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Bathymetric changes have been experimentally shown to affect the occurrence of rogue
waves. We recently derived a non-homogeneous correction to the spectral analysis,
allowing us to describe the evolution of the rogue wave probability over a shoal. Here, we
extend this work to the evolution of the excess kurtosis of the surface elevation, that plays a
central role in estimating rare event probabilities. Furthermore, we provide an upper bound
to the excess kurtosis. In intermediate and deep water regimes, a shoal does not affect wave
steepness nor bandwidth significantly, so that the vertical asymmetry between crests and
troughs, the excess kurtosis and the exceedance probability of wave height stay rather
constant. In contrast, in shallower water, a sharp increase in wave steepness increases the
vertical asymmetry, resulting in a growth of both the tail of the exceedance probability and
the excess kurtosis.
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1. Introduction

Ocean wave statistics is at the crossroads of ocean engineering and physical oceanography.
Ocean engineers are commonly concerned with both short-term and long-term wave
statistics (Clauss 2002), while the mechanisms responsible for the formation of extreme
waves is the focus in physical oceanography (Toffoli et al. 2015). The unexpected
observation of the so-called rogue waves (also known as freak waves) over the past
decades (Haver 2004) reignited the cross-disciplinary interest in wave statistics. These
waves seemingly ‘appear from nowhere’ (Akhmediev, Ankiewicz & Taki 2009), and are
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by statistical definition at least twice taller than the significant wave height. From an
engineering perspective, the performance of theoretical probability models at the tail of
the wave height distribution measures their practical success and applicability to structure
dimensioning.

Applying the signal processing methods of Rice (1945), the bulk of surface gravity
waves were demonstrated to follow a Rayleigh distribution of heights (Longuet-Higgins
1952). Nevertheless, the Rayleigh distribution is unsuited to capturing the tail of the
distribution in real ocean conditions (Forristall 1978; Tayfun 1980). On the other hand,
nonlinear theories and their associated probability distributions are inaccurate in a wide
range of real ocean conditions (Karmpadakis, Swan & Christou 2020; Teutsch et al. 2020).
These difficulties were realized early on, such that an approach based on the expansion
of sums of Gram–Charlier series for a weakly non-Gaussian distribution of the ocean
surface (Longuet-Higgins 1963) has been widely favoured. As reviewed in Tayfun &
Alkhalidi (2020), the computation of surface elevation, crest and wave height distributions
requires methodologies that are often computationally burdensome. Naturally, the excess
kurtosis became the centre of wave statistics in an attempt to transfer the problem from
the probability distribution to the cumulant expansion (Bitner 1980; Tayfun 1990). The
complexity of water wave solutions led to the use of excess kurtosis as a practical
alternative to the evaluation of statistical distributions (Marthinsen 1992; Mori & Janssen
2006).

Over the past decade, experiments and numerical simulations have been performed to
assess the effect of shoaling of irregular waves on the amplification of rogue wave intensity
and occurrence (Trulsen, Zeng & Gramstad 2012; Raustøl 2014; Ma, Ma & Dong 2015;
Ducrozet & Gouin 2017; Bolles, Speer & Moore 2019; Zhang et al. 2019; Li et al. 2021b).
Trulsen et al. (2020) provided experimental data with the broadest set of conditions and
widest range of relative water depths. As reviewed in Mendes & Kasparian (2022), three
complementary theoretical models for the wave statistics have emerged, albeit they tend
to focus on either the surface elevation (Moore et al. 2020), the crest height (Li et al.
2021a) or the crest-to-trough height statistics (Mendes et al. 2022). Although the observed
probability of exceedance of rogue waves in the experiments of Trulsen et al. (2020)
has been well described by the third model (Mendes et al. 2022), their observed excess
kurtosis has not been addressed yet. To fill this gap, we provide an effective extension to
the theory of energy density redistribution (Mendes et al. 2022) to describe the evolution
of the kurtosis of wave trains travelling over a shoal. Because the increase of the vertical
asymmetry between crests and troughs is a key ingredient of the amplification of rogue
wave probability over a shoal (Tayfun & Alkhalidi 2020; Mendes et al. 2022), we derive an
approximation for this asymmetry as a function of water depth, bandwidth and steepness.
Variations in vertical asymmetry in intermediate and deep water regimes are too small to
affect the amplification of rogue waves travelling past a shoal, unless either the spectrum
is significantly broad-banded or the steepness is large. Accordingly, the resulting upper
bound for the vertical asymmetry leads to an upper bound for the excess kurtosis, a key
piece of information for dimensioning structures as well as for wave forecast (Janssen &
Bidlot 2009).

