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Abstract. We introduce the concept of homological Frobenius functors as the
natural generalization of Frobenius functors in the setting of triangulated categories,
and study their structure in the particular case of the derived categories of those of
complexes and modules over a unital associative ring. Tilting complexes (modules)
are examples of homological Frobenius complexes (modules). Homological Frobenius
functors retain some of the nice properties of Frobenius ones as the ascent theorem for
Gorenstein categories. It is shown that homological Frobenius ring homomorphisms
are always Frobenius.
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1. Introduction. The notion of Frobenius adjoint pair between categories of
modules was introduced by Morita in [15] as the most natural setting for the study of
Frobenius extensions. A pair of adjoint functors (L, R) between two module categories
is said to be Frobenius if R is also a left adjoint of L. This theory was later extended
to the arbitrary Grothendieck categories (see [3]), so the study of the Frobenius
property for categories of graded rings, comodules over a coring and other important
Grothendieck categories (see [2]) became a natural question. Due to its applications
to the theory of Hopf algebras, monoidal categories and two-dimensional topological
quantum field theory, the theory of Frobenius extensions has recently been a subject
of increasing interest (see for example [10]). In this paper, we introduce the notion of
Frobenius adjoint pair between two triangulated categories, so in particular derived
categories of modules categories.

Frobenius pair of functors can be considered as an extension of Morita
equivalences, so our theory generalizes, in the same direction, the theory of equivalences
between derived categories of modules, i.e. tilting theory. Then we introduce the notion
of homological Frobenius complexes and homological Frobenius bimodules.

The paper is organized as follows. In Section 3 we give the definition of a Frobenius
adjoint pair of functors between triangulated categories, in particular, between derived
categories. We prove several interesting properties verified by this functors, for instance,
under some conditions if we have such a pair (F, G), F : C → D, and C is Gorenstein,
then D is Gorenstein.

Section 4 is devoted to the study of homological Frobenius complexes of
bimodules. These kind of complexes induce Frobenius adjoint pairs in the derived
categories of the respective module categories. The examples show that these complexes
are close to be tilting complexes of bimodules, but, in general, they are not. We also
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show that the endomorphism Differential Graded (DG)-algebra of a homological
Frobenius complex is a Frobenius extension with respect to the base ring.

In Section 5 we study homological Frobenius bimodules and extensions. We prove
that when the homological Frobenius bimodule SMR is projective on one side then it is
a Frobenius bimodule. This implies that homological Frobenius ring homomorphisms
are always classical Frobenius extensions. We also prove that any homological
Frobenius adjoint pair between module categories is given by a homological Frobenius
bimodule. We relate totally reflexive extensions with the Frobenius ones. Finally, we
generalize Enochs’ result about Gorenstein ascent in Frobenius ring extensions.

2. Preliminaries. Triangulated categories will be used occasionally along the
paper, as well as triangulated functors and related concepts. We refer to Neeman’s
book [17] for definitions and terminology about these topics. However, we recall that
an object C in a triangulated category T is said to be compact if HomT (C,−) commutes
with arbitrary coproducts. Also, a triangulated category with arbitrary coproduct T
is compactly generated if there exists a set of compact objects A with the following
property: If HomT (A, X) = 0 for each A ∈ A, then X = 0.

Let C be an abelian category and C(C) be the category of complexes in C. By K(C)
we denote the homotopy category associated with C. We follow the standard notation
Kb(C), K+(C), K−(C) for bounded, bounded below and bounded above complexes
respectively. IfT ⊂ C is a full subcategory, then we denote by K∗(T ) the full triangulated
subcategory of K∗(C) (∗ = b,+,−) of complexes with components inT . We also denote
by C+,b(T ) the full subcategory of C+(T ) of complexes with a finite number of non-zero
group cohomologies.

If X is an object of C, we write X [i] to denote the complex with X in the ith
component and zero in the rest of components. Let add(X) be the full subcategory of
C of direct summand of finite direct sums of copies of X .

The derived category of C, denoted as D(C), is the localization of K(C) by a set of
representatives of all quasi-isomorphisms. Similarly, we define D∗(C) (∗ = b,+,−) as
the localization of K∗(C) (∗ = b,+,−). We let Q∗ : K∗(C) → D∗(C) be the respective
localization maps.

Suppose C is a Grothendieck category, so it has enough injectives. It is well know
that given a complex X ∈ C(C) there exists an exact sequence of complexes:

0 → X → I → E → 0,

where E is acyclic and I is DG-injective (see [8, 18, 19]). This implies that X = I in
D(C). We call iX = I , an injective resolution of X . Note that if X ∈ C+(C), then there
is an injective resolution I ∈ C+(C) with X = I in D+(C). Then D(C) ∼= K(DG − I) as
triangulated categories where DG − I is a full subcategory of DG-injective complexes.
In particular, since any bounded below complex of injectives is DG-injective, it
follows that D+(C) ∼= K+(I), where I is a full subcategory of complexes with injective
components. As a consequence, we also get the triangulate equivalence Db(C) ∼= Kb(I).

