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A. Introduction

The "other" paqfi theorem of Burnside states the following:

Theorem A.l. Let G be a group of order p"q^, where p and q are distinct primes. If
pa>qp, then Op(G)=/=l unless

(a) p is a Mersenne prime and q — 2;

(b) p = 2 and q is a Fermat prime; or

(c) p = 2 and q = l.

Burnside's proof [3] was incorrect; he omitted exception (c). However, M. Coates, M.
Dwan and J. Rose gave a correct proof of Burnside's theorem, see [5]. Independently,
V. S. Monakhov gave a correct proof as well, see [8] and [9]. In [12], T. R. Wolf
proved the following Theorem A.2, which handles the exceptional cases of Theorem A.I
as well.

Theorem A.2. Le& G be a group of order p"qp, where p and q are distinct primes. If
px>qpc/2, where c = (log32/log9), then

G. Glauberman, see [6], took a different approach. For a finite group G and a
positive integer k, or k = oo, let d(k, G) denote the maximum of the orders of all
nilpotent subgroups of G of class at most k. Using this notation, Glauberman's theorem
states the following:

Theorem A.3. / / G is a group of order p"qfi and P and Q are p-Sylow and q-Sylow
subgroups of G, respectively, then d(2, P)>d(2,Q) implies that Op(G)£ 1.

For groups of odd order, the author generalized Glauberman's theorem and in [1]
proved:

Theorem A.4. Let G = HK be a group of odd order, where H and K are n-Hall and n'-
Hall subgroups ofG, respectively. Then d(ao,H)>d(2,K) implies that On(G)^= 1.

•This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.
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42 A. BIALOSTOCKI

In the present paper, we continue Glauberman's approach and prove the following
stronger version of Theorem A.3.

Theorem A.5 (Main Theorem). Let G be a finite group of order p"qp and let P and Q
be a p-Sylow subgroup and q-Sylow subgroup of G, respectively. For various primes p and
q, sufficient conditions under which Op{G) =/= 1 are given below:

(a)

(b)

(c)

(d)

(e)

d(m,P)>d(2,Q)
d{2,P)>d(2,Q)

d(l5,P)>d(2,Q)
d(p-l,P)>d(2,Q)

d(ao,P)>d(2,Q)

for
M
for
M
M

p = 2 and q = 2m+l, m^
p = 2 and q = 3
p = 2 and q = l
p = 2' — 1 and q = 2

p and q not as above.

The proof of the above theorem is carried out in two main steps. First, in Section B,
we evaluate d(k, Sp(GL(n, q))) where (p, q) = 1 and make use of it to prove a main lemma
about p-groups in GL(n,q). For the structure of Sp{GL(n, q)) where (p,q) = \, the reader
is referred to [4] and [11]. The exponent and the nilpotency class of these groups are
used frequently and the reader is referred to [2]. In the second step, we follow
Glauberman [6], and prove a theorem about a product of two nilpotent groups which
can be combined with the main lemma to yield our main theorem.

B. Evaluation of d(k, SP(GL (n, q))) where (p,q) = \ and the main lemma

First we evaluate d(k, Sp(GL(n, q))) where (p, q) = 1 in the general case, excluding the
case p = 2 and q = 3(mod4). We can assume that p\q — 1, and let s,s^l be such that
ps||q— 1. On the one hand, given a prime p, a power of prime q such that ps||<j— 1, and
positive integers n and k, we have to find a suitable candidate A, A^Sp(GL(n,q)) for
which class(/l)^&. On the other hand, we have to prove that d(k,Sp(GL(n,q)))<*\A\. If
l^k<(p— l )s+l , then it is natural to define A as a direct product of n cyclic groups of
order ps each, thus |/l| = psn and class (A) = 1. However, if fc^(p— l)s+ 1, then there exists
a minimal a , a ^ l such that k<{(p— \)s+ l)p" and the construction of A is as follows:
Let n = p*t + u where 0^u<p", then we can write the underlying vector space V as a
direct sum V=V0®Vi®---®V,, where dim(^) = pa for \^i^t and dim(F0) = u. As
class(Sp(GL(M,g)))^class(Sp(GL(pa,q))) = ((p-l)s + l)pa"1g)t for <x^l, we define A to be
the direct product of SP(GL( V$), 0gi% t and it follows that class(/l) = ((p- l)s + l)pa~l ^ k
and that |/l| = |Sp(GL(pa,q))|'|Sp(GL(M,q))|. Now we prove:

Theorem B.l. Let p be a prime and let q be a power of a prime such that ps\\q— 1 for
s ̂  1. Assume that pj=2ifq = 3(mod 4) and let k and n be positive integers. If k ̂  (p — 1 )s + 1,
then define a , a ^ l as the minimal integer satisfying k<((p — l)s + l)p" and let t and u be
determined by n = pat + u where 0^u<p". Then d(k,Sp(GL(n,q)))=f(k,n) where:

Sp(GL(p*,q))\<\Sp(GL{u,q)))\ if k^{p-

https://doi.org/10.1017/S0013091500017946 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500017946


ON THE OTHER p V THEOREM OF BURNSIDE 43

Proof. By the observation which precedes the theorem, it follows that
d(k,Sp(GL(n,q)))^f{k,n). We will prove that d{k,Sp(GL(n,q)))^f(k,n). Consider the
following two properties of f(k, n) which can be easily verified.

(a) f(k,nj) f(k,n2)^f(k,nt + n2), for all positive integers k, nv and n2.

(b) P' (/(', w))p^/(/p, mp), for / ^ ( p - l)s + 1 and every positive integer m.

Suppose that the theorem does not hold for a certain p and q, and fixing those p and
q, let PQSp{GL(n,q)) be a counterexample for which n + k is minimal. Thus, |P| =
d(k,Sp(GL(n,q)) and |P|>/(n,fc). As

if n<p

— l)s+l if n = p

the theorem holds for n^p and every positive integer k. Hence we can assume that
n>p. If P is reducible, then it is decomposable and V = Vy © V2 where the Vt's are non-
trivial P-invariant subspaces of V for i=l,2. It follows that PzPixP2, where
Pi^GLiVj) is the projection of P on Vt, i = 1,2, and hence in view of property (a) of
f(k, n) and minimality of n + k, we obtain a contradiction. Thus we can assume that P is
irreducible and hence n is a power of p.

Suppose that k=l. Then P is abelian and since P is irreducible, it follows that P is
cyclic. But this is impossible since, if P is one of the following: cyclic, dihedral, semi-
dihedral or generalized quaternion, then it is not difficult to derive a contradiction for
an arbitrary k. Indeed, if P is one of the above-mentioned types, and exp(P) = pp, then
IPI^P***1. Notice that, in view of the fact that n is a power of p, Proposition B.2 of [2]
implies that n^p^~s and since n>p, it follows that n^max{p2, p**"5}. It is not difficult
to show that under these conditions, keeping in mind that p = 2 and s = 1 is not allowed,
we have psn>p"+1. Hence, ps">pp + 1>\P\. But since Sp(GL(n,q)) contains a direct
product of n cyclic groups which is of order ps", the inequality ps">|P| contradicts
\P\=d(k,Sp(GL(n,q))).

Thus, we can assume that P is irreducible, P does not belong to the four exceptional
families, n>p and k> 1. Now Theorem 19.2 of [10] can be applied, yielding:

(1) P contains a subgroup H such that |P: / / | = p.

(2) The underlying vector space V can be written as V—VX@---@VP, where the
subspace Vh l^i^p are //-invariant and if x e P\H, then x permutes the ^'s in
a p-cycle.

