ON THE OTHER $p^{\alpha}q^{\beta}$ THEOREM OF BURNSIDE

by ARIE BIALOSTOCKI*

(Received 10th August 1985)

A. Introduction

The "other" $p^{\alpha}q^{\beta}$ theorem of Burnside states the following:

Theorem A.1. Let G be a group of order $p^{\alpha}q^{\beta}$, where p and q are distinct primes. If $p^{\alpha} > q^{\beta}$, then $O_{p}(G) \neq 1$ unless

- (a) p is a Mersenne prime and q = 2;
- (b) p=2 and q is a Fermat prime; or
- (c) p = 2 and q = 7.

Burnside's proof [3] was incorrect; he omitted exception (c). However, M. Coates, M. Dwan and J. Rose gave a correct proof of Burnside's theorem, see [5]. Independently, V. S. Monakhov gave a correct proof as well, see [8] and [9]. In [12], T. R. Wolf proved the following Theorem A.2, which handles the exceptional cases of Theorem A.1 as well.

Theorem A.2. Let *G* be a group of order $p^{\alpha}q^{\beta}$, where *p* and *q* are distinct primes. If $p^{\alpha} > q^{\beta c}/2$, where $c = (\log 32/\log 9)$, then $O_{p}(G) \neq 1$.

G. Glauberman, see [6], took a different approach. For a finite group G and a positive integer k, or $k = \infty$, let d(k, G) denote the maximum of the orders of all nilpotent subgroups of G of class at most k. Using this notation, Glauberman's theorem states the following:

Theorem A.3. If G is a group of order $p^{\alpha}q^{\beta}$ and P and Q are p-Sylow and q-Sylow subgroups of G, respectively, then d(2, P) > d(2, Q) implies that $O_p(G) \neq 1$.

For groups of odd order, the author generalized Glauberman's theorem and in [1] proved:

Theorem A.4. Let G = HK be a group of odd order, where H and K are π -Hall and π' -Hall subgroups of G, respectively. Then $d(\infty, H) > d(2, K)$ implies that $O_{\pi}(G) \neq 1$.

*This paper forms part of the Proceedings of the conference Groups-St Andrews 1985.

In the present paper, we continue Glauberman's approach and prove the following stronger version of Theorem A.3.

Theorem A.5 (Main Theorem). Let G be a finite group of order $p^{\alpha}q^{\beta}$ and let P and Q be a p-Sylow subgroup and q-Sylow subgroup of G, respectively. For various primes p and q, sufficient conditions under which $O_{p}(G) \neq 1$ are given below:

- (a) d(m, P) > d(2, Q) for p = 2 and $q = 2^m + 1$, $m \ge 2$
- (b) d(2, P) > d(2, Q) for p = 2 and q = 3
- (c) d(15, P) > d(2, Q) for p = 2 and q = 7
- (d) d(p-1, P) > d(2, Q) for $p = 2^{l} 1$ and q = 2
- (e) $d(\infty, P) > d(2, Q)$ for p and q not as above.

The proof of the above theorem is carried out in two main steps. First, in Section B, we evaluate $d(k, S_p(GL(n, q)))$ where (p, q) = 1 and make use of it to prove a main lemma about p-groups in GL(n, q). For the structure of $S_p(GL(n, q))$ where (p, q) = 1, the reader is referred to [4] and [11]. The exponent and the nilpotency class of these groups are used frequently and the reader is referred to [2]. In the second step, we follow Glauberman [6], and prove a theorem about a product of two nilpotent groups which can be combined with the main lemma to yield our main theorem.