Dually, if C is a Grothendieck category with enough projectives, there exists an
exact sequence of complexes:

0 → E′ → P → X → 0,

where E′ is acyclic and P is DG-projective ([8, 18, 19]). Thus, X = P in D(C). We
call pX = P a projective resolution of X . If X ∈ C−(C), then there is a projective
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resolution P ∈ C−(C) with X = P in D−(C). Dually to the DG-injective case, D(C) ∼=
K(DG − P) as triangulated categories, where DG − P is a full subcategory of DG-
projective complexes. In particular, since any bounded above complex of projectives
is DG-projective, it follows that D−(C) ∼= K−(P), where P is a full subcategory of
complexes with projective components. Also, Db(C) ∼= Kb(P).

Let C andD be two Grothendieck categories and suppose C has enough projectives.
Let F : C(C) → C(D) be a right exact functor and G : C(D) → C(C) be a left exact
functor. Their left and right derived functors will be denoted by LF and RG respectively,
so LF : D(C) → D(D) and RG : D(D) → D(C) are defined as LF(X) = F(pX) (pX is a
projective resolution of X), RG(Y ) = G(iY ) (iY is an injective resolution of Y ). If (F, G)
is an adjoint situation then F preserves arbitrary colimits and G preserves arbitrary
limits and the pair (LF, RG) is an adjoint pair of functors between triangulated
categories.

Recall that a Grothendieck category is said to be Gorenstein [6], provided that the
following conditions hold:

(1) An object is of finite projective dimension if and only if it is of finite injective
dimension.

(2) Both finitistic projective and injective dimensions (FPD and FID respectively)
of the category are finite.

(3) The category has a generator of finite projective dimension.
We note that any Grothendieck category has enough injectives. Therefore, we can

compute Exti(X, Y ) using an injective resolution of Y . Thus, the projective dimension
of an object X is ≤ n if and only if Exti(X,−) = 0 ∀i > n, so we do not need projectives
to define the projective dimension.

A Gorenstein category is said to be n-Gorenstein provided that both FID and
FPD are ≤ n.

Let R be a ring. The category of all unitary left R-modules is denoted by R-Mod.
Let M• and N• be two complexes of left R-modules. By Hom•(M•, N•) we denote the
Hom-complex. In case N is concentrated in one degree we just write HomR(M•, N).

For a complex of left R-modules M• and a complex of right R-modules L•, we
denote by M• ⊗•

R N• the usual tensor complex. The ith shift of a complex M• will be
denoted by M•[i].

When there is no confusion about the side of R-modules, we simply write D(R)
instead of D(R-Mod). In the triangulated category D(R) the compact objects are
well known: they are the so-called perfect complexes (bounded complexes of finitely
generated projective components).

A complex of right R-modules T•
R is a tilting complex if it is a perfect complex, it

generates the full subcategory formed by compact objects and HomD(R)(T•, T•[i]) = 0
for all i ∈ ZZ. If we let S = EndD(R)(T), then T• gives the existence of an equivalence
between the derived categories D(R) and D(S) [14].

A DG-algebra over R is a ZZ-graded R-algebra A = ⊕n∈ZZAn that is also a complex
over R that satisfies Leibniz’s Rule:

∂(ab) = (∂a)b + (−1)|a|a(∂b) ∀a, b ∈ A.

Equivalently, a DG-algebra over R is a ZZ-graded R-algebra A with a square-
zero derivation ∂ : A → A of degree 1. If M• is a complex of R-modules, then
Hom•(M•, M•) is a DG-algebra over R.
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Given DG-algebras A and B over R, a morphism of DG-algebras f : A → B is a
morphism of complexes for which f (1A) = 1B and f (a1a2) = f (a1)f (a2)
∀ a1, a2 ∈ A.

A DG-A-module is a graded module M over the graded algebra A that is also a
complex that satisfies Leibniz’s Rule:

∂(am) = (∂a)m + (−1)|a|a(∂m) ∀a ∈ A, ∀m ∈ M.

Let SMR be an (S, R)-bimodule. We say that M is a Frobenius bimodule if SM and
MR are projective and there is an isomorphism of (R, S)-bimodules HomR(M, R) ∼=
HomS(M, S) (see [3]). Given a ring homomorphism ψ : R → S, we say that ψ is a
Frobenius homomorphism if SSR is a Frobenius (S, R)-bimodule. In particular, we
have Frobenius extensions of rings R ⊆ S.

3. Homological Frobenius functors and Gorenstein categories.

DEFINITION 3.1. Let T and S be two triangulated categories and F : T → S
an exact functor. We say that F is a Frobenius functor if there is an exact functor
G : S → T such that (F, G) and (G, F) are adjoint pairs of functors.