Let dim(VJ) = m, for l ^ i ^ p (thus n = mp) and let ffjCCL(^ be the projection of H
on Vt for 1^/^p. The direct product Htx-- xHp is a group in which H can be
embedded and if H^H^ x • •• xHp, then by the minimality of n + k, we can apply the
theorem to the //,'s with parameters k and n and, in view of property (a) of f(k, n), it
follows that |P| = p|// |^|//1|p^(/(/c,m))p^/(fe,n), a contradiction. Thus, we can assume
that H = Hl x • • • x Hp. Now we consider two cases:

Case (a). Assume that k<{p- l)s+ 1. As |P| = d{k,GL(n,q)), the scalar transformations
are contained in P and since p*||p—1, it follows that Z(P) contains a scalar transfor-
mation y of order p*. By (2) yeZ(H) and hence its projections on the //,'s belong to
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Z(Ht) for 1 ^ i ^ p and are of order ps. Take xeP\H and consider the group generated
by yi,---,yP and x. It follows that (y1,...,yp,x} = Cp,~Cp and Proposition B.3(b) of
[2] implies that class«y1,...,yp, x » = (p—l)s+1 and hence class(P)^(p—l)s+1
contradicting our assumption that class(P)^/c<(p — l)s+ 1.

Case (b). Assume that k^(p — l )s+l . Let class(//!) = /, hence by Proposition B.3(a)
of [2], it follows that fcjSclass(P)^/p. The minimality of n + k yields \Hx\^f{l,m) and
hence in view of property (b) of f(k,n), it follows that \P\ = p\H ̂  ^p(f(l,m))p ^
f(lp, mp)^f(k, n), a contradiction, and Theorem B.I is proved. •

Now we evaluate d(k,Sp(GL(n,q))) in the case p = 2 and q = 3(mod4). As in the
previous case, on the one hand, given a power of a prime q, q = 3(mod 4), and positive
integers k and n, we have to find a suitable candidate A, A £ S2(GL(n, q)), for which
class(/l)^/c. On the other hand, we have to prove that d(k,S2(GL(n,q)))^\A\. If k<s,
where 2s||q2 — 1, it is natural to define A as the direct product of [n/2] cyclic groups of
order 2s each, and to join to the product a cyclic group of order 2 if n is odd. Thus
class(/l)=l and \A\ = 2sl"m+<:(n) where e(n)=0 if n is even and e(n)=l if n is odd.
However, if fc^s, then there exists a minimal a , a^ l , such that k<s2", and the
construction of A is as follows: Let n = 2't + u where 0^u<2a, then we can write the
underlying vector space K as V= Vo® V1®-••© V, where dim(K0) = w and dim(^) = 201

for l ^ i g t . As class(S2(GL(w,g)))^class(S2(GL(2a,<a[))) = s2"-1^/c for a ^ l , we define A
to be the direct product of Sp(GUV$), Ogi^t, and it follows that class(/l) = s2a"1 g/c
and that |/l| = |S2(GL(2a, q))\'\S2(GUu, q))\. Before stating and proving the theorem we
need a certain lemma.

Lemma B.2. Let n be a positive integer and let q be a power of a prime such that
q = 3(mod4) and 2s\\q— 1. Suppose that y is a positive integer, 2^y^s, and suppose that
P is a 2-subgroup of GL(n, q), which is of maximal order among all 2-subgroups A of
GL{n,q), which satisfy the following conditions:

(a) exp(i4)g2»; (b)

if n is even.
Then \A\ = 2yl"'2]+£(n) where e(n) = ,

1 1 [I if n is odd.

Proof. By taking a direct product of [n/2] cyclic groups of order 2y each and joining
to the product a cyclic group of order 2 if n is odd, we get that |p|^2v[n/2)+c(n). Thus, it
suffices to prove the opposite inequality. Suppose that the lemma does not hold for a
certain q and fixing that q let p be a counterexample for which n + y is minimal. As
S2{GL(l,q)) is of order 2 and as S2 (GL(2,<?)) is semidihedral of order 2S+1, it follows by
[7, p. 191] that the lemma holds for n= 1,2 and every y, 2^y^s .

Thus we can assume that n>2. If P is reducible, then it is decomposable and V=
Vx © V2 where the l̂ 's are nontrivial P-invariant subspaces of V for j= l ,2 . It follows
that P' £ Pj x P2, where P, and P2 are the projections of P on Vj of dimensions nh

i = l , 2. The minimality of n + y yields that |P,| g2'[ni/2I+£"") for i= 1,2, hence

I P I < I P UP I — '
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Thus, we can assume that P is irreducible and hence n is a power of 2. If y = 2, then P is
abelian and since it is irreducible, it is cyclic.

