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Abstract. Let (en) be the canonical basis of the predual of the Lorentz sequence
space d∗(w, 1). We consider the restriction operator R associated to the basis (ei) from
some Banach space of analytic functions into the complex sequence space and we
characterize the ranges of R.
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1. Introduction. Let E be a complex Banach space with a Schauder basis (ei). Let
F be a space of continuous complex valued functions on a subset of E which contains
the Schauder basis (ei). We are interested in an interpolation problem formulated as
follows. Let us consider the restriction operator R associated to the basis (ei) of E
defined by

R : F → ��

f �→ ( f (ei))i∈�,

and then ask about the range of R for some spaces F of analytic functions. The
motivation for studying these ranges is based in the papers of Aron-Globevnik [1],
Llavona-Jaramillo [6], and Gomes-Jaramillo [5]. Indeed, Aron and Globevnik have
characterized the range of R for several nice spaces F of analytic functions on the
space c0. And Llavona-Jaramillo have studied the relationship between reflexivity
of the space F and the range of R, where F is the space of real valued infinitely
differentiable functions.

We are interested here in the Banach space F = A∞(BE) of all bounded and
continuous functions on the closed unit ball of E which are analytic on the open
unit ball of E and in the subspace AU (BE) of A∞(BE) of all uniformly continuous
functions on the closed unit ball of E, in the case where E = d∗(w, 1) is the predual of
Lorentz sequence space. Also we are interested in the spaces given by n-homogeneous
polynomials on d∗(w, 1). In spite of the canonical basis on the predual of Lorentz
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space having properties similar to the canonical basis of c0, the ranges of R from these
spaces above mentioned are totally different when E = c0.

Now we fix some notation. Given a decreasing sequence w = (wi)i∈� of positive
real numbers which satisfies w ∈ c0 \ l1, w1 = 1, the complex Lorentz sequence space
d(w, 1) is given by

d(w, 1) =
{

x = (xn) : sup

{ ∞∑
n=1

|xπ(n)|wn : π is a permutation of �

}
< +∞

}
.

The norm is given by

‖x‖d(w,1) := sup
π∈�

∞∑
i=1

|xπ(i)|wi < ∞.

where � is the set of all permutations of the natural numbers. It is well known and
easy to verify that the above supremum is attained for the decreasing rearrangement
of x. The usual vector basis (en) is a Schauder basis of d(w, 1). The canonical predual
d∗(w, 1) of d(w, 1) is given by

d∗(w, 1) =
{

x = (xi)i∈� ∈ c0 : lim
k→∞

∑k
n=1[x]i∑k
i=1 wi

= 0

}
,

where ([x]i) is the decreasing rearrangement of (|x|i). This space is a Banach space
endowed with the norm

‖x‖ = sup
k

∑k
n=1[x]i∑k
i=1 wi

.

and it has a Schauder basis (en) whose sequence of biorthogonal functions is the
canonical basis of d(w, 1).

2. Polynomials. In this section we are interested in characterizing the range of
restriction operator R when F is the space of all m-homogeneous polynomials on the
predual of Lorentz space d∗(w, 1).

For a complex Banach E with dual E′, BE denotes the closed unit ball of E. P(mE)
denotes the Banach space of all continuous m-homogeneous polynomials on E with
the norm ‖P‖ = supx∈BE

|P(x)|.
In [1], Aron and Globevnik showed that if E = c0 the range of R for F = P(nc0) is

the space l1 = c′
0, for all n ∈ �. The natural question here is the following: if the Banach

space E has a Schauder basis with similar properties to the canonical basis of c0 (for
example shrinking or unconditional) is it possible that the range of R(P(nE)) = E′?

We are going to show that in spite of the Schauder basis of d∗(w, 1) having the
properties mentioned above, the restriction operator R is totally different in the predual
of Lorentz space.