In this case we also say that (F, G) is a Frobenius pair.

DEFINITION 3.2. Let C and D be two Grothendieck categories. We say that the
couple of adjoint (covariant) functors (F, G), F : C → D is a homological Frobenius
pair if the couple (LF, RG), LF : D(C) → D(D) is a Frobenius pair. In this case we say
that F and G are homological Frobenius functors.

LEMMA 3.3. Let F : C → D be a homological Frobenius functor. The following
statements hold:

(i) LF preserves products and coproducts.
(ii) If D(C) and D(D) are compactly generated, then LF preserves compact objects.

Proof. (i) LF has left and right adjoints.
(ii) Follows by [16, Theorem 5.1]. �
REMARK 3.4. Let C and D be two Grothendieck categories. Consider the category

hFr(C,D) of homological Frobenius functors F, G : C → D as objects and natural
transformations F ⇒ G as morphisms. By [3, Lemma 5.1], hFr(C,D) is a well-
defined category containing Fr(C,D) as full subcategory (here Fr(C,D) denotes the
category of Frobenius functors). In the same vein of [3], we can define a functor
⊕ : hA × hA → hA (hA = hFr(C,D) and A = Fr(C,D)) which associate to each pair
of homological Frobenius functor F and F ′ their direct sum F ⊕ G. Then we can construct
the Grothendieck group (K0(hA),+), where K0(hA) is a set of representatives (up to
natural isomorphisms) of all homological Frobenius functors from C to D. We call this
group the homological functorial Grothendieck group of C and D, and denote it by
hFK0(C,D). Note that FK0(C,D), the functorial Grothendieck group, is a subgroup of
hFK0(C,D).

We now study when homological Frobenius functors preserve Gorenstein
categories.

LEMMA 3.5. Let C and D be two Grothendieck categories and let (F, G), F : C → D,
be a homological Frobenius pair. Suppose F is exact and G is faithful. If C has a generator
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P of finite projective dimension then F(P) is a generator of D with finite projective
dimension.

Proof. F(P) is a generator by Lemma 3.3. But G preserves injective resolutions
since F is exact, so we have

Extn(F(P), Y ) = HomD(D)(F(P), Y [n]) = HomD(D)(F(P), iY [n]) =

Hn(Hom•(F(P), iY )) = Hn(Hom•(P, G(iY )) = HomD(C)(P, G(iY )[n]) =

Extn(P, G(Y )) = 0. �

THEOREM 3.6. Let C and D be two Grothendieck categories and let (F, G), F : C →
D, be a homological Frobenius pair. Suppose F is exact and G is faithful. If C is Gorenstein
then D is Gorenstein.

Proof. Let P be a generator ofC with pd(P) = n < ∞ and E an injective cogenerator
of D. By Lemma 3.5, it is enough to prove that id(F(P)) = n < ∞ and pd(G(E)) ≤
n < ∞.

Since F is exact, F = LF . Then,

Extn(X, F(P)) ∼= HomD(D)(X [−n], F(P)) ∼= HomD(D)(X [−n], LF(P)) ∼=

HomD(C)(RG(X)[−n], P) ∼= HomK(C)(RG(X)[−n], iP).

But the complexes RG(X)[−n] and iP do not share non-null terms, so indeed
HomK(C)(RG(X)[−n], iP) = 0.

Analogously,

Extn(F(E), X) ∼= HomD(D)(F(E)[−n], X) ∼=

HomK(D)(F(E)[−n], iX) ∼= HomK(D)(E[−n], G(i(X)) ∼=

HomD(D)(E[−n], G(X)) ∼= Extn(E, G(X)) = 0

(note that G(iX) is an injective resolution of X since F is exact). �

4. Homological Frobenius complexes.

DEFINITION 4.1. We say that a complex of (S, R)-bimodules P• is a homological
Frobenius complex if:

(a) P• is compact in both D (Mod-R) and D (S-Mod).
(b) HomR(P•, R) ∼= HomS(P•, S) as complexes in both D (Mod-S) and D (R-

Mod).

Remark. (1) Any tilting complex T of (R, EndD(R)(T))-bimodules is a homological
Frobenius complex.
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(2) If SMR and SNR are Frobenius bimodules, then the mapping cone of 0 : M → N
and idM : M → M are homological Frobenius complexes.

EXAMPLE 4.2. Using [9] we now give a family of examples of homological Frobenius
complexes of bimodules that are not tilting.