2. Theoretical considerations

We first recall the main ideas of the theory of the non-homogeneous analysis of water
waves travelling over a shoal (Mendes et al. 2022). Given a velocity potential Φ(x, z, t)
and surface elevation ζ(x, t) of waves travelling over a horizontally variable water depth
h(x), the average energy density evolving over a shoal described by h(x) = h0 + x∇h with
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Non-homogeneous kurtosis evolution of shoaling rogue waves

Wave direction
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Figure 1. Portrayal of the extreme wave amplification due to a bar (Mendes et al. 2022). The water column
depth evolves as h(x) = h0 + x∇h with slope ∇h = (hf − h0)/L. Dashed vertical lines delineate shoaling and
de-shoaling regions as in figure 2.

finite constant slope 1/20 ≤ |∇h| < 1 (see figure 1) is expressed as

E = 1
2λ

∫ λ
0

{
[ζ(x, t) + h(x)]2 − h2(x) + 1

g

∫ ζ

−h(x)

[(
∂Φ

∂x

)2

+
(

∂Φ

∂z

)2 ]
dz

}
dx, (2.1)

with zero-crossing wavelength λ, gravitational acceleration g and we abuse the notation for
the projection of the gradient of the depth onto the wave direction ∇h ≡ ∇h · x̂ ≡ ∂h/∂x.
The inhomogeneity of both E (x) and 〈ζ 2〉t(x) redistributes energy among wave heights
and transforms their exceedance probability. In the case of an initial Rayleigh distribution
in region I of figure 1, over and past the shoal (regions II–V) the exceedance probability
reads

Pα,Γ (H > αHs) =
∫ +∞

α

4α0

Γ
exp(−2α2

0/Γ ) dα0 = exp(−2α2/Γ ), (2.2)

where the correction arises from the evolution of an inhomogeneous wave spectrum over
the shoal (Mendes et al. 2022) (〈·〉t stands for temporal average)

Γ (x) ≈ 〈ζ 2(x, t)〉t(x)
E (x)

. (2.3)

The spectral correction Γ depends on the steepness ε = Hs/λ and depth kph, with Hs
being the significant wave height, defined as the average among the 1/3 largest waves.
Note that Hs typically differs by a few per cent from its spectral counterpart Hm0 =
4
√

m0 of Gaussian seas (Casas-Prat & Holthuijsen 2010; Mendes, Scotti & Stansell
2021), where m0 is the variance of the surface elevation ζ(x, t) computed from the wave
spectrum. However, this difference can be as large as 10 % in strongly non-Gaussian
seas (Goda 1983; Mendes et al. 2022). For linear waves (ε 	 1/100), Γ = 1 and we
recover the case of a Gaussian sea. When solving Γ for second-order irregular waves,
we assume that the shoal is linear (∇2h = 0), the length of the shoal is relatively short
(L/λ � 1) and we deal with small amplitude waves only (ζ/h 	 1). These assumptions
greatly simplify the problem, but are also representative of real ocean bathymetry
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(Mendes & Kasparian 2022). Furthermore, we have recently demonstrated that as the
slope magnitude increases the rogue wave occurrence follows suit. However, if we assume
a small effect of reflection due to a small surf similarity parameter among spectral
components (Battjes 1974), the increase in rogue wave occurrence saturates for slopes
larger than or equal to 25◦ (Mendes & Kasparian 2022). The evolution of the exceedance
probability P(H > αHs) in (2.2) can be generalized to any arbitrary incoming statistics
(Mendes et al. 2022)

Pα,Γ𝔖 ≈ (Pα)1/𝔖2Γ𝔖 ∴ ln
(

Pα,Γ𝔖

Pα

)
≈ 2α2

(
1 − 1

𝔖2(α)Γ𝔖

)
, (2.4)

with the vertical asymmetry between crests and troughs being defined as twice the ratio
between crest and crest-to-trough heights (Mendes et al. 2021),

𝔖 = 2Zc

H
∴ 1 ≤ 𝔖 ≤ 2, (2.5)

which for rogue waves features the mean empirical value

𝔖(α = 2) ≈ 2ηs

1 + ηs

(
1 + ηs

6

)
, (2.6)

where ηs measures the ratio between mean crests and mean troughs and has empirically
been found in a wide range of sea conditions to depend on the skewness of the surface
elevation μ3 (Mendes et al. 2021)

ηs ≈ 1 + μ3. (2.7)