B. Evaluation of $d(k, S_p(GL(n, q)))$ where (p, q) = 1 and the main lemma

First we evaluate $d(k, S_p(GL(n, q)))$ where (p, q) = 1 in the general case, excluding the case p = 2 and $q = 3 \pmod{4}$. We can assume that p|q-1, and let $s, s \ge 1$ be such that $p^s || q - 1$. On the one hand, given a prime p, a power of prime q such that $p^s || q - 1$, and positive integers n and k, we have to find a suitable candidate $A, A \subseteq S_p(GL(n, q))$ for which class $(A) \le k$. On the other hand, we have to prove that $d(k, S_p(GL(n, q))) \le |A|$. If $1 \le k < (p-1)s + 1$, then it is natural to define A as a direct product of n cyclic groups of order p^s each, thus $|A| = p^{sn}$ and class(A) = 1. However, if $k \ge (p-1)s + 1$, then there exists a minimal $\alpha, \alpha \ge 1$ such that $k < ((p-1)s+1)p^{\alpha}$ and the construction of A is as follows: Let $n = p^{\alpha}t + u$ where $0 \le u < p^{\alpha}$, then we can write the underlying vector space V as a direct sum $V = V_0 \oplus V_1 \oplus \cdots \oplus V_t$, where $\dim(V_i) = p^{\alpha}$ for $1 \le i \le t$ and $\dim(V_0) = u$. As class $(S_p(GL(u, q))) \le \operatorname{class}(S_p(GL(p^{\alpha}, q))) = ((p-1)s+1)p^{\alpha-1} \le k$ for $\alpha \ge 1$, we define A to be the direct product of $S_p(GL(p^{\alpha}, q)) = ((p-1)s+1)p^{\alpha-1} \le k$ for $\alpha \ge 1$, we define A to be the direct product of $S_p(GL(p^{\alpha}, q)) = ((p-1)s+1)p^{\alpha-1} \le k$ for $\alpha \ge 1$, we define A to be the direct product of $S_p(GL(p^{\alpha}, q)) = ((p-1)s+1)p^{\alpha-1} \le k$ for $\alpha \ge 1$.

Theorem B.1. Let p be a prime and let q be a power of a prime such that $p^s || q - 1$ for $s \ge 1$. Assume that $p \ne 2$ if $q = 3 \pmod{4}$ and let k and n be positive integers. If $k \ge (p-1)s + 1$, then define $\alpha, \alpha \ge 1$ as the minimal integer satisfying $k < ((p-1)s+1)p^{\alpha}$ and let t and u be determined by $n = p^{\alpha}t + u$ where $0 \le u < p^{\alpha}$. Then $d(k, S_p(GL(n, q))) = f(k, n)$ where:

$$f(k, n) = \begin{cases} p^{sn} & \text{if } k < (p-1)s+1 \\ |S_p(GL(p^{\alpha}, q))|^t |S_p(GL(u, q)))| & \text{if } k \ge (p-1)s+1 \end{cases}$$

Proof. By the observation which precedes the theorem, it follows that $d(k, S_p(GL(n, q))) \ge f(k, n)$. We will prove that $d(k, S_p(GL(n, q))) \le f(k, n)$. Consider the following two properties of f(k, n) which can be easily verified.

- (a) $f(k, n_1) \cdot f(k, n_2) \leq f(k, n_1 + n_2)$, for all positive integers k, n_1 and n_2 .
- (b) $p \cdot (f(l,m))^{\bar{p}} \leq f(lp,mp)$, for $l \geq (p-1)s+1$ and every positive integer m.

Suppose that the theorem does not hold for a certain p and q, and fixing those p and q, let $P \subseteq S_p(GL(n,q))$ be a counterexample for which n+k is minimal. Thus, $|P| = d(k, S_p(GL(n,q)))$ and |P| > f(n,k). As

$$\operatorname{class}(S_p(GL(n,q))) = \begin{cases} 1 & \text{if } n$$

the theorem holds for $n \leq p$ and every positive integer k. Hence we can assume that n > p. If P is reducible, then it is decomposable and $V = V_1 \oplus V_2$ where the V_i's are non-trivial P-invariant subspaces of V for i=1, 2. It follows that $P \subseteq P_1 \times P_2$, where $P_i \subseteq GL(V_i)$ is the projection of P on V_i , i=1, 2, and hence in view of property (a) of f(k, n) and minimality of n+k, we obtain a contradiction. Thus we can assume that P is irreducible and hence n is a power of p.