Let A be a finitely dimensional algebra over a field K , e ∈ A be an idempotent
element such that HomK (Ae, K) ∼= eA as K-spaces and {e1, e2, ..., en} be a complete set
of primitive orthogonal idempotents of A. Take I = {1, 2, ..., n} and set � = A/AeA
and I(e) = {i ∈ I : ei� = 0}. Then the complex Q0(e)• given by the mapping cone of
the multiplication map

μ0 : ⊕i∈I(e)Aei ⊗K eiA → A

is a complex of (A, A)-bimodules.
By [9, Lemma 5.4], HomA(Q0(e)•, AA) ∼= HomA(Q0(e), AA) in K(Mod-Ae) (Ae =

Aop ⊗K A). Since Q0(e)• is compact as complex of left and right A-modules, Q0(e)• is
a homological Frobenius (A, A)-bimodule which is not a tilting complex of (A, A)-
bimodules if dim(eAe) �= 2 [9, Remark 4.3].

So, for example if A = TSn(K) (n ≥ 2) is the ring of n × n upper triangular matrices
over K and e = eii is the idempotent matrix with 1 in the (i, i) entry and zero otherwise,
then it is easy to see that HomK (eA, K) ∼= Ae, dimK (eAe) = 1, I(e) = {eii}. Hence, we
have an example of the above construction.

REMARK 4.3. The definition of homological Frobenius complexes of bimodules may
be reformulated in the setting of graded rings and graded modules. Thus, if A = K ⊕
A1 ⊕ A2 ⊕ · · · is a connected IN-graded K-algebra, then K [−d] (the −d’s shift complex
of K as a complex concentrated in degree zero) is a graded homological Frobenius
complex of (A, K)-bimodules (this means that the homological Frobenius property is
verified up to some graded shift, that is, there is an isomorphism in the derived categories
HomA(K [−d], A) ∼= HomK (K(l), K) for some integer l) with pdAK = d if and only if A
is an AS-regular graded algebra of global dimension d and Gorenstein parameter l (see
[13, Definition 1.1]).

We will need the following lemmas.

LEMMA 4.4. Let P• be a complex of (S, R)-bimodules, suppose P•
R is perfect and

call Q
• = HomR(P•, R). Then, there is a natural isomorphism of functors in the derived

category D(R), Hom•
R(P•,−) ∼= − ⊗•

R Q
•
.

Proof. Follows by [14, Lemma 17.12] or [5, p. 6], where the proof is done at the
level of complexes. �

LEMMA 4.5. [12, Proposition 2.9] LetC be a compactly generated triangular category.
The following assertions are equivalent for a coproduct preserving cohomological functor
F : C → Ab:

(i) F preserves products.
(ii) F preserves products of compact objects.
(iii) There is a compact object C in C such that F ∼= HomC(C,−).

THEOREM 4.6. Let P• be a complex of (S, R)-bimodules, Q• = RHomS(P•, S) and
Q

• = RHomR(P•, R). The following conditions are equivalent.
(i) P• is a homological Frobenius complex.

https://doi.org/10.1017/S0017089514000068 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000068


ON HOMOLOGICAL FROBENIUS COMPLEXES AND BIMODULES 635

(ii) (P• ⊗L
R −, RHomS(P•,−)) is a Frobenius pair.

(iii) (− ⊗L
S P•, RHomR(P•,−)) is a Frobenius pair.

(iv) SP• and P•
R are compact and there is a natural isomorphism of functors

RHomR(Q•,−) ∼= P• ⊗L
R −.

(v) SP• and P•
R are compact and there is a natural isomorphism of functors

RHomS(Q
•
,−) ∼= − ⊗L

S P•.

Proof. (i)⇒ (ii) We have two adjoint pairs of functors (P• ⊗•
R −, Hom•

S(P•,−)) and
(Q• ⊗•

S −, Hom•
R(Q•,−)), and by Lemma 4.4 we know that Hom•

S(P•,−) ∼= Q• ⊗•
S −,

so we just have to see that P• ⊗•
R − ∼= Hom•

R(Q•,−).
But HomR(Q•, R) ∼= HomR(HomR(P•, R), R) ∼= P• ⊗R R, so by Lemma 4.4 we

get that P• ⊗•
R − ∼= Hom•

R(Q•,−).

(ii)⇒ (i) By Lemma 4.5 SP• and P•
R are compact, so Q•

S and RQ• are also compact.
Hence, P• ⊗•

R − ∼= Hom•
R(Q•,−) by Lemma 4.4 and then SP•

R
∼= SHomR(Q•, R)R,

therefore

HomR(P•, R) ∼= HomR(HomR(Q•, R), R) ∼= Q• = HomS(P•, S)

and we are done.

(i)⇒ (iii) and (iii)⇒ (i) have similar proofs to (i)⇒ (ii) and (ii)⇒ (i) respectively.

(ii)⇔ (iv) and (iii)⇔ (v) are straightforward. �

DEFINITION 4.7. An extension of DG-algebras A|B is called derived Frobenius if
AB is finitely generated and projective and A ∼= Hom•

B(A, B) in the derived categories
of left A-DG-modules and right B-DG-modules.