The empirical relations of (2.6), (2.7) stem from field observations during North Sea
storms detailed in § 4. When the water depth decreases waves become steeper while
the super-harmonic contribution has an increasing share of the wave envelope. The
combination of these two effects redistributes the exceedance probability by causing the
rise in 〈ζ 2〉 to exceed the growth of E . Such uneven growth explains why a shoal in
intermediate water amplifies rogue wave occurrence as compared with deep water (Trulsen
et al. 2020; Kimmoun et al. 2021) while it reduces this occurrence in shallow water
(Glukhovskiy 1966; Karmpadakis, Swan & Christou 2022). The linear term in ζ(x, t) has
the leading order in deep water and Γ − 1 � 10−2 is small. Conversely, in intermediate
water the super-harmonic creates significant disturbances in the energy density increasing
Γ − 1 up to 10−1, whereas in shallow water the super-harmonic diverges and Γ − 1 �
10−3 becomes small again, reading even smaller values than in deep water.

3. Kurtosis evolution over a shoal

The probability evolution of (2.2) depends solely on Γ . Any deviation from a Gaussian
distribution may be described by a cumulant expansion (Longuet-Higgins 1963) which
at leading order is expressed as a function of the excess kurtosis μ4. For the case of an
inhomogeneous wave field due to a shoal, there is an excess in kurtosis due to the energy
partition. To avoid the tedious algebra of equations (C1,C7b,C12) of Mendes et al. (2022)
for the case of a non-Gaussian sea prior to the shoal, we consider the probability ratio
relative to the Rayleigh distribution (implying a pre-shoal μ4 = 0) to obtain the excess
kurtosis. The ratio measures the amplification of the exceedance probability of waves with
height H = αHs due to a shoal and is computed through the transformation of variables
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Non-homogeneous kurtosis evolution of shoaling rogue waves

from the wave envelope in Mori & Yasuda (2002) into normalized heights to leading order
in μ4, as computed in § 6.2.3 of Mendes (2020)

Pα,μ4

Pα

≈ 1 + μ4 · α2

2

(
α2 − 1

)
+ μ2

3 · 5α2

18

(
2α4 − 6α2 − 3

)
, ∀ α ≥ 1. (3.1)

Taking into account the theoretical relation μ4 ≈ 16μ2
3/9 between kurtosis and skewness

for waves of second order in steepness confirmed by wave shoaling experiments (Mori &
Kobayashi 1998), we rewrite (3.1)

Pα,μ4

Pα

≈ 1 + μ4 · α2

32

(
10α4 − 14α2 − 31

)
, ∀ α � 2. (3.2)

The kurtosis measures tailedness and it affects the exceedance probability for α � 1.5.
Equations (2.4) and (3.2) both describe the same consequence of energy redistribution
and the associated deviation from a Gaussian sea, but the former embodies the physics
of shoaling while the latter delineates the perturbation on the statistics regardless of the
physical mechanism. Therefore, they can be matched, yielding a kurtosis μ4(Γ, α). This
matching could be performed at any value α ≥ 1.5, however, higher accuracy is obtained
in the region of stability of the approximation (2 � α � 3). Over this range, the resulting
value of μ4 deviates by less than 20 %. Therefore, we match both equations at α = 2
without substantial loss in precision

μ4(Γ ) ≈ 1
9

[
exp

(
8
(

1 − 1

𝔖2Γ

))
− 1

]
. (3.3)

This expression generalizes the result obtained by (46)–(47) of Mori & Janssen (2006)
in the case of a narrow-banded wave train, with less than 5 % deviation as compared
with their model with a (2/3)α2(α2 − 1) polynomial in the counterpart of (3.2) for small
values of the skewness (μ3 	 1). However, if the surface elevation is significantly skewed
(μ3 � 1) the contribution of the skewness is severely underpredicted by (46)–(47) of Mori
& Janssen (2006) and therefore the excess kurtosis will be overpredicted while describing
the ratio Pα,μ/Pα .