Suppose that k=1. Then P is abelian and since P is irreducible, it follows that P is cyclic. But this is impossible since, if P is one of the following: cyclic, dihedral, semidihedral or generalized quaternion, then it is not difficult to derive a contradiction for an arbitrary k. Indeed, if P is one of the above-mentioned types, and $\exp(P) = p^{\beta}$, then $|P| \leq p^{\beta+1}$. Notice that, in view of the fact that n is a power of p, Proposition B.2 of [2] implies that $n \geq p^{\beta-s}$ and since n > p, it follows that $n \geq \max\{p^2, p^{\beta-s}\}$. It is not difficult to show that under these conditions, keeping in mind that p=2 and s=1 is not allowed, we have $p^{sn} > p^{\beta+1}$. Hence, $p^{sn} > p^{\beta+1} > |P|$. But since $S_p(GL(n,q))$ contains a direct product of n cyclic groups which is of order p^{sn} , the inequality $p^{sn} > |P|$ contradicts $|P| = d(k, S_p(GL(n,q)))$.

Thus, we can assume that P is irreducible, P does not belong to the four exceptional families, n > p and k > 1. Now Theorem 19.2 of [10] can be applied, yielding:

- (1) P contains a subgroup H such that |P:H| = p.
- (2) The underlying vector space V can be written as $V = V_1 \oplus \cdots \oplus V_p$, where the subspace V_i , $1 \le i \le p$ are H-invariant and if $x \in P \setminus H$, then x permutes the V_i 's in a p-cycle.

Let dim $(V_i) = m$, for $1 \le i \le p$ (thus n = mp) and let $H_i \subseteq GL(V_i)$ be the projection of Hon V_i for $1 \le i \le p$. The direct product $H_1 \times \cdots \times H_p$ is a group in which H can be embedded and if $H \ne H_1 \times \cdots \times H_p$, then by the minimality of n+k, we can apply the theorem to the H_i 's with parameters k and n and, in view of property (a) of f(k, n), it follows that $|P| = p|H| \le |H_1|^p \le (f(k, m))^p \le f(k, n)$, a contradiction. Thus, we can assume that $H = H_1 \times \cdots \times H_p$. Now we consider two cases:

Case (a). Assume that k < (p-1)s+1. As |P| = d(k, GL(n, q)), the scalar transformations are contained in P and since $p^s || p-1$, it follows that Z(P) contains a scalar transformation y of order p^s . By (2) $y \in Z(H)$ and hence its projections on the H_i 's belong to

 $Z(H_i)$ for $1 \le i \le p$ and are of order p^s . Take $x \in P \setminus H$ and consider the group generated by y_1, \ldots, y_p and x. It follows that $\langle y_1, \ldots, y_p, x \rangle = C_{p^s} \sim C_p$ and Proposition B.3(b) of [2] implies that $class(\langle y_1, \ldots, y_p, x \rangle) = (p-1)s+1$ and hence $class(P) \ge (p-1)s+1$ contradicting our assumption that $class(P) \le k < (p-1)s+1$.

Case (b). Assume that $k \ge (p-1)s+1$. Let $class(H_1) = l$, hence by Proposition B.3(a) of [2], it follows that $k \ge class(P) \ge lp$. The minimality of n+k yields $|H_1| \le f(l, m)$ and hence in view of property (b) of f(k, n), it follows that $|P| = p|H_1|^p \le p(f(l, m))^p \le f(lp, mp) \le f(k, n)$, a contradiction, and Theorem B.1 is proved.