Now (a) implies that |P|g4^22""2 1 for n>2, thus we can also assume that y>2. If P
is one of the following: cyclic, dihedral, semidihedral or generalized quaternion, then
|P |g2y + 1^2y""2 ) for n>2 and 3^ygs. Thus we can assume that P does not belong to
one of the four exceptional families and Theorem 19.2 of [10] can be applied yielding:

(1) P contains a subgroup H such that |P:H\ = 2.

(2) The underlying vector space V can be written as V = Vx ® V2 where the
subspaces Vh i" = 1,2 are //-invariant and if xeP\H, then x interchanges Vl and

v2.
Let d\m(Vi) = m (thus n = 2m) and let //, be the projection of H on Vh i = 1,2. If

H=^Hi xH2, then by the minimality of n+y we can apply the lemma with parameters
m and y to //j and H2, yielding its validity for n and y. Thus we can assume that
/ / = / / , xH2, where // j = 2v(m/2) for i = l,2. The minimality of n + y implies that either
exp(//I)^2> or class(//,)^y — 1. We deal with the two cases separately.

(1) Assume that exp(Hl)^.2. If Hl is abelian, then since it is irreducible, it is cyclic,
and hence by the Proposition B.3(b) of [2], it follows that class(P)^y + l, contradicting
(b). If / / t is not abelian, then since it contains-a cyclic subgroup of order 2y at least, it
follows by [7, p. 193] that / / t contains one of the following subgroups: Dihedral,
semidihedral or generalized quaternion of order 2y+i at least. Thus HZ1 contains a
subgroup of class y at least and it follows that class(P)^y, contradicting (b) again.

(2) Assume that class(H1)^v-l . By Proposition B.3(a) of [2], it follows that
class (P) ̂  2y - 2 > y — 1, contradicting (b). Thus, our lemma is proved. •

Theorem B.3. Let n and k be positive integers. Let q be a power of a prime such that
q = 3(mod4) and 2s||q2 —1. If k^s define a ^ l as the minimal integer satisfying k<s2"
and let t and u be determined by n = 2't + u, where 0 ̂  u < 2".

Then d(k, S2{GL(n, q))) = g{k, n) where

Hi
r) if k<s

S2(GL{2x,q))\'-\S2(GL(u,q))\ if kZs

where e(ri) = 0 if n is even and e(n) = 1 if n is odd.

Proof. The proof is similar to that of Theorem B.I. By the observation which
precedes Lemma B.2, it follows that d{k,S2(GL(n,q)))'^:g(k,n). We will prove that
d(k, S2{GL{n,q)))^g(k, ri). Consider the following two properties of g{k, n) which can be
easily verified.

(a) g(k,nl)g(k,n2)^g(k,nl+n2) for all positive integers k, nt and n2.
(b) 2(g{l, m))2^g(2l, 2m) for / ^ s and every positive integer m.

Suppose that the theorem does not hold for a certain q and fixing q, let P c S2(GL(n, q))
be a counter-example for which n + k is minimal.
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Thus, \P\ = d(k,S2(GL(n,q))) and \P\>g{k,n). As

if n = 2, 3

the theorem holds for n = 1,2,3 and every positive integer k. Thus we can assume that
n>3. If P is reducible, then it is decomposable and V— Vl © V2, where the Vj's are P-
invariant subspaces for i = l,2. It follows that P £ P ,x P2, where P1 and P2 are the
projections of P on Vh i=l,2. Hence, in view of property (a) of g(k, ri) and the
minimality of n + k, we derive a contradiction. Thus, we can assume that P is
irreducible and hence n is a power of 2. Suppose that k=\, then P is abelian and since
P is irreducible, it follows that P is cyclic. But this is impossible since if P is one of the
following: cyclic, dihedral, semidihedral or generalized quaternion, then it is not difficult
to derive a contradiction for an arbitrary k. Indeed, if P is one of the above-mentioned
types and exp(P) = 2p, then |P | ^2 ? + 1 . Notice that in view of the fact that n is a power
of 2, Proposition B.2 of [2] implies that (n/2)^2"~s and since n>3, it follows that
(n/2) ̂  max {2,2I>~S}. It is not difficult to show that under these conditions, keeping in
mind that s>2, we have 2s(n/2) > 2̂  + ' . But since S2(GL(n,q)) contains a direct product of
n/2 cyclic groups which is of order 2s(n/2), the inequality 2s(n/2)>|P| contradicts |P| =
d{k,S2(GL(n,qj)). Thus we can assume that P is irreducible, P does not belong to any
of the exceptional four families, n>3 and k>\. Now Theorem 19.2 of [10] can be
applied, yielding:

(1) P contains a subgroups H such that |P://[ = 2.

(2) The underlying vector space V can be written as Vl © V2, where the subspaces Vh

i = 1,2 are //-invariant and if xeP\H, then x interchanges Vx and V2.

Let dim(^) = m for i= 1,2 (thus n = 2m), and let H,-£GL(^ be the projection of// on
Vi for i= 1,2. The direct product / / , x H2 is a group in which H can be embedded, and
if Hj=Hl xH2, then by the minimality of n + k, we can apply the theorem to the //,'s
with parameters k and m, and in view of property (a) of g(k, n), it follows that |P| =
2\H\^\Hl\

2^(g(k,m))2^g(k,ri), a contradiction. Thus we can assume that H = Hl xH2.
Now we consider two cases:

Case (a). Assume that k<s. By the minimality of n + k, it follows that |//1| = 2s(n/2)

and applying Lemma B.2, we get that either exp(//|)^2s or class(//1)^s—1. As in the
corresponding part of the proof of Lemma B.2, each of the above two inequalities
implies that class(P)^s, contradicting our assumption that class(P)^/c<s.

Case (b). Assume that k^s. Let c\ass(Hl) = l, hence by Proposition B.3(b) of [2], it
follows that fe^class(P)^2/. The minimality of n + k yields |//1|^g(/,m) and hence, in
view of property (b) of g(k,ri), it follows that \P\ = 2\Hi\

2^2{g(l,m))2^g{2l,2m)-^g{k,ri), a
contradiction, and Theorem B.3 is proved. •

Now we state and prove our main lemma.
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Lemma B.4 (Main Lemma). Let p and q be two distinct primes and let k and n be
positive integers.

(a) Ifp = 2andq = 2m+\ where m ̂  2, then d{k, S2{GL{n, q))) g q" for every niftk^m.

(b) Ifp = 2andq = 3, then d(k,S2(GL(n,q)))<L3n for every niff/c^2.

(c) lfp = 2andq = l, then d(k,S2(GL(n,q)))£T for every n ifffcg 15.

(d) Ifp = 2l-landq = 2, then d(k,Sp{GL{n,2)))^2"for every n iff kgp- 1.

(e) / / p and q are not as above, then d(k, Sp(GL(n, q))) ^ q" for every n and k.

Proof. Case (e) is exactly Burnside's Lemma whose corrected version appears in [5]
and will not be proved here. Case (b) follows from Glauberman's Lemma [6], but for
completeness, we shall prove it.

(a) As 2 m | | g - l Theorem B.I implies that d(m, S2(GL(n, q))) = 2m"<q". On the other
hand, d(m+\,S2(GL(2,q))) = 2m + i>(2m+l)2 = q2.

(b) As 2 3 | | 3 2 - 1 Theorem B.3 implies that d(2,S2(GL(n,g))) = 23[n /21+£<n)^23"/2<3". On
the other hand, d(3,S2(GL(2,3))) = 2 4 > 3 2 .

(c)As 2 4 | | 7 2 - 1 Theorem B.3 implies that d(15,S2(GL(n,7))) = 25[n/21+1'l/41+£('1)g
2 i in/4< 7n O n t h e o t h e r h a n d ; rf(i6,S2(GL(8,7))) = 2 2 3 >7 8 .

(d)As Sp(GL(n,2)) = Sp(GL([n/f],2')) Theorem B.I implies that d(p-l,Sp(GL(n,2j)) =
d(p-l,Sp([n//],2')) = p["/'1 = (2'-l)[n / /1<2'1. On the other hand, d(p,GL(p,2')) =

p>+l=p2'>2».