In order to validate our effective theory for steep slopes of (3.3), figure 2 compares its
prediction with the observed excess kurtosis in Trulsen et al. (2020). In the comparison,
we employed the empirical (Mendes et al. 2021) asymmetry 𝔖(α = 2) = 1.2. We shall
validate this approximation in the next section in relative water depth kph � π/10,
bandwidth ν � 1/2 as defined in Longuet-Higgins (1975) and steepness ε 	 1/10
representative of Trulsen et al.’s experiments. In these experiments, irregular waves with
a broad-banded Joint North Sea Wave Project spectrum of γ = 3.3 peak enhancement
factor, significant wave height 1.4 cm < Hs < 3.4 cm and peak period 0.7 s < Tp < 1.1 s
were generated in a 24.6 m long and 0.5 m wide unidirectional wave tank. These irregular
waves travelled over a flat bottom that had initial relative water depth ranging from kph =
4.9 (deep water) to kph = 1.8 (intermediate water). Furthermore, the irregular waves
propagated over a symmetrical breakwater as sketched in figure 1 with slope |∇h| ≈ 1/3.8
on each side and located 10.8 m after the wavemaker, or equivalently half a dozen peak
wavelengths. The relative water depths atop the shoal are in the range 0.54 ≤ kph ≤ 1.60.
In addition, the absolute water depths ranged from 0.5 to 0.6 m prior to the shoal and
from 0.08 to 0.18 m atop the shoal. Equation (3.3) reproduces well the magnitude and the
trend of the peak in excess kurtosis to decrease towards deeper waters of the experiments in
Trulsen et al. (2020) (see figure 2). Remaining differences such as the slightly earlier rise of
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(Run 5) (Run 6)
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(a) (b)

(c) (d )

Figure 2. Observed kurtosis μ4 (dots) vs the model of (3.3) (dashed) for runs 1, 2, 5 and 6 in Trulsen et al.
(2020). Dashed vertical lines mark the shoaling and de-shoaling zones (see figure 1). The cyan solid curve
includes the slope effect (Mendes & Kasparian 2022) while the red solid curve shows the bound wave prediction
for the kurtosis according to Mori & Kobayashi (1998).

kurtosis in the shoaling zone and the later fall in the de-shoaling zone are likely due to the
assumption of negligible reflection. We also computed the kurtosis contribution due to the
bound wave following Mori & Kobayashi (1998) to evaluate its performance over abrupt
changes in relative water depth, see Appendix A. This bound kurtosis model (red curve
in figure 2) captures the qualitative trend for the observed kurtosis evolution. However,
since the latter was developed for a flat bottom and has no explicit slope dependence
it overestimates the magnitude of the effect. Furthermore, our model in (3.3) has the
advantage of being extendable to any arbitrary slope (Mendes & Kasparian 2022).

4. Wave vertical asymmetry in finite depth

Equations (2.4) and (3.3) highlight the influence of the vertical asymmetry on the evolution
of rogue wave occurrence and excess kurtosis of the surface elevation over a shoal in
intermediate depths. However, the evolution of this asymmetry due to finite-depth effects
is not well known, except that it is a slowly varying function of the steepness (Tayfun 2006;
Tayfun & Alkhalidi 2020). To describe the change in vertical asymmetry due to bandwidth
and relative water depth, we assess data from North Sea observations. Data were collected
on Total Oil Marine’s oil platform North Alwyn NAA located at 60◦48.5′ N and
1◦44.2′ E, approximately 135 km east of the Shetland Islands (Scotland) and 156 km west
of the Norwegian coast (Stansell 2004, 2005). The platform sits on a depth of 129 m
and on a mild slope of ∇h ∼ −1/300 in the SE-NW direction (according to bathymetry
charts from EMODnet – European Marine Observation and Data Network, see figure 3).
While the mean wave direction during the winter storms observed between 1995 and 1999
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Non-homogeneous kurtosis evolution of shoaling rogue waves

130 m

Southeast Northwest500 m

129 m

128 m

North Alwyn NAA Platform

Figure 3. Approximate bathymetric features around the oil platform in the North Sea. The sketch is not to
scale.

(Linfoot, Stansell & Wolfram 2000) is in the SE-NW direction, we focused on the shoaling
case, i.e. waves coming from the southeast towards the northwest. The mild slope is almost
linear (∇2h ≈ 0) within a distance of 250 m northwest and southeast of the platform,
corresponding to three mean wavelengths (see table 3 of Mendes et al. (2021) for the
measurements). The raw data were stored as 2381 20 min records of surface elevation
measurements recorded with a sampling rate of 5 Hz.