The following result is a derived analogue to the endomorphism ring theorem for
Frobenius extensions [11, Theorem 2.1].

PROPOSITION 4.8. Let SP•
R be a homological Frobenius complex and call E =

Hom•
S(P•, P•) its endomorphism DG-algebra. Then the DG-algebras extension E|R is

derived Frobenius.

Proof. For all i ∈ ZZ we have

Hi(E) = Hi(Hom•
S(P•, P•)) = HomD(S)(P•, P•[i])

∼= HomD(S)(P•, P•[i] ⊗R R) ∼= HomD(R)(Hom•
S(P•, P•), R[i])

∼= HomD(R)(E, R[i]) ∼= Hi(HomR(E, R)).

Therefore, E ∼= HomR(E, R) in the derived categories. �

Note that by symmetry in the above proposition if E′ = Hom•
R(P•, P•), then E′|S

is derived Frobenius.
Now we give a converse of the above result. The following proposition is the

derived version of [11, Theorem 2.2].

PROPOSITION 4.9. Let SP•
R be a complex of (S, R)-bimodules such that both SP• and

P•
R are compact, call E = Hom•

S(P•, P•) and suppose that E|R is a derived Frobenius
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extension and that

RHom•
E(P•, E)S ∼= RHomS(P•, S)S

in the derived categories.
Then SP•

R is a homological Frobenius complex.

Proof. It follows by the following isomorphism chain in the derived categories:

HomR(P•, R) ∼= HomR(E ⊗•
E P•, R) ∼= Hom•

E(P•, Hom•
R(E, R)) ∼=

∼= Hom•
E(P•, E) ∼= HomS(P•, S). �

COROLLARY 4.10. Let SP•
R be a two-sided tilting complex, E = Hom•

S(P•, P•) and
E′ = Hom•

R(P•, P•). Then E|R and E′|S are Frobenius extensions of rings.

Proof. Now we have E ∼= H0(E) and E′ ∼= H0(E′), so the derived Frobenius
extensions E|R and E′|S are usual ring extensions, and hence they are Frobenius
extension of rings. �

5. Homological Frobenius bimodules. In this section, we consider a particular
case of stalk complexes, i.e. bimodules.

DEFINITION 5.1. Let T be an (S, R)-bimodule. We say that T is a homological
Frobenius bimodule if:

(a) ST and TR have finite projective resolutions of finitely generated projective
modules.

(b) There are isomorphisms of (R, S)-bimodules HomS(T, S) ∼= HomR(T, R),
Exti

R(T, R) ∼= Exti
S(T, S) for all i ≥ 1.

Remarks. (1) Any tilting bimodule STR (S = EndR(T)) is a homological Frobenius
bimodule.

(2) Any R-module of finite projective dimension over a commutative ring is trivially
a homological Frobenius (R, R)-bimodule, so we see there are homological Frobenius
bimodules that are not tilting.

(3) If M is an (S, R)-bimodule, then it is an exercise to check that the following
assertions are equivalent:

(i) M is a homological Frobenius (S, R)-bimodule.
(ii) · · · 0 → M → 0 → · · · is a homological Frobenius complex.

EXAMPLE 5.2. (1) Let R be a ring and G be a finite group. Then R is a homological
Frobenius (R, R[G])-bimodule (the structure of right R[G]-module is given by the trivial
action) if and only if the cohomological dimension of G is zero (that is |G| is invertible
in R).

(2) Homological Frobenius bimodules do not preserve in general Gorenstein
properties: Let R = S ⊕ T , where S is a Gorenstein ring and T is not a Gorenstein
ring. Then R is not a Gorenstein ring but S is a Frobenius (so homological Frobenius)
(S, R)-bimodule.

The following result will be useful.
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LEMMA 5.3. Let MR be a right R-module with a finite projective resolution of finitely
generated right R-modules and Exti

R(M, R) = 0 for all i ≥ 1. Then MR is projective.

Proof. Let

0 → Pn → Pn−1 → · · · → P0 → M → 0

be a projective resolution with all Pi finitely generated. Then

0 → HomR(M, R) → HomR(P0, R) → · · · → HomR(Pn, R) → 0

splits since it is exact and HomR(Pi, R) are all projective left R-modules. Hence,
applying again HomR(−, R) we get that the original sequence splits since the Pi are all
reflexive, so MR is projective. �

As an application of above lemma we get the following result.

PROPOSITION 5.4. Let A and B be two rings, M an (A, B)-bimodule, and suppose B
satisfies the following condition: If B ∼= B ⊕ X (X ∈ B-Mod) then X = 0. Then if we

let R =
(

A M
0 B

)
and e =

(
0 0
0 1

)
∈ R, the following assertions are equivalent.

(i) Re is an (R, B)-homological Frobenius bimodule.
(ii) M = 0.
(iii) Re is an (R, B)-Frobenius bimodule.