Now we evaluate $d(k, S_p(GL(n, q)))$ in the case p=2 and $q=3 \pmod{4}$. As in the previous case, on the one hand, given a power of a prime $q, q=3 \pmod{4}$, and positive integers k and n, we have to find a suitable candidate $A, A \subseteq S_2(GL(n, q))$, for which $\operatorname{class}(A) \leq k$. On the other hand, we have to prove that $d(k, S_2(GL(n, q))) \leq |A|$. If k < s, where $2^s ||q^2 - 1$, it is natural to define A as the direct product of [n/2] cyclic groups of order 2^s each, and to join to the product a cyclic group of order 2 if n is odd. Thus $\operatorname{class}(A) = 1$ and $|A| = 2^{s[n/2] + \epsilon(n)}$ where $\epsilon(n) = 0$ if n is even and $\epsilon(n) = 1$ if n is odd. Thus $\operatorname{class}(A) = 1$ and $|A| = 2^{s[n/2] + \epsilon(n)}$ where $\epsilon(n) = 0$ if n is even and $\epsilon(n) = 1$ if n is odd. However, if $k \geq s$, then there exists a minimal $\alpha, \alpha \geq 1$, such that $k < s2^{\alpha}$, and the construction of A is as follows: Let $n = 2^{\alpha}t + u$ where $0 \leq u < 2^{\alpha}$, then we can write the underlying vector space V as $V = V_0 \oplus V_1 \oplus \cdots \oplus V_i$ where $\dim(V_0) = u$ and $\dim(V_i) = 2^{\alpha}$ for $1 \leq i \leq t$. As $\operatorname{class}(S_2(GL(u, q))) \leq \operatorname{class}(S_2(GL(2^{\alpha}, q))) = s2^{\alpha-1} \leq k$ for $\alpha \geq 1$, we define A to be the direct product of $S_p(GL(V_i)), 0 \leq i \leq t$, and it follows that $\operatorname{class}(A) = s2^{\alpha-1} \leq k$ and that $|A| = |S_2(GL(2^{\alpha}, q))|^t |S_2(GL(u, q))|$. Before stating and proving the theorem we need a certain lemma.

Lemma B.2. Let n be a positive integer and let q be a power of a prime such that $q = 3 \pmod{4}$ and $2^s ||q-1|$. Suppose that γ is a positive integer, $2 \leq \gamma \leq s$, and suppose that P is a 2-subgroup of GL(n, q), which is of maximal order among all 2-subgroups A of GL(n, q), which satisfy the following conditions:

(a) $\exp(A) \leq 2^{\gamma}$; (b) $\operatorname{class}(A) \leq \gamma - 1$.

Then $|A| = 2^{\gamma[n/2] + \varepsilon(n)}$ where $\varepsilon(n) = \begin{cases} 0 & \text{if } n \text{ is even.} \\ 1 & \text{if } n \text{ is odd.} \end{cases}$

Proof. By taking a direct product of [n/2] cyclic groups of order 2^{γ} each and joining to the product a cyclic group of order 2 if n is odd, we get that $|P| \ge 2^{\gamma[n/2] + \epsilon(n)}$. Thus, it suffices to prove the opposite inequality. Suppose that the lemma does not hold for a certain q and fixing that q let p be a counterexample for which $n+\gamma$ is minimal. As $S_2(GL(1,q))$ is of order 2 and as S_2 (GL(2,q)) is semidihedral of order 2^{s+1} , it follows by [7, p. 191] that the lemma holds for n=1,2 and every $\gamma, 2 \le \gamma \le s$.

Thus we can assume that n > 2. If P is reducible, then it is decomposable and $V = V_1 \oplus V_2$ where the V_i's are nontrivial P-invariant subspaces of V for i = 1, 2. It follows that $P \subseteq P_1 \times P_2$, where P_1 and P_2 are the projections of P on V_i of dimensions n_i , i = 1, 2. The minimality of $n + \gamma$ yields that $|P_i| \leq 2^{\gamma[n_i/2] + \varepsilon(n_i)}$ for i = 1, 2, hence

$$|P| \leq |P_1| |P_2| = 2^{\gamma[n_1/2] + \varepsilon(n_1)} \cdot 2^{\gamma[n_2/2] + \varepsilon(n_2)} \leq 2^{\gamma[n/2] + \varepsilon(n)}.$$

Thus, we can assume that P is irreducible and hence n is a power of 2. If $\gamma = 2$, then P is abelian and since it is irreducible, it is cyclic.

Now (a) implies that $|P| \leq 4 \leq 2^{2[n/2]}$ for n > 2, thus we can also assume that $\gamma > 2$. If P is one of the following: cyclic, dihedral, semidihedral or generalized quaternion, then $|P| \leq 2^{\gamma+1} \leq 2^{\gamma(n/2)}$ for n > 2 and $3 \leq \gamma \leq s$. Thus we can assume that P does not belong to one of the four exceptional families and Theorem 19.2 of [10] can be applied yielding:

- (1) P contains a subgroup H such that |P:H|=2.
- (2) The underlying vector space V can be written as $V = V_1 \oplus V_2$ where the subspaces V_i , i = 1, 2 are H-invariant and if $x \in P \setminus H$, then x interchanges V_1 and V_2 .