To perform the comparison with ocean data, we follow Marthinsen (1992) and consider
the skewness of the surface elevation to depend solely on relative water depth and wave
steepness μ3 = μ3(ε, kph), and consequently identify 𝔖(μ3) = 𝔖(ε, kph) for any α due
to (2.6). We approximate the skewness as (see (19) of Tayfun (2006), where μ denotes
steepness and λ3 the skewness)

μ3(kph > π) ≈ 3k1σ(1 − ν
√

2 + ν2) ≡ 3k1σ · 𝔅(ν) ≈ π√
2
ε𝔅(ν), (4.1)

where Hs = πε/
√

2kp and kp is the peak wavenumber obtained from the spectral mean
wavenumber k1 through kp ≈ (3/4)k1 (Mendes et al. 2022) and ν is the spectral bandwidth
(Longuet-Higgins 1975). In deep water (kph ≥ 5), figure 4(a) shows that the skewness is
almost independent of the bandwidth, as expected from (4.1). On the other hand, as the
depth decreases to intermediate waters the ratio μ3/ε significantly increases and tends
to strongly depend on bandwidth. To account for this finite-depth effect, we rewrite (4.1)
according to (11) of Tayfun & Alkhalidi (2020)

μ3 ≈ πε√
2
𝔅(ν)

(
χ̃0 +

√
χ̃1

2

)
, (4.2)

with notation χ̃i from Mendes et al. (2022)

χ̃0 =

[
4
(

1 + 2kph
sinh (2kph)

)
− 2

]
(

1 + 2kph
sinh (2kph)

)2

tanh kph − 4kph

;
√

χ̃1

2
= 3 − tanh2 (kph)

2 tanh3 (kph)
. (4.3a,b)

Although Tayfun and Alkhalidi’s model provides a good fit of μ3/ε for kph > 3, the sum
χ̃0 +√

χ̃1/2 stays close to unity for kph ≥ 2. Hence, the larger values of the ratio μ3/ε
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Tayfun (2006) - (4.1)

μ3 = 3ε(3.5 v2 − 1.4 v + 1) μ3/ε

(a) (b)

Figure 4. (a) Ratio of skewness and steepness varying with bandwidth in strongly non-Gaussian (μ4 ≈ 0.4)
North Sea data (Stansell 2004), with polynomial fit 𝔅(ν) ≈ 1 − ν

√
2 + 3.5ν2 at 2 ≤ kph ≤ π. (b) Contour

plot of the same ratio as computed from (4.2) for the fitted function 𝔅(ν, kph) in (a).

for shallower water (2 ≤ kph ≤ π) must stem from a dependence of 𝔅(ν) on depth. We
therefore seek a generalization of (4.2) whereby we fit a function 𝔅(ν, kph) = 1 − ν

√
2 +

fkph · ν2 capable of providing a smooth transition from fkph∼3 ≈ 3.5 in shallower depths
(see figure 4a) to the deep water value fkph=∞ ∼ 1 (see (4.1)). Hence, implementing this
fit into (2.6) and (2.7) the vertical asymmetry accounting for depth-induced effects is of
the type

𝔖(α = 2) ≈ (2 + 6ε∗)(7 + 3ε∗)
6(2 + 3ε∗)

, (4.4)

where ε∗ is the effective steepness

ε∗ ≈ πε

3
√

2
[1 − ν

√
2 + fkph · ν2]

(
χ̃0 +

√
χ̃1

2

)
. (4.5)

Figure 4(b) provides a contour plot for the ratio μ3/ε taking into account the fitted model
of fkph. Here, fkph is a function of depth that can be obtained through the constraint 𝔖 ≤ 2
of (2.5) applied to (4.4)

lim
kph→0

𝔖(α = 2) ≈ lim
kph→0

(2 + 6ε∗)(7 + 3ε∗)
6(2 + 3ε∗)

≤ 2, (4.6)

thus leading to

9ε2
∗ + 6ε∗ − 5 ≤ 0 ∴ ε∗ ≤

√
6 − 1
3

. (4.7)

The function 𝔅(ν, kph) makes the exceedance probability of rogue waves weakly
dependent on the bandwidth ν (Longuet-Higgins 1975). Very broad-banded seas (ν ≥ 1)
are very rare. For example, they account for only 3 % of observed stormy states in the
North Sea (Mendes et al. 2021). These extreme sea conditions are typically short lived and
found for instance in hurricanes. Albeit bandwidths much larger than ν = 1 can increase
the vertical asymmetry by approximately 5 %–10 %, their lifespan impacts the weighted
average of the exceedance probability of rogue waves over a daily forecast by only ∼10 %

966 A42-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

45
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.453


Non-homogeneous kurtosis evolution of shoaling rogue waves

○

○

○
○ ○

8
1+7 tanh (kph/7)

8
1+7 tanh2 (kph/7)

8
1+7 tanh4 (kph/7)

0 2 4 6 8 10
1

2

3

4

5

6

7

8

kph kph

f k p
h

ε = 1/60

ε = 1/50

ε = 1/40

ε = 1/30

 = 6/5

1 2 3 4 5
1.18

1.20

1.22

1.24

1.26

 (
α 

=
 2

, 
v 

=
 0

.5
)

