,k\r_n, . . , ^ c _ t ^ j ) V 

NH(m,k - m; rih . . . , r*Ci; £*). 

The summation is taken over all Z? Ç H(rn,k; p; g) which satisfies (4). 
By summation over all g,p, we obtain 

Ë E ( - - ^ Y < 3mu-m> n 
q=l D \ O / v 

(ZH(m,k;rh . . . , rc;^;VAT 1 
i r_^ ^ (m,& - m7h . . . , rc;£)J . 

The sum on the right hand side of (22) is over all sequences 1 < r\ < r2 < 
. . . < r c < w with arbitrary c. We have ri > 1, because rx = 0 would imply 
that all elements of D are multiples of £, and p, D were not relatively prime. 
It is a consequence of (13) and (15) that 

( ZH{rn,k\ri, . . . . rc:p) \ \ T , , N 

( 2 3 ) \^MX~^-^r-~~-—L) NH(m,k - m\ru . . . , rc;£) 
/ . cm— ri— . . . —r c \ w 

< (^ ^ s J (* - m)\pk 

= (k — m)\p~ 

We have 
m / co \ 

y ^ _( w _ f c ) ( r i+ • • • + r c ) - n 2 - . . . - r c 2 = F T ^ .-[(n-k) Î+1*) t \ 
(24) l< r i < . . . <rc<m 1=1 \ t=0 / 

m 
— i < ri (i + 2p-(n-ku-1 ) - 1 < cp-(n-k+i) 

i=i 

where C is a constant. Finally, the product 

n( I + Qà^yts i ! ) 
is convergent. This fact, together with (22), (23) and (24), yields Theorem 2. 

By estimates for the integrals (21), provided by (3), it would be posible 
to find good bounds for (1). 
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