Let dim $(V_i) = m$ (thus n = 2m) and let H_i be the projection of H on V_i , i = 1, 2. If $H \neq H_1 \times H_2$, then by the minimality of $n + \gamma$ we can apply the lemma with parameters m and γ to H_1 and H_2 , yielding its validity for n and γ . Thus we can assume that $H = H_1 \times H_2$, where $H_i = 2^{\gamma(m/2)}$ for i = 1, 2. The minimality of $n + \gamma$ implies that either $\exp(H_i) \ge 2^{\gamma}$ or class $(H_i) \ge \gamma - 1$. We deal with the two cases separately.

(1) Assume that $\exp(H_1) \ge 2$. If H_1 is abelian, then since it is irreducible, it is cyclic, and hence by the Proposition B.3(b) of [2], it follows that $\operatorname{class}(P) \ge \gamma + 1$, contradicting (b). If H_1 is not abelian, then since it contains a cyclic subgroup of order 2^{γ} at least, it follows by [7, p. 193] that H_1 contains one of the following subgroups: Dihedral, semidihedral or generalized quaternion of order $2^{\gamma+1}$ at least. Thus HZ^1 contains a subgroup of class γ at least and it follows that $\operatorname{class}(P) \ge \gamma$, contradicting (b) again.

(2) Assume that $class(H_1) \ge \gamma - 1$. By Proposition B.3(a) of [2], it follows that $class(P) \ge 2\gamma - 2 > \gamma - 1$, contradicting (b). Thus, our lemma is proved.

Theorem B.3. Let n and k be positive integers. Let q be a power of a prime such that $q=3 \pmod{4}$ and $2^{s} ||q^{2}-1$. If $k \ge s$ define $\alpha \ge 1$ as the minimal integer satisfying $k < s2^{\alpha}$ and let t and u be determined by $n=2^{\alpha}t+u$, where $0 \le u < 2^{\alpha}$.

Then $d(k, S_2(GL(n, q))) = g(k, n)$ where

$$g(k,n) = \begin{cases} 2^{s[n/2] + \varepsilon(n)} & \text{if } k < s \\ \left| S_2(GL(2^{\alpha}, q)) \right|^t \cdot \left| S_2(GL(u, q)) \right| & \text{if } k \ge s \end{cases}$$

where $\varepsilon(n) = 0$ if n is even and $\varepsilon(n) = 1$ if n is odd.

Proof. The proof is similar to that of Theorem B.1. By the observation which precedes Lemma B.2, it follows that $d(k, S_2(GL(n,q))) \ge g(k,n)$. We will prove that $d(k, S_2(GL(n,q))) \ge g(k,n)$. Consider the following two properties of g(k,n) which can be easily verified.

(a) $g(k, n_1) \cdot g(k, n_2) \leq g(k, n_1 + n_2)$ for all positive integers k, n_1 and n_2 .

(b) $2(g(l, m))^2 \leq g(2l, 2m)$ for $l \geq s$ and every positive integer m.

Suppose that the theorem does not hold for a certain q and fixing q, let $P \subseteq S_2(GL(n,q))$ be a counter-example for which n+k is minimal.