This completes the proof of Lemma B.4. •

C. Proof of the Main Theorem

In this section, we use the notation of Ap for the p-Sylow subgroup of A in the case
where A is a nilpotent group. The Fitting subgroup of G and the Frattini subgroup of G
are denoted by F(G) and <D(G), respectively. We need the following theorem.

Theorem C.I. Let p and q be distinct primes and let k satisfy d(/c, SP(GL(M, <?)))< <j" for
every n. Moreover, let G be a {p, q}-group and let A be a nilpotent subgroup of G of
maximal order among all nilpotent subgroups C of G satisfying:

(2) class(C,) ^ 2 .

If B is a nilpotent subgroup of G normalized by A, then AB is nilpotent.

Proof. Let G be a counterexample and choose G and B such that ]G| + |B| is
minimal. Clearly, we can assume that G = AB. We proceed in three steps.

(a) We prove that B = [G, Ap~\ and class(B)^2. By the minimality of |B| it follows
that Ap centralizes every proper subgroup of B which is normalized by A. In particular
<D(B) is such subgroup, so Ap operates on V = B/<J>{B). It follows from Theorem 5.3.2 [7,
p. 177] that V = Cv(Ap) x [V,Ap~]. By the minimality of B, it follows that V cannot be A-
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decomposable. If V=Cv(Ap), then AB is nilpotent, so Cv(Ap) = l and V=[V,AP] yielding
B = [B, Ap\ As B' is a proper /1-invariant subgroup of B, it is centralized by Ap. Using
the three subgroups lemma we get from [B', B, Ap~\ = 1 and \_AP, B', B] = 1, that
IB, Ap, B'] = 1. But B = [B, Ap], so it follows that class(B) g2.

(b) We prove that X, centralizes B. Consider the group AqV which is an extension of
V by Aq. Since /1,K is a q-group, by a known property of nilpotent groups it follows
that [V, Aq~] =/= V. Since [K-4,] is /1-invariant, it follows by the minimality of |B| that Ap

centralizes [K^J- We have proved that Cv{Ap) = \, hence [K>1,] is trivial yielding
[B, /!,] £ Q>(B). Applying the three subgroups lemma again, we get from [B, Aq, Ap~\ = 1
and [Aq, Ap, B] = 1 that [Ap, B, AJ = 1. But [Ap, B~] = B, so Aq centralizes B.

(c) We derive a contradiction. Define A = A/CA(B). If |K| = |B/<D(B)| = <f, then
A^GL(n,q). By (b) A is a p-group and by the definition of A, we have cIass(X)5j/c,
hence \A\^d{k,Sp{GL{n,q)))<qn = \V\. Define A* = CA(B)B. Since /4* is nilpotent
satisfying class(/l*)^/c and class(/l*)^2, we have |/l*|<|/l|. On the other hand, it will
be shown that |/l*|>|/l|. Indeed, since ((BnCA(B))<S>(B))/<S>(B) is an ^-invariant
subgroup of V, it follows by an argument used in (b) that B n C (̂B) £ <1>(B) and finally
we get:

Thus the proof of Theorem C.I is complete. •

Proof of the main theorem. The five cases will be proved simultaneously. We use k
to denote m, 2, 15, p— 1 and oo in case (a), (b), (c), (d), (e), respectively. If 0P(G) = 1, then
F(G) = O,(G)=/= 1. Let A be a nilpotent subgroup of G of maximal order among all
nilpotent subgroups C of G satisfying class (Cp)^k and class(C,)^2. By Lemma B.4
d{k,Sp{GL(n,q)))<q'' and therefore we can apply Theorem C.I with F(G) being B, the
subgroup of G normalized by A. We obtain that AOq(G) is nilpotent. Since
d(k, P) > d(2, Q), the definition of A implies that A is not a g-group. Hence, there is a
non-^-element in A which centralizes Oq(G) = F(G) contradicting that C(F(G))^F(G) for
a solvable group G. •
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