Proof. (i) ⇒ (ii) Note that B ∼= eRe as rings and HomR(Re, R) ∼= eR ∼= B as (B, R)-
bimodules. On the other hand, HomB(Re, B) ∼= HomB(M ⊕ B, B) ∼= HomB(M, B) ⊕ B
as (B, R)-bimodules. Hence, we obtain HomB(M, B) = 0.

Since RRe is projective, we have Exti
B(Re, B) ∼= Exti

R(Re, R) = 0 for all i ≥ 1.
Therefore, Exti

B(M, B) = 0 for all i ≥ 1.
Now ReB has a finite projective resolution of finitely generated modules, so MB

does too. Hence, the result follows from Lemma 5.3 since HomB(M, B) = 0.
(ii) ⇒ (iii) and (iii) ⇒ (i) are clear. �

In the above proposition we can find conditions for Re not to be a tilting R-module
when Re is homological Frobenius. The only condition to check for Re to be tilting is
the existence of an exact sequence

0 → R → L1 → · · · → Lm → 0

with Li ∈ add(Re). If this sequence exists, it is easy to find a monomorphism A → L
with L ∈ add(AM).

Hence, if we do not want Re to be tilting, we just have to find an A not isomorphic
to any submodule of L ∈ add(AM).

LEMMA 5.5. If M ⊗L
R − is Frobenius then MR is quasi-isomorphic to a perfect

complex of right R-modules.

Proof. By Lemma 4.5 H0(M ⊗L
R −) ∼= HomD(R−Mod)(C,−) for some compact

object C in D (R-Mod), hence C is quasi-isomorphic to a perfect complex Q•. But then

TorR
i (M, R) ∼= H0(M ⊗L

R R[i])) ∼= HomK(R)(Q•, R[i]) ∼= Hi(HomR(Q•, R)),

so Hi(HomR(Q•, R)) = 0 for i �= 0 and M ∼= H0(HomR(Q•, R)).
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Therefore, M is quasi-isomorphic to the perfect complex of right R-modules
HomR(Q•, R). �

An interesting fact about homological Frobenius functors between module
categories is that, having left and right adjoints, they are nothing but Frobenius
functors.

PROPOSITION 5.6. Let (F, G), (G, H) be adjoint pairs, where F : R-Mod → S-Mod,
and suppose LF ∼= RH in the derived categories. Then F ∼= H, that is, the adjoint pair
(F, G) is Frobenius.

Proof. By the Eilenberg–Watts theorem there is a bimodule SMR such that
F ∼= M ⊗R −, G ∼= HomS(M,−) and H ∼= HomR(HomS(M, S),−). Since G is exact,
SM is projective, and since G is a left adjoint, it preserves direct sums. Hence, SM
is a finitely generated projective. But then Sm = M ⊕ M′, so Sm ∼= HomS(Sm, S) ∼=
HomS(M, S) ⊕ HomS(M′, S) and then HomS(M, S) is a finitely generated projective
right S-module.

Now LF ∼= RH, so HomS(M, S) is isomorphic to a perfect complex in D(R) and
then HomS(M, S) has a finite projective resolution of finitely generated left R-modules.

But M ∼= M ⊗L
R R ∼= HomR(HomS(M, S), I•

R) in D(S), so we have
SM ∼= SHomR(HomS(M, S), R) in S-Mod (and in Mod-R naturally) and
HomR(HomS(M, S), I•

R) is an injective resolution of M in S-Mod (note that
HomS(M, S)S is projective).

Therefore, Exti
R(HomS(M, S), R) = 0 ∀i > 0 and then RHomS(M, S) is finitely

generated and projective (Lemma 5.3), so we have Rn ∼= HomS(M, S) ⊕ L. But
then Rn ∼= HomR(Rn, R) ∼= HomR(HomS(M, S), R) ∼= M in Mod-R, so MR is finitely
generated and projective.

We have just proved that (F, G) is indeed a Frobenius pair. �
We now prove that homological Frobenius adjoint pairs of functors between

module categories are always represented by homological Frobenius bimodules.

COROLLARY 5.7. Let (F, G) be an adjoint pair of functors, F : R-Mod → S-Mod.
The following assertions are equivalent:

(i) (F, G) is a homological Frobenius adjoint pair.
(ii) There is a homological Frobenius bimodule SMR such that F ∼= M ⊗R − and

G ∼= HomS(M,−).

Proof. (i) ⇒ (ii) By the Eilenberg–Watts theorem there is a bimodule SMR such
that F ∼= M ⊗R − and G ∼= HomS(M,−). Since (M ⊗L

R −, RHomS(M,−)) and (− ⊗L
S

M, RHomR(M,−)) are Frobenius pairs (Theorem 4.6), it follows that MR and SM are
compact in the respective derived categories, so they are quasi-isomorphic to perfect
complexes (Lemma 5.5).

