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Let G be a Moore group. Then, for each feLl{G), the convolution operator Lf. L1(G)->L1{G) is
decomposable. On the other hand, there is a discrete probability measure j i o n a compact group G such tha t
Lo: Li(G)-*Ll(G) fails to be decomposable.
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Since its early days, local spectral theory has had close connections to harmonic
analysis: For a locally compact abelian (LCA) group G and / e L1{G), the convolution
operator Lf. Ll(G)-*L1(G), g-*f*g is decomposable ([5, Theorem 6.2.11]). In [5], I.
Colojoara and C. Foia§ asked if, for every LCA group G and for each neM{G), the
convolution operator L^. Ll(G)-*L1(G) is decomposable as well. This question was
settled in the negative, independently, by. E. Albrecht ([2]) and J. Eschmeier ([7]): for
every non-discrete LCA group G, there is neL\G) such that L^. L1(G)^>L1(G) fails to
be decomposable. The problem, for a non-discrete LCA group G, to characterize those
neM(G) which yield decomposable convolution operators is still open (see [14] for
partial results).

If G is a compact group, an old result by C. A. Akemann ([1, Theorem 4]) asserts
that for each feLi(G) the convolution operator Lf. Li(G)-*Ll(G) is compact and thus
decomposable. This indicates that also outside the realm of LCA groups convolution
operators may enjoy significant local spectral properties.

The problem we are concerned with in this note reads—broadly phrased—as follows:

Let G be a locally compact group, and let E be a Banach space on which L1(G) acts via
convolution as bounded linear operators (e.g. C0(G), M(G), L"(G) for pe [ l , oo ] , or
C*(G)). When are the convolution operators Lf. E-+E decomposable for all f eLl(G)7

If feLl(G) is self-adjoint, then Lf. L2(G)-*L2(G) is a self-adjoint, bounded linear
operator on a Hilbert space and thus decomposable. However, already the demand that
Lf. Li(G)-^L1{G) be decomposable for each self-adjoint feL1(G) has striking conse-
quences for the Banach*-algebraic properties of Ll(G). Suppose that feL1(G) is
self-adjoint such that Lf. L1(G)-^L1(G) has (5) or the weak 2-SDP (for definitions of
these and other local spectral properties, see [15]), then [15, Corollary 4.2] implies that
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CTL1(G)(/) = <7/«(/). where A is the completion of L\G) with respect to an arbitrary
C*-norm. Hence, if L / L\G)^L\G) has the weak 2-SDP for each self-adjoint feL\G),
this forces Ll(G) to be hermitian and to have a unique C*-norm. If Lf: Li{G)^L1{G)
has (8) for each self-adjoint/eL^G), we even obtain that Ll(G) has to be hermitian and
*-regular: This follows from [15, Corollary 4.2] and [4, Theorem 2.3], combined with
the fact that the quotient of an operator with (<5) has again (d). In particular, whenever
G is not hermitian or not amenable, there is a self-adjoint feL1(G) such that Lf
Ll(G)->Ll(G) is not decomposable.

We thus have a natural, albeit very rough, estimate "from above" for the class of
locally compact groups G such that, for each feL1(G), the convolution operator Lf
Ll(G)-*Ll(G) is decomposable. The much harder problem, which is the main topic of
this note, is to find an estimate "from below" for this class of groups, going significantly
beyond compact and abelian groups.

A locally compact group is called a Moore group if all of its (topologically)
irreducible unitary representations are finite-dimensional. All abelian and all compact
groups are Moore groups, but the class of Moore groups is much larger. For details, see
[18].

For Moore groups, we have the following positive result:

Theorem. Let G be a Moore group, let E a Banach space, and let 9: L1(G)-*^(E) be a
continuous homomorphism. Then, for each f e Li(G), the operator 9(f) is decomposable.

For the proof of the Theorem, we wish to apply the decomposability criterion [3,
Theorem 3.7]. Since [3, Theorem 3.7] is concerned with unital Banach algebras only,
whereas we will have to deal with possibly non-unital algebras, we first have to
customize the Albrecht-Mehta criterion.

Consider the following situation:

• U is a Banach algebra;

• A is a regular Banach subalgebra of the center of U and contains an approximate
identity for U;

• if U is unital, A contains the identity of U.

For each <f> e <&A, the character space of A, let 1$ denote the closed ideal of U generated
by ker</». For aeU and <j>e<S>A, let a^a) denote the spectrum of a +1$ in 11/1^

Lemma 1. Let the above situation be given, let E be a Banach space, and let 9:
U—*^S(E) be a continuous homomorphism. Let a ell be such that a^{d) is totally
disconnected for all <f>eQ>A. Then 9(a) is decomposable.