(a) (b)

Figure 5. (a) Finite-depth functions fkph vs data (circles) from figure 4(a). (b) Vertical asymmetry of
broad-banded rogue waves (ν = 0.5) as a function of water depth for different steepness, with the dotted line
depicting the empirical mean value 𝔖 = 1.2 from Mendes et al. (2021, 2022). Dashed vertical line marks the
limit of validity of second-order theory.

because ν ∼ 0.5 over 97 % of all 30 min records. Accordingly, we may set ν = 1 as the
realistic and effective maximum bandwidth to be considered for estimating the rogue wave
exceedance probability. Hence, in the second-order limit we obtain

lim
kph→1/2

πε

3
√

2
fkph

(
χ̃0 +

√
χ̃1

2

)
<

√
6 − 1
3

. (4.8)

Consequently, broad-banded waves will not exceed the following depth correction:

fkph(ν = 1) � 18
√

2
π

≈ 8. (4.9)

Broad-banded waves have an effective steepness of the order of εfkphν
2. Since finite-depth

effects involve the ratio ε/kph which it is directly related to Hs/h and fkph grows quickly
from deep to intermediate waters (see figure 4a), we expect fkph to be inversely proportional
to the relative depth kph. In order to fulfil (4.6)–(4.9), a sigmoid function provides a good
fit with continuous derivative for the North Sea data (see figure 5a)

fkph ≈ 8

1 + 7 tanh2 (kph/7)
, ν ≤ 1. (4.10)

Plugging (4.10) into (4.4) introduces an approximation for the vertical asymmetry covering
the entire range of second-order theory for narrow and broad-banded irregular waves. In
fact, figure 5(b) shows that the vertical asymmetry is almost constant for typical values
of mean steepness (ε 	 1/10) in intermediate and deep waters (kph ≥ π/10). Conversely,
sharp increases in the mean steepness will induce a few per cent increase in the vertical
asymmetry in the same regimes (kph ≥ π/10). The contour plot in figure 6(b) provides
a full description of the variations in asymmetry with depth and steepness. Furthermore,
figure 6(a) shows that, in shallow depths, the vertical asymmetry strongly depends on kph
while in deep water it tends to saturate. Figure 6(c) also illustrates the role of bandwidth in
increasing the asymmetry, albeit sharp changes are restricted to sufficiently broad spectra
(ν > 0.8). Thus, the analysis of field data from the North Sea shows that, as long as the
steepness in intermediate water (kph > π/10) is small (ε < 1/10) or the spectrum narrow
(ν < 1/2), the vertical asymmetry stays close to 𝔖 = 1.2. We find this approximation for
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Figure 6. Vertical asymmetry of large and rogue waves as a function of water depth for different mean
steepness, bandwidth and normalized height. The dashed line in (b) represents the Ursell limit for second-order
theory.

the vertical asymmetry to be still applicable to the experiments in Trulsen et al. (2020)
with steeper slope, as shown in Appendix B.

Moreover, the special case of narrow-banded (ν = 0) linear waves (ε 	 1/10) in deep
water leads to ε∗ → 0, thus reaching the lower bound of the asymmetry 𝔖 = 7/6 for
rogue waves. This suggests that, in intermediate waters, narrowing the bandwidth from
ν = 0.3 to ν = 0 will have little impact on the amplification of rogue wave statistics due
to the negligible change in vertical asymmetry, whereas in shallow water increasing the
bandwidth above ν = 0.5 will significantly boost rogue wave occurrence. From the point
of view of the theory in Mendes et al. (2022), the asymmetry approximation of (4.4),
(4.10) explains why narrow-banded models (Li et al. 2021a) are successful in predicting
rogue wave statistics travelling past a step in a broad-banded irregular wave background in
intermediate water. Provided there is no wave breaking (Hs/h 	 1), the bandwidth effect
will play a role in amplifying statistics in shallower depths because of the contributuin of
the term fkphν

2, as experimentally demonstrated in Doeleman (2021).