Now by Theorem 4.6 we have that RHomR(M, R) ∼= RHomS(M, S) in the derived
categories, so taking homology, Exti

R(M, R) ∼= Exti
S(M, S) for all i ≥ 0 as R-S-

bimodules.
Therefore, we get that SMR is a homological Frobenius bimodule.

(ii) ⇒ (i) Follows from Theorem 4.6. �
PROPOSITION 5.8. Let M be a homological Frobenius (S, R)-bimodule. Then:
(a) SM has a finite projective resolution of finitely generated left S-modules.
(b) MR has a finite projective resolution of finitely generated right R-modules.
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Proof. (a) SM is quasi-isomorphic to a perfect complex in D(S-Mod) since
RHomS(M,−) (and so HomD(S−Mod)(M,−)) preserves coproducts.

(b) Follows by Lemma 5.5. �

LEMMA 5.9. Let M be a homological Frobenius (S, R)-bimodule. Then:
(a) HomR(HomS(M, E), R) ∼= HomS(E, M) and Exti

R(HomS(M, E), R) ∼=
Exti

S(E, M) for every injective E ∈ S-Mod.
(b) HomR(HomS(M, S), E′) ∼= M ⊗R E′ and HomR(Exti

S(M, S), E′) ∼=
TorR

i (M, E′) for every injective E′ ∈ R-Mod.

Proof. Let E be an injective left R-module. Then, from the natural isomorphism,

HomD(R)(RHomS(M, E), R[i]) ∼= HomD(S)(E, M ⊗L
R R[i])

we get (a).
To prove (b), we just have to use

HomD(R)(RHomS(M, S), E′[i]) ∼= HomD(S)(S, M ⊗L
R E′[i]).

�

Using the same arguments we get the following.

COROLLARY 5.10. Let M be a homological Frobenius (S, R)-bimodule. Then:
(a) If SS is injective, then Exti

R(HomS(M, S), R) = 0 for i �= 0 and

HomR(HomS(M, S), R) ∼= M.

(b) If RR is injective, then HomR(Exti
S(M, M), R) ∼= Exti

S(M, M), ∀i ≥ 0.

PROPOSITION 5.11. Let M be a homological Frobenius (S, R)-bimodule. If MR is
projective then SM is projective, and hence SMR is a classical Frobenius bimodule.

Proof. SM is projective by (b) in Lemma 5.9 choosing RE′ an injective cogenerator.
Now, given X ∈ S-Mod, Y ∈ R-Mod, I•

Y an injective resolution of Y and P•
X a

projective resolution of X , we have

HomR(HomS(M, X), Y ) ∼= H0(HomR(HomS(M, X), I•
Y )) ∼=

∼= HomD(R)(RHomS(M, X), Y ) ∼= HomD(S)(X, M ⊗L
R Y ) ∼=

∼= H0(HomS(P•
X , M ⊗R Y )) ∼= HomS(X, M ⊗S Y ).

Hence, SMR is a Frobenius bimodule. �

PROPOSITION 5.12. Let M be a homological Frobenius (S, R)-bimodule. Suppose that
R is Iwanaga Gorenstein.

(a) If SM is projective then HomS(M, S) is a Gorenstein projective left R-module
and MR is projective. In particular, SMR is a (classical) Frobenius bimodule.

(b) If SM is injective then HomS(M, E) is a Gorenstein projective left R-module for
all SE injective.

https://doi.org/10.1017/S0017089514000068 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089514000068
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Proof. (a) Let N ∈ R-Mod with injdim(N) < ∞. By (b) in Lemma 5.9 applied
to a finite injective resolution of RN we get that M ⊗R N ∼= HomR(HomS(M, S), N)
and Exti

R(HomS(M, S), N) = 0 ∀i > 0. Hence, since R is Gorenstein, we have that
HomS(M, S) is Gorenstein projective. On the other hand, again by (b) of Lemma 5.9,
TorR

i (M, E′) = 0 for all RE′ injective, so MR is Gorenstein flat. But MR has finite
projective dimension and MR is finitely presented, therefore MR is projective.

(b) We have Exti
S(E, M) = 0 for all SE injective and all i > 0. Then, by (a) in

Lemma 5.9, Exti
R(HomS(M, E), R) = 0 and then HomS(M, E) is Gorenstein projective

as a left R-module. �

COROLLARY 5.13. Let M be a homological Frobenius (S, R)-bimodule. If RR and SS
are injective then SMR is a classical Frobenius bimodule.

Proof. Follows by Proposition 5.11. �

Let f : R → S be a ring homomorphism and f∗ : S-Mod → R-Mod the usual
restriction of scalars functor. The induced functor between the derived categories,
D(f∗) : D(S) → D(R) is right adjoint to S ⊗L

R − and left adjoint to RHomR(S,−).