Thus, $|P| = d(k, S_2(GL(n, q)))$ and |P| > g(k, n). As

$$\operatorname{class}(S_2(GL(n,q))) = \begin{cases} 1 & \text{if } n=1\\ s & \text{if } n=2,3 \end{cases}$$

the theorem holds for n = 1, 2, 3 and every positive integer k. Thus we can assume that n > 3. If P is reducible, then it is decomposable and $V = V_1 \oplus V_2$, where the V's are Pinvariant subspaces for i=1,2. It follows that $P \subseteq P_1 \times P_2$, where P_1 and P_2 are the projections of P on V_{i} , i=1,2. Hence, in view of property (a) of g(k,n) and the minimality of n+k, we derive a contradiction. Thus, we can assume that P is irreducible and hence n is a power of 2. Suppose that k=1, then P is abelian and since P is irreducible, it follows that P is cyclic. But this is impossible since if P is one of the following: cyclic, dihedral, semidihedral or generalized quaternion, then it is not difficult to derive a contradiction for an arbitrary k. Indeed, if P is one of the above-mentioned types and $\exp(P) = 2^{\beta}$, then $|P| \leq 2^{\beta+1}$. Notice that in view of the fact that n is a power of 2, Proposition B.2 of [2] implies that $(n/2) \ge 2^{\beta-s}$ and since n > 3, it follows that $(n/2) \ge \max\{2, 2^{\beta-s}\}$. It is not difficult to show that under these conditions, keeping in mind that s > 2, we have $2^{s(n/2)} > 2^{\beta+1}$. But since $S_2(GL(n, q))$ contains a direct product of n/2 cyclic groups which is of order $2^{s(n/2)}$, the inequality $2^{s(n/2)} > |P|$ contradicts |P| = $d(k, S_2(GL(n, q)))$. Thus we can assume that P is irreducible, P does not belong to any of the exceptional four families, n > 3 and k > 1. Now Theorem 19.2 of [10] can be applied, yielding:

- (1) P contains a subgroups H such that |P:H|=2.
- (2) The underlying vector space V can be written as V₁ ⊕ V₂, where the subspaces V_i, i=1,2 are H-invariant and if x ∈ P\H, then x interchanges V₁ and V₂.

Let dim $(V_i) = m$ for i = 1, 2 (thus n = 2m), and let $H_i \subseteq GL(V_i)$ be the projection of H on V_i for i = 1, 2. The direct product $H_1 \times H_2$ is a group in which H can be embedded, and if $H \neq H_1 \times H_2$, then by the minimality of n+k, we can apply the theorem to the H_i 's with parameters k and m, and in view of property (a) of g(k, n), it follows that $|P| = 2|H| \leq |H_1|^2 \leq (g(k, m))^2 \leq g(k, n)$, a contradiction. Thus we can assume that $H = H_1 \times H_2$. Now we consider two cases:

Case (a). Assume that k < s. By the minimality of n+k, it follows that $|H_1| = 2^{s(n/2)}$ and applying Lemma B.2, we get that either $\exp(H_1) \ge 2^s$ or $\operatorname{class}(H_1) \ge s - 1$. As in the corresponding part of the proof of Lemma B.2, each of the above two inequalities implies that $\operatorname{class}(P) \ge s$, contradicting our assumption that $\operatorname{class}(P) \le k < s$.

Case (b). Assume that $k \ge s$. Let $class(H_1) = l$, hence by Proposition B.3(b) of [2], it follows that $k \ge class(P) \ge 2l$. The minimality of n + k yields $|H_1| \le g(l, m)$ and hence, in view of property (b) of g(k, n), it follows that $|P| = 2|H_1|^2 \le 2(g(l, m))^2 \le g(2l, 2m) \le g(k, n)$, a contradiction, and Theorem B.3 is proved.

Now we state and prove our main lemma.

Lemma B.4 (Main Lemma). Let p and q be two distinct primes and let k and n be positive integers.

- (a) If p=2 and $q=2^m+1$ where $m \ge 2$, then $d(k, S_2(GL(n, q))) \le q^n$ for every n iff $k \le m$.
- (b) If p = 2 and q = 3, then $d(k, S_2(GL(n, q))) \leq 3^n$ for every $n \inf k \leq 2$.
- (c) If p=2 and q=7, then $d(k, S_2(GL(n, q))) \leq 7^n$ for every n iff $k \leq 15$.
- (d) If $p=2^l-1$ and q=2, then $d(k, S_p(GL(n, 2))) \leq 2^n$ for every n iff $k \leq p-1$.
- (e) If p and q are not as above, then $d(k, S_p(GL(n, q))) \leq q^n$ for every n and k.