5. Upper bound for kurtosis atop a shoal

The excess kurtosis has been used in the past two decades as a proxy for how rough
nonlinear seas increase the occurrence and intensity of rogue waves. Therefore, in this
section we extend our results of § 3 to estimate the maximum kurtosis atop any shoal in
the ocean (Janssen & Bidlot 2009; Janssen 2017). The assessment of maximum expected
waves over a specific return time at a fixed location is crucial for naval design. Typically,
ocean structures and vessels must be designed to sustain expected maximum extreme
waves over their lifespan (Borgman 1973; Muir & El-Shaarawi 1986). In order to do so,
we shall evaluate maxima for the parameters 𝔖 and Γ . Equations (4.4) and (4.10) provide
the upper bound for the vertical asymmetry of rogue waves in the limit of wave breaking:
𝔖∞(kph = ∞) ≈ 1.387 in deep water and 𝔖∞(kph = 0) ≈ 1.668 in shallow water. Since
the Γ correction is also limited by wave breaking, one finds the bound Γ∞ − 1 � 1/12
due to (3.17) of Mendes et al. (2022). Hence, we may approximate

1 − 1

𝔖2
∞Γ∞

� 8(Γ∞ − 1). (5.1)

Approaching the value Γ∞ atop the shoal (region III of figure 1), the contribution of the
skewness to the amplification of wave statistics near the breaking regime increases such
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Figure 7. Upper bound on kurtosis from (5.3) for ν = 0.5 and different pre-shoal mean (significant) steepness
ε0 = Hs,0/λ0 subject to linear shoaling. The dashed curve represents the kurtosis in figure 2(a), representative
of run 1 of Trulsen et al. (2020) and with the bathymetry of figure 1.

that the relationship between kurtosis and skewness leading to (3.2) is modified and now
empirically reduces to μ4 ≈ μ2

3 (Ma et al. 2015). Plugging this relationship into (3.1) and
comparing it with (2.4) and (5.1), we obtain

exp(16α2(Γ∞ − 1)) ≥ 1 + α2(α2 − 1)μ4. (5.2)

At α = 2, the evaluation of the excess kurtosis lies at the region of stability of the
Gram–Charlier series and we are able to compute the upper bound for the excess kurtosis
in the case of pre-shoal Gaussian statistics (see figure 7)

μ4,∞ ≈ 1
12 [exp(64(Γ∞ − 1)) − 1], (5.3)

where Γ∞ varies with water depth. According to (5.3), typical seas with steep and highly
asymmetrical broad-banded waves lead to an upper bound for the excess kurtosis of the
order of μ4,∞ ∼ 4 in intermediate water, see figure 7. We already described that the
maximum value of Γ is located around kph ≈ 0.5 in Mendes et al. (2022) and (3.3) has
been validated in figure 2. Therefore, the peak in excess kurtosis will also be located in this
region. Experiments conducted in Zhang et al. (2023) found the peak in excess kurtosis in
the same region kph ≈ 0.5.

6. Conclusions

In this work we have extended the framework in Mendes et al. (2022) to an effective
theory for the evolution of excess kurtosis of the surface elevation over a shoal of finite
and constant steep slope. We find quantitative agreement with experiments in Trulsen
et al. (2020) regarding the magnitude of the kurtosis increase during and atop the shoal.
While the groundwork of Marthinsen (1992) computes the excess kurtosis directly from
the solution ζ(x, t), our model unravels the kurtosis dependence on the inhomogeneities
of the energy density over a shoal. Our formulation outperforms the conventional method
of Marthinsen (1992) for the computation of kurtosis of the bound wave contribution. In
addition, our effective theory is capable of describing changes of the kurtosis magnitude
over arbitrary slopes provided reflection can be neglected. A computation of the kurtosis
from the probability density of ζ(x, t) through the non-homogeneous framework will be
pursued in a future work with an analytical non-uniform distribution of random phases.
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Furthermore, we have obtained an approximation for the vertical asymmetry in finite
depth as a function of both steepness and bandwidth. This approximation extends the
seminal work of Tayfun (2006) for the skewness of the surface elevation to broad-banded
intermediate water waves while recovering its original formulation for narrow-banded
deep water waves. Building on this new approximation, we have demonstrated that the
vertical asymmetry varies slowly over a shoal in both deep and intermediate waters.
Moreover, based on this rise in vertical asymmetry we were able to compute an upper
bound for the excess kurtosis driven by shoaling.
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Appendix A. Computation of irregular bound wave kurtosis

The contribution of bound waves to the excess kurtosis of the surface elevation is given by
Mori & Kobayashi (1998) in the regular wave approximation

μ4(ka, kh) = 3

{
1 + (ka)2(6D2

1 + 6D2
2 + 8D1D2)]

[1 + (ka)2(D2
1 + D2

2)]
2

− 1

}
, (A1)

where D1 and D2 are relative water depth coefficients from the surface elevation

D1 = 1
tanh kh

; D2 = D1

(
1 + 3

2 sinh2 kh

)
. (A2a,b)