DEFINITION 5.14. The ring homomorphism f : R → S is said to be homological
Frobenius if the functor f∗ is homological Frobenius.

It is possible to characterize when the restriction of scalars functor f∗ : S-
Mod → R-Mod is homological Frobenius. That is exactly the case when the ring
homomorphism f is Frobenius in the usual sense. This result generalizes Propositions
1.5 and 1.7 in [1].

PROPOSITION 5.15. Let f : R → S be a ring homomorphism. The following assertions
are equivalent:

(i) The functor f∗ : S − Mod → R − Mod is homological Frobenius.
(ii) (a) RS has a finite projective resolution of finitely generated left R-modules.
(b) SS has an injective resolution of the form HomR(S, RI•), where RI• is an injective

resolution of R as a left R-module, and there is a quasi-isomorphism of complexes
of (S, R)-bimodules SSR ∼= SHomR(S, RI•)R. In particular, SSR ∼= SHomR(S, R)R as
(S, R)-bimodules.

(iii) f : R → S is a Frobenius homomorphism.

Proof. (i) ⇒ (ii) By hypothesis S ⊗L − and RHomR(S,−) are triangulated
equivalent as functors from D(R) to D(S) via φ : S ⊗L − ⇒ RHomR(S,−).

Note that HomD(R)(S, X) = Hn(RHom(S, iX [−n])), so if RHomR(S,−) preserves
arbitrary coproducts, so does HomD(R)(S,−). Thus, RS is a compact object in D(R)
and therefore RS is isomorphic to a perfect complex in D(R), (P•, δ•):

· · · → 0 → 0 → Pn δn→ Pn+1 → · · · → Pi → · · · → Pm → 0 → 0 → · · · .

We can suppose that S ∼= Hi(P•) and Hj(P•) = 0 for j �= 0. Then,

0 → Pn → Pn+1 → · · · → Pi−1 → Kerδi → S → 0

(note that Kerδi ⊕ Imδi ∼= Pi) is a finite projective resolution of RS and so RS satisfies
(a).
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Let R → RI• be an injective resolution of R in D(R), then we have the following
natural isomorphisms in D(S):

S ∼= S ⊗•
R R = S ⊗L

R R ∼= RHomR(S, R) = HomR(S, RI•).

Therefore, 0 = Hi(S) ∼= Hi(HomR(S, I•
R)) ∀i �= 0 and S = H0(S) ∼=

H0(HomR(S, RI•)) = HomR(S, R) as left S-modules.
Hence, HomR(S, RI•) is an injective resolution of SS. On the other hand, for any

r ∈ R, the left R-module map λr : R → R, x �→ xr induces a commutative diagram

S ⊗R R

1⊗λr

��

φR �� RHomR(S, R)

(λr)∗
��

S ⊗R R
φR

�� RHomR(S, R)

Thus, φR ◦ (1 ⊗ λr)(s ⊗ 1) = (λr)∗ ◦ φR(s ⊗ 1) for all s ∈ S and then φR(s ⊗ r) =
φR(s ⊗ 1)r. Thus, we have the quasi-isomorphism of complexes of (S, R)-bimodules
SSR ∼= SHomR(S, RI•)R.

(ii) ⇒ (iii) By (b), Exti
R(S, R) = 0 for all i ≥ 1. This, together with (a), gives us

that SR is a finitely generated projective module by Lemma 5.3 and then the result
follows.

(iii) ⇒ (i) I is clear. �

Recall [4] that a ring extension R ⊆ S is said to be totally reflexive if:
(a) there is an isomorphism HomR(S, R) ∼= S of (S, R)-bimodules.
(b) SR is a totally reflexive module (that is, it has a complete projective resolution

of finitely generated left R-modules. If R is left noetherian and RS is finitely generated,
then it is totally reflexive if and only if it is a Gorenstein projective module).

PROPOSITION 5.16. Let R ⊆ S be a ring extension. The following assertions are
equivalents.

(i) R ⊆ S is totally reflexive and SR has a finite projective resolution of finitely
generated modules.

(ii) R ⊆ S is a Frobenius extension.

Proof. Follows by Lemma 5.3. �

PROPOSITION 5.17. Let R ⊆ S be a ring extension. Suppose R has finite global
dimension. The following assertions are equivalent.

(i) R ⊆ S is totally reflexive.
(ii) R ⊆ S is a Frobenius extension.

Proof. Straightforward. �

The following result generalizes [7, Theorem 3.5], where it was proved for
extensions of group rings R ⊆ R[G].

COROLLARY 5.18. (Gorenstein ascent theorem) Let f : R → S be a Frobenius ring
homomorphism. If R is an Iwanaga Gorenstein ring then S is an Iwanaga Gorenstein ring.

Proof. Follows by (ii) in Proposition 5.15. �
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