We recall (see [1]) that for every natural number n ≥ 2, the generalized Rademacher
functions (sj) are defined inductively as follows. Let α1 = 1, α2, . . . , αn be the complex
n-th roots of unit. For j = 1, . . . , n let Ij = ( j −1

n ,
j
n ) and let Ij1,j2 denote the j2-th open

subinterval of lenght 1
n2 of Ij1 ( j1, j2 = 1, 2, . . . , n). Proceeding like this, it is clear how to
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define the interval Ij1,..., jk for any k. Now s1 : [0, 1] → � is defined by setting s1(t) = αj

for t ∈ Ij, where 1 ≤ j ≤ n. In general, sk(t) is defined to be αj if t belongs to the
subinterval Ij1,..., jk where jk = j. There is no harm in setting sk(t) = 1 for all endpoints t.

The next lemma gives the main properties of the sequence (sk) of generalized
Rademacher functions which we will need. The verificatiom of these properties follows
exactly the same lines as the corresponding result for the classical Rademacher
functions.

LEMMA 2.1. For each n = 2, 3, . . . , the associated Rademacher’s functions {sk}k∈�

satisfy the following properties:
(a) |sk(t)| = 1,∀k ∈ �,∀t ∈ [0, 1].
(b) For any k1, . . . , kn,

1∫
0

sk1 (t) · · · skn (t)dt
{

1, if k1 = k2 = · · · = kn;
0, otherwise.

PROPOSITION 2.2. For each n ∈ �, let P ∈ P(nd∗(w, 1)). Then

‖(P(ei))i‖d(wn,1) ≤ ‖P‖,
where wn denotes the sequence (wn

i )i.

Proof. Let P ∈ P
(nd∗(w, 1)

)
and let (ei) the canonical basis of d∗(w, 1). We define

λi =
⎧⎨
⎩

|P(ei)|
P(ei)

, if P(ei) �= 0;

1, if P(ei) = 0.

Hence, λiP(ei) = |P(ei)|. We take βi ∈ � such that βn
i = λi. Let P̌ denote the symmetric

n-linear mapping associated to P and (sj) be the sequence of generalized Rademacher
functions corresponding to n. For each permutation π : � → � and each m ∈ �

we get

m∑
i=1

wn
π(i)|P(ei)| =

m∑
i=1

wn
π(i)λiP(ei)

=
m∑

i,i2,...,in=1

( 1∫
0

si(t) · · · sin (t)dt

)
wn

π(i)λiP̌(ei, . . . , ein )

=
1∫

0

(
m∑

i,i2,...,in=1

βn
i wn

π(i)si(t) · · · sin (t)P̌(ei, . . . , ein )

)
dt

=
1∫

0

P̌

(
m∑

i=1

βiwπ(i)si(t)ei, . . . ,

m∑
in=1

βinwπ(in)sin (t)ein

)
dt

=
1∫

0

P

(
m∑

i=1

βiwπ(i)si(t)ei

)
dt. (∗)
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For t ∈ [0, 1], we define z(t) = ∑m
i=1 βiwπ(i)si(t)ei. So, |z(t)i| = |βiwπ(i)si(t)| =

1 · wπ(i) · 1 = wπ(i), if i ≤ m, and |z(t)i| = 0, if i > m.
Hence,

‖z(t)‖d∗(w,1) = sup
l

l∑
i=1

[z(t)]i

l∑
i=1

wi

≤ sup
l

l∑
i=1

wi

l∑
i=1

wi

= 1,

In the last inequality we used the fact that the sequence (wi) is decreasing. Consequently,
for each t ∈ [0, 1], |P(z(t))| ≤ ‖P‖. Then, for (∗), we get

m∑
i=1

wn
π(i)|P(ei)| =

1∫
0

P(z(t)) dt ≤ ‖P‖.

Since m is arbitrary,
∑∞

i=1 wn
π(i)|P(ei)| ≤ ‖P‖; therefore

‖(P(ei))i‖d(wn,1) = sup
π

∞∑
i=1

wn
π(i)|P(ei)| ≤ ‖P‖.