Proof. If U is unital, and if 0(1) = idE, the statement is just a special case of [3,
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Theorem 3.7]. Suppose that U is unital, but that p: = 0(l)/id£. By [3, Theorem 3.7], we
obtain the decomposability of 6(a)\pE. Since 6(a)\(idE—p)E = 0, we see that 8(a) is in
fact decomposable on all of E. Finally, let U be non-unital. Let U* be the unitization of
U, and let A* denote the Banach subalgebra of U* generated by A and 1. It is routinely
verified that A* is regular. Hence, with U* and A*, we are in the same situation as
with U and A. Pick 4>e<bA#, and let J# denote the closed ideal of U* generated by ker
4>. If 0|/4^EO, the ideal J^ equals 1^ Hence, the spectrum of a + J^ in U*//^, equals a^a)
and is thus totally disconnected. If (j> \ A = 0, J$ equals U because A contains an
approximate identity for U. Therefore, the spectrum of a + Jj, is {0}. Extend 0 to a unital
homomorphism Q*\ \X#-+3ft(E). In view of the foregoing, [3, Theorem 3.7] applies and
yields the decomposability of 9#(a) = 6(d). •

In order to apply Lemma 1 to the situation of the Theorem, we require some notions
from non-abelian harmonic analysis (see [9, 10, and 17]).

Let G be a locally compact group, and let Aut(G) denote the group of topological
automorphisms of G. Equipped with a natural variant of the compact-open topology
([12, Definition 26.3]), Aut(G) becomes a topological group of its own right. Let/: G-»C
be a function, and let aeAut(G). We define/11 through f"(x)=f(a~i(x)) for xeG. If
fsLl(G), then/"eL\G) as well. For a subset S of L'(G) and aeAut(G), we set S": = {/":
feS}. Let B be a subgroup of Aut(G) containing I(G), the group of inner automor-
phisms of G. A subset S of Ll{G), will be called B-invariant if S'^S for all aeB. We
write Jtjj(l}(G)) for the collection of those regular ideals of Ll(G) which are maximal
among the regular, B-invariant ideals of L}(G). In case J3 = /(G), J/^L}(G)) is the space
Ji(l}{G)) of maximal regular ideals of Ll(G). The B-center ZB(Ll(G)) of !}{G) is the
closed subalgebra of Ll(G) consisting of those fel}(G) for which f = f for all aeB. If
B = I(G), then ZB(L\G)) is the usual center of 1}{G). If B is relatively compact in Aut(G),
we say that G is an [F//4]g -group; in the special case of B = /(G), we suppress the
subscript and simply speak of G as of an [F/A~]"-group. Finally suppose that G is an
extension of another locally compact group N. Then each xeG induces an automor-
phism ax of N via conjugation with x. We write I(N,G) for the subgroup {ax: xeG} of
Aut(AT); often, we shall abuse notation and simply write G instead of I(N, G).

Lemma 2. Let G be a finite extension of an [FIA]~-group N. Then:
(i) N is an [F//4]g -group.

(ii) For each meJ^L'fJV)), there are ml,...,mneJ/(Ll(N)) such that m = m1 n...n
mB.

Proof. Let xu...,xneG be representatives of the cosets of N, and set <Xj. = <xXJ for
je{\,...,n}. Since I(N) is relatively compact in Aut(N), the same is true for each of its
cosets. For each xeG, there is;e{l,. . . ,n} and yeN such that x = x;y and thus ax = <xfy.
Hence, we have /(N,G) = U"=1aJ/(N), and in particular, I(N,G) is relatively compact in
Aut(N). This proves (i).

For the proof of (ii), let meJ^L'fAf)). In particular, m is a regular ideal of Ll(G).
Hence, there is a maximal regular ideal M of Ll(N) such that mcM. Forj'= l,...,n, set
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nt,-: = M<y. Since N is a normal subgroup of G, nt,- is an ideal of Ll(N) for j= l,...,n. If
ueL1^) is a modular unit for M, then it is a routine matter to verify that u"J is a
modular unit for m7 for j=\,...,n. Further, if for some;e{l n} there is a proper,
regular ideal M containing m}, then M"^' is easily seen to be a regular ideal containing
M. Since M was assumed to be maximal, we see that Ma> ' = M and therefore M = nt,-.
Consequently, mi,...,mn, belong to Ji(Ll(N)). Since m is G-invariant, we have

i.e. m c m j n . . . nmn. We now claim that m 1 n . . . n m n is also G-invariant. Fix
/ e m 1 n . . . n m n and xeG. By definition of ntj ...,mm there is, for each je{l,...,n}, an
element gjeM such that / =gji- Moreover, for each je{l,...,n}, there are k(j)e{1,...,n}
and y e N such that xx, = xkU)y. Thus, we have

It is easy to see that the assignment {l,...,n}Bj-*k(j) is a bijection. Hence, we obtain
/ " ' en t ! n . . . nmn. Since m is a maximal regular, G-invariant ideal of Ll(G), we
conclude that m = m1 n . . . nmn. •