Proof. Case (e) is exactly Burnside's Lemma whose corrected version appears in [5] and will not be proved here. Case (b) follows from Glauberman's Lemma [6], but for completeness, we shall prove it.

- (a) As $2^m ||q-1$ Theorem B.1 implies that $d(m, S_2(GL(n, q))) = 2^{mn} < q^n$. On the other hand, $d(m+1, S_2(GL(2, q))) = 2^{m+1} > (2^m+1)^2 = q^2$.
- (b) As $2^3 || 3^2 1$ Theorem B.3 implies that $d(2, S_2(GL(n, q))) = 2^{3[n/2] + \varepsilon(n)} \le 2^{3n/2} < 3^n$. On the other hand, $d(3, S_2(GL(2, 3))) = 2^4 > 3^2$.
- (c) As $2^4 ||7^2 1$ Theorem B.3 implies that $d(15, S_2(GL(n, 7))) = 2^{5[n/2] + [n/4] + \varepsilon(n)} \le 2^{11n/4} < 7^n$. On the other hand, $d(16, S_2(GL(8, 7))) = 2^{23} > 7^8$.
- (d) As $S_p(GL(n, 2)) = S_p(GL([n/l], 2^l))$ Theorem B.1 implies that $d(p-1, S_p(GL(n, 2))) = d(p-1, S_p([n/l], 2^l)) = p^{[n/l]} = (2^l 1)^{[n/l]} < 2^n$. On the other hand, $d(p, GL(p, 2^l)) = p^{p+1} = p^{2^l} > 2^{l_p}$.

This completes the proof of Lemma B.4.

C. Proof of the Main Theorem

In this section, we use the notation of A_p for the p-Sylow subgroup of A in the case where A is a nilpotent group. The Fitting subgroup of G and the Frattini subgroup of G are denoted by F(G) and $\Phi(G)$, respectively. We need the following theorem.

Theorem C.1. Let p and q be distinct primes and let k satisfy $d(k, S_p(GL(n, q))) < q^n$ for every n. Moreover, let G be a $\{p, q\}$ -group and let A be a nilpotent subgroup of G of maximal order among all nilpotent subgroups C of G satisfying:

- (1) class(C_p) $\leq k$,
- (2) class(C_a) ≤ 2 .

If B is a nilpotent subgroup of G normalized by A, then AB is nilpotent.

Proof. Let G be a counterexample and choose G and B such that |G| + |B| is minimal. Clearly, we can assume that G = AB. We proceed in three steps.

(a) We prove that $B = [G, A_p]$ and class $(B) \le 2$. By the minimality of |B| it follows that A_p centralizes every proper subgroup of B which is normalized by A. In particular $\Phi(B)$ is such subgroup, so A_p operates on $V = B/\Phi(B)$. It follows from Theorem 5.3.2 [7, p. 177] that $V = C_v(A_p) \times [V, A_p]$. By the minimality of B, it follows that V cannot be A-

decomposable. If $V = C_v(A_p)$, then AB is nilpotent, so $C_v(A_p) = 1$ and $V = [V, A_p]$ yielding $B = [B, A_p]$. As B' is a proper A-invariant subgroup of B, it is centralized by A_p . Using the three subgroups lemma we get from $[B', B, A_p] = 1$ and $[A_p, B', B] = 1$, that $[B, A_p, B'] = 1$. But $B = [B, A_p]$, so it follows that class $(B) \leq 2$.

(b) We prove that A_q centralizes *B*. Consider the group A_qV which is an extension of *V* by A_q . Since A_qV is a *q*-group, by a known property of nilpotent groups it follows that $[V, A_q] \neq V$. Since $[V, A_q]$ is *A*-invariant, it follows by the minimality of |B| that A_p centralizes $[V, A_q]$. We have proved that $C_V(A_p) = 1$, hence $[V, A_q]$ is trivial yielding $[B, A_q] \subseteq \Phi(B)$. Applying the three subgroups lemma again, we get from $[B, A_q, A_p] = 1$ and $[A_q, A_p, B] = 1$ that $[A_p, B, A_q] = 1$. But $[A_p, B] = B$, so A_q centralizes *B*.