�
From this proposition we conclude that R(P(nd∗(w, 1))) ⊂ d(wn, 1). Our aim is to

determine R(P(nd∗(w, 1))). In order to do that we establish the following lemma.

LEMMA 2.3. Let p ≥ 1 and let k ∈ �. Given positive real numbers, α1, . . . , αk then
there exists π0 in the group Sk of permutations of k such that for every x ∈ Bd∗(w,1) we
have

k∑
j=1

αj|xj|p ≤
k∑

j=1

αjw
p
π0( j).

Before we prove the lemma we need the next proposition, for which the proof is in
[2]. Let us recall that a point e of a convex subset A of the space E is called an extreme
point of A if when e = tx + (1 − t)y for some t ∈ (0, 1) then, it has to be e = x = y. We
denote by ext(A) the set of all extreme points of A and Bk

d∗(w,1) denotes the closed unit
ball of the k-dimensional subspace d∗(w, 1) spanned by {e1, e2, . . . , ek}.

PROPOSITION 2.4. [2] The extreme points of Bk
d∗(w,1) are the points with coordinates

|xi| = wπ(i), 1 ≤ i ≤ k and xi = 0 otherwise, for some permutation π ∈ Sk.

Proof of Lemma 2.3. Among all the permutations π ∈ Sk we choose π0

such that the sum
∑k

j=1 αjw
p
π( j) is maximum. Let x ∈ Bd∗(w,1) and consider x̃ =

(x1, . . . , xk, 0, 0, . . .). It is easy to see that x̃ ∈ Bk
d∗(w,1). By Krein-Milman’s theorem,

we have Bk
d∗(w,1) = co(extBk

d∗(w,1)). So, x̃ ∈ co(extBk
d∗(w,1)). Firstly, we suppose that

x̃ ∈ co(extBk
d∗(w,1)). Hence, x̃ = ∑m

i=1 λixi, where λi > 0,
∑m

i=1 λi = 1, and for each

i, xi is an extreme point of Bk
d∗(w,1). So, for each 1 ≤ i ≤ m, there exists π i ∈ Sk such
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that |xi
j| = wπ i( j),∀j ≤ k. Then, for each j ≤ k we have that

k∑
j=1

αj|xj|p =
k∑

j=1

αj

∣∣∣∣∣
m∑

i=1

λixi
j

∣∣∣∣∣
p

≤
k∑

j=1

αj

m∑
i=1

λi
∣∣xi

j

∣∣p =
m∑

i=1

λi
k∑

j=1

αjw
p
π i( j)

≤
m∑

i=1

λi
k∑

j=1

αjw
p
π0( j) =

k∑
j=1

αjw
p
π0( j).

Secondly, in the case x̃ ∈ co(extBk
d∗(w,1)) \ co(extBk

d∗(w,1)), we can consider a sequence

in co(extBk
d∗(w,1)) which converges to x̃. �

In the proof of the next theorem we use Lemma 2.3 in order to determine
R(P(nd∗(w, 1))).

THEOREM 2.5. For each n ∈ �, R(P(nd∗(w, 1))) = d(wn, 1).

Proof. Using Proposition 2.2 we get R(P(nd∗(w, 1))) ⊂ d(wn, 1). On the other hand,
let y = (yi) ∈ d(wn, 1) and define the n-homogeneous polynomial on d∗(w, 1) by

P(x) =
∞∑

i=1

yixn
i , x = (xi) ∈ d∗(w, 1).

For each x ∈ Bd∗(w,1), by Lemma 2.3 we have

k∑
i=1

|yi||xi|n ≤
k∑

i=1

|yi|wn
π0(i) ≤ ‖y‖d(wn,1),

for all k ∈ �. So, P is well defined. Obviously R(P) = y. �
REMARK 2.1. Lemma 2.3 could be used to give another proof for the well-known

result: if w ∈ lp, for p > 1, then d∗(w, 1) ⊂ lp. This could be done just taking the αj

equal to 1 and so get

k∑
j=1

|xj|p ≤
k∑

j=1

w
p
π0( j) ≤ ‖w‖p

p < ∞.