Proof of the Theorem. By [20, Theorem 1], G is a finite extension of a Takahashi group
N (for the definition of Takahashi groups, see [18]). Since N is open in G, we can
identify Ll(N) with the subaigebra of Ll{G) consisting of those f eO{G) whose support
lies in N. It is well known ([18, p. 701]) that every Takahashi group is an
[_FIA] "-group. From Lemma 2(i), we conclude that N is also an [F1A~]Q-group. By [16,
Proposition 2.4], this implies that ZG(Ll(N)) is a regular commutative Banach algebra.
Since Moore groups are [S/AT]-groups, and since N is open, we see that ZG{L\N))
contains a bounded approximate identity of for Ll(G). Hence—with U = LX(G) and
A = ZG(Ll(N))—, we are in the situation of Lemma 1. Fix <j)eQ>zG{L nm, and let /^
denote the closed ideal of Ll(G) generated by ken/>. We claim that dimL1(G)//0<oo. By
[21, Lemma 3.1], it suffices to show that LX(N) n 70 has finite codimension in ^(N). Let
J0 be the closed ideal of L!(N) generated by ker cj>. Clearly, J^cL^NJn/^ . Using [17,
Theorem 4.5], we see that the hull of J^ in J^G(L1(N)) consists of exactly one ideal.
Thus, by Lemma 2(ii), the hull of J^ in JtiL^N)) is finite. Since N is also a Moore
group, we conclude from [11] that dim L1(N)/J(^<oo and thus dim L^G)//^ <oo. An
application of Lemma 1 completes the proof. •

Corollary. Let G be a Moore group, and let f e Ll{G). Then the convolution operator
Lf: E-+E is decomposable whenever E is any of the following: ^0{G), M(G), LP(G) for
pe[l,oo], or C*(G).

Remarks. 1. The strength of the Theorem lies in the fact that it ascertains the
decomposability of 8(f) for all feL\G). Older results establish the decomposability of
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0(f) for certain/. For instance, if G has polynomial growth, and if /eL}(G) r\L2(G) is
self-adjoint with compact support, then 6(f) is decomposable: This follows from [6] and
[2]. In fact, if G is a compactly generated [S/AT]-group with polynomial growth, we
even have decomposability of 0(f) for all self-adjoint / belonging to a certain Beurling
subalgeba of L^G): This is a consequence of [22, Proposition 2.2(ii)]. In both cases, 6
need not be continuous.
2. Local spectral theory has substantial applications in automatic continuity ([13]). In
this context, it would be interesting to know if the continuity assumption for 0 in the
Theorem can be dropped. The problem here is that the proof of [3, Theorem 3.7]
crucially relies on [3, Lemma 3.5] for whose proof the continuity of 6 seems to be
indispensable.
3. Let G be a locally compact group, and let H be a closed subgroup of G. Then we
may view M(H), and hence Ll(H), as a subalgebra of M(G). Since a closed subgroup of
a Moore group is again a Moore group, we have the following strengthening of the
Corollary:

Let G be a Moore group, let H be a closed subgroup of G, and let fieLl(H). Then the
convolution operator L^: E->E is decomposable whenever E is any of the following:
V^G), M(G), Lp{G)for pe[l,oo], or C*(G).

The last remark shows that if G is a Moore group, we may find neM(G)\Li(G) such
that nevertheless Ltl:L

l(G)-*L1(G) is decomposable. In case G is LCA, Lll:L
1(G)-*Ll(G) is

also decomposable whenever /x is discrete. Concluding this note we give an example of a
discrete measure f iona compact group G such that Lfl:L

i{G)-*Ll(G) lacks almost every
important local spectral property.

Example. Let G be a compact group which contains F2>
 t n e free group on two

generators, as a subgroup. For instance, let G: = Sl/(2), the group of all unitary 2x2-
matrices with determinant 1 ([19, Proposition 3.2]). Fix two elements a,beG which
generate F2, and let \i be the discrete probability measure on G which is concentrated
on {a,b,a~l,b~x} such that

We may view \i as an element of S1(\F2)- 1° [8, Chapter 3], the spectrum of ft in /'(F2) is
computed:

r,,(f = {z = x + iye C: x2 + 2y2 < 1},

i.e. o(Lll\lJ{G)) = oM{G)(n) = Of,{fl)(n) is a non-degenerate ellipse. Consider the inclusion
L2(G)c>L1(G): It has dense range and intertwines L;. L\G)-*L\G) and L;. Ll(G)->
Ll(G). Since L,,: L2{G)-*L2(G) is self-adjoint, we have ff(L,, | L2(G)) c U and, in particular,
a{Lll\L

l(G))<jia(Ltl\L\G)). From [15, Theorem 4.2(a)], we conclude that L^. L\G)-+
Ll(G) cannot have (C). Further, \i is canonically contained in M(C*(G)), the multiplier
algebra of C*(G), i.e. we may speak of Lu: C*(G)-*C*(G). Since fi as an element of
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M{C*(G)) is self-adjoint, we have CT(LJ C*(G)) <= R and hence ^
Since the inclusion L\G)c>C*(G) intertwines L^.L^G^L^G) and ^
[15, Theorem 4.1(b) and (c)] imply that !.„: L\G)-*L\G) has neither (<5) nor the weak
2-SDP. However, L^. L1(G)-^Li(G) does have the SVEP: This follows easily from the
fact that the finite-dimensional "-representations of M(G) separate its points.
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