(c) We derive a contradiction. Define $\overline{A} = A/C_A(B)$. If $|V| = |B/\Phi(B)| = q^n$, then $\overline{A} \subseteq GL(n, q)$. By (b) \overline{A} is a p-group and by the definition of A, we have $\operatorname{class}(\overline{A}) \leq k$, hence $|\overline{A}| \leq d(k, S_p(GL(n, q))) < q^n = |V|$. Define $A^* = C_A(B)B$. Since A^* is nilpotent satisfying $\operatorname{class}(A_p^*) \leq k$ and $\operatorname{class}(A_q^*) \leq 2$, we have $|A^*| < |A|$. On the other hand, it will be shown that $|A^*| > |A|$. Indeed, since $((B \cap C_A(B))\Phi(B))/\Phi(B)$ is an A-invariant subgroup of V, it follows by an argument used in (b) that $B \cap C_A(B) \subseteq \Phi(B)$ and finally we get:

$$|A^*| = |C_A(B)B| = |B: B \cap C_A(B)| |C_A(B)| \ge |B/\Phi(B)| |C_A(B)|$$
$$= |V| |C_A(B)| > |\bar{A}| |C_A(B)| = |A|.$$

Thus the proof of Theorem C.1 is complete.

Proof of the main theorem. The five cases will be proved simultaneously. We use k to denote m, 2, 15, p-1 and ∞ in case (a), (b), (c), (d), (e), respectively. If $O_p(G) = 1$, then $F(G) = O_q(G) \neq 1$. Let A be a nilpotent subgroup of G of maximal order among all nilpotent subgroups C of G satisfying class $(C_p) \leq k$ and $class(C_q) \leq 2$. By Lemma B.4 $d(k, S_p(GL(n, q))) < q^n$ and therefore we can apply Theorem C.1 with F(G) being B, the subgroup of G normalized by A. We obtain that $AO_q(G)$ is nilpotent. Since d(k, P) > d(2, Q), the definition of A implies that A is not a q-group. Hence, there is a non-q-element in A which centralizes $O_q(G) = F(G)$ contradicting that $C(F(G)) \subseteq F(G)$ for a solvable group G.

REFERENCES

1. A. BIALOSTOCKI, On products of two nilpotent subgroups of a finite group, *Israel J. Math.* 20 (1975), 178–188.

2. A. BIALOSTOCKI, The nilpotency class of the *p*-Sylow subgroups of GL(n, q) where (p, q) = 1, Canad. Math. Bull. **29**(2) (1986), 218-223.

3. W. BURNSIDE, On groups of Order $p^{\alpha}q^{\beta}$ II, Proc. London Math. Soc. 2 (1904), 432-437.

4. R. CARTER and P. FONG, The Sylow 2-subgroups of the finite classical groups, J. Algebra 1 (1964), 139–151.

5. M. COATES, M. DWAN and J. ROSE, A note on Burnside's other $p^{\alpha}q^{\beta}$ theorem, J. London Math. Soc. (2) 14 (1976), 160–166.

6. G. GLAUBERMAN, On Burnside's other $p^{\alpha}q^{\beta}$ theorem, Pacific J. Math. 56 (1975), 469-475.

7. D. GORENSTEIN, Finite Groups (Harper and Row, New York, 1968).

8. V. S. MONAKHOV, Order of Sylow subgroups of the general linear group, Algebra i Logika 17 (1978), 79-85.

9. V. S. MONAKHOV, Invariant subgroups of biprimary groups, Mat. Zametki 18 (1975), 877-886.

10. D. S. PASSMAN, Permutation Groups (W. A. Benjamin Inc., New York, Amsterdam, 1968).

11. A. WEIR, Sylow *p*-subgroups of the classical groups over finite fields with characteristic prime to *p*, *Proc. Amer. Math. Soc.* 6 (1955), 529-533.

12. T. R. WOLF, Solvable and nilpotent subgroups of $GL(n, q^m)$, Canad. J. Math. 24 (1982), 1097-1111.

Department of Mathematics and Statistics University of Idaho Moscow, Idaho, 83843 U.S.A.