To leading order in steepness, we may approximate the excess kurtosis as

μ4 ≈ 3{[1 + (ka)2(6D2
1 + 6D2

2 + 8D1D2)][1 − 2(ka)2(D2
1 + D2

2)] − 1},
≈ 3{[1 + (ka)2(4D2

1 + 4D2
2 + 8D1D2)] − 1},

≈ 3(ka)2(4D2
1 + 4D2

2 + 8D1D2) ≈ 12(ka)2(D1 + D2)
2. (A3)

However, we shall extend (A1) for irregular waves, computing the equivalent irregular
mean wave steepness and relative depth. We may use ka → kpHs/2

√
2 as pointed out in

Trulsen et al. (2020) for irregular waves, consequently we find ka → (π/4)ε as in Mendes
et al. (2022). Hence, we may write the excess kurtosis as a function of ε up to second order
in steepness

μ4 ≈ 3π2

4
· ε2(D1 + D2)

2. (A4)

Moreover, the depth kh has to be converted to its peak wavenumber equivalent kph. Hence,
since observations in the ocean feature 1.1 ≤ λp/λ1/3 ≤ 1.2 (Figueras 2010), we may use
the transformation from regular wave to irregular wave kh → 1.2kph to compute (D1, D2)
correctly. As a remark, the above expression differs little from formulations such as of
Marthinsen (1992) and others as reviewed in Tayfun & Alkhalidi (2020).
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Figure 8. Theoretical evolution of steepness measured against observations (dots) in Raustøl (2014) and its
numerical fit thereof for (a) run 1 and (b) run 2 of the experiments in Trulsen et al. (2020).

Appendix B. Slope effect on vertical asymmetry

In this section we assess how the vertical asymmetry of irregular rogue waves is affected
by an arbitrary slope. Let us denote the final steepness atop the shoal as εf and the initial
one as ε0. If linear waves travel over a shoal, then we may define the amplification ratio of
the steepness (also known as shoaling coefficient)

Kε,L := εf

ε0
≈ 1

tanh (1.2kph)

[
2 cosh2 (1.2kph)

2.4kph + sinh (2.4kph)

]1/2

, (B1)

where we have converted the regular wave formula (Holthuijsen 2007) to irregular waves.
Indeed, except for a few per cent, the shoaling coefficient of the (irregular) significant
wave height is a good approximation for the regular wave counterpart (Goda 1975, 2010).
If nonlinear wave shoaling is dominant, then Kε,NL depends on the slope of the shoal ∇h,
and we denote the ratio Kε,NL/Kε,L = F∇h (Eagleson 1956; Walker & Headlam 1983;
Srineash & Murali 2018). Performing a Taylor expansion in (4.4) up to first order in ε∗, the
vertical asymmetry of small wave amplitudes can be written as

𝔖(α = 2) ≈ 7
6 (1 + 2ε∗) . (B2)

The typical sea representative of Trulsen et al. (2020) experiments is broad-banded (ν ∼
0.5) and in intermediate water (kph ∼ 1). Recalling (4.5) and (4.10), this leads to 𝔅(ν) ∼ 2
and χ̃0 +√

χ̃1/2 ∼ 1. Therefore we may approximate ε∗ ≈ (π
√

2/3)ε. Consequently, the
ratio between the vertical asymmetry of identical sea states of waves travelling over a shoal
of different slopes is approximately described by the formula

𝔖(α = 2, |∇h|)
𝔖(α = 2, |∇h| = 0)

≈

(
1 + 2

√
2π

3
ε · F∇h

)
(

1 + 2
√

2π

3
ε

) ≈ 1 + 2
√

2π

3
ε (F∇h − 1) . (B3)

Even for relatively steep shoals (|∇h| ≈ 1/4) as in the case of Trulsen et al. (2020) the
correction accounting for slope is small, with F∇h ≈ 1.15 in this case (see figure 8a,b).
In fact, Srineash & Murali (2018) demonstrated experimentally that F∇h − 1 stays
in the range of 0.1–0.2 for steep slopes. Since the steepness in the experiments of
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Trulsen et al. (2020) atop the shoal does not exceed ε = 0.06, the slope correction to
the vertical asymmetry derived with the help of field data from the North Sea stays below
(π

√
2/9) × 100 % × 0.06 = 3 %. Thus, (4.4) is applicable to the analysis in § 3, and the

approximation 𝔖 ≈ 1.2 is applicable in the conditions of the experiments in Trulsen et al.
(2020).
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