3. Analytic functions. In this section, we discuss the behaviour of the range of
the restriction operator R for the following Banach spaces of analytic functions:

A∞(BE) = { f : BE → � : f is analytic on
◦

BE , continuous and bounded on BE}
and

AU (BE) = { f ∈ A∞(BE) : f is uniformly continuous}.
We remark that these spaces are the natural generalization in infinite dimensional

of the disc algebra.
In [1], Aron and Globevnik have proved that any sequence of 0 and 1 can be

interpolated by a function in A∞(Bc0 ) with norm 1. More precisely, if S ⊂ � is an
arbitrary set, then there exists a function with norm 1 in A∞(Bc0 ) such that f (en) = 1
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if n ∈ S, and f (en) = 0 if n �∈ S. Besides, if S is finite, f can be taken in AU (Bc0 ). An
analogous result in d∗(w, 1) holds, since for each x ∈ d∗(w, 1) we have

‖x‖∞ = [x]1 ≤ sup
k

k∑
n=1

[xn]

k∑
n=1

wn

‖x‖d∗(w,1),

which means the canonical inclusion i : d∗(w, 1) → c0 is continuous and, consequently,
uniformly continuous and analytic. More precisely, we have the following lemma.

LEMMA 3.1. Let S and S′ be disjoint subsets of �.
(i) There exists a function f ∈ A∞(Bd∗(w,1)) with ‖ f ‖ ≤ 2 such that

f (en) =
⎧⎨
⎩

1, if n ∈ S;
−1, if n ∈ S′;

0, otherwise.

(ii) If both of the sets S and S′ are finite, then the function f above can be taken in
AU (Bd∗(w,1)).

Using the previous lemma, we obtain the following properties of R(F) for the
spaces F mentioned above.

PROPOSITION 3.2. (i) Given x ∈ l∞, there exists f ∈ A∞(Bd∗(w,1)) such that R( f ) = x
and ‖ f ‖ ≤ 4‖x‖∞. Consequently, R(A∞(Bd∗(w,1))) = l∞.

(ii) Given x ∈ c, there exists f ∈ AU (Bd∗(w,1)) such that R( f ) = x and ‖ f ‖ ≤ 10‖x‖∞.

Hence c ⊂ R(AU (Bd∗(w,1))).

Proof. (i): If x = 0, it is enough to take f ≡ 0. Let x �= 0. First assume that for each
n, xn ∈ � . So, for each n ∈ �, xn

‖x‖ ∈ [−1, 1] and we write xn
‖x‖ in its binary representation,

so that xn
‖x‖ = ∑∞

j=1 2−jαnj , where each αnj is 0, 1 or −1. For each j, let Sj = {n ∈ � : αnj =
1} and S′

j = {n ∈ � : αnj = −1}, and let Fj be the function obtained using Lemma 3.1(i).
Let f

∑∞
j=1 2−j‖x‖Fj. Then

f (en) =
∞∑

j=1

2−j‖x‖Fj(en) = ‖x‖
∞∑

j=1

2−jαnj = ‖x‖ xn

‖x‖ = xn,

and for this case

‖ f ‖ ≤
∞∑

j=1

2−j‖x‖‖Fj‖ ≤ 2‖x‖∞.

In the general case, for each n ∈ � take xn = pn + iqn, where pn, qn ∈ �. Hence
using the proof of the real case we get fp and fq and we consider f = fp + ifq with
‖ f ‖ ≤ ‖ fp‖ + ‖ fq‖ ≤ 4‖x‖∞. So, f is the required function.

(ii): Let x ∈ c. We assume that for each n ∈ �, xn ∈ �. Let l = limn xn and define
βn = xn − l for each n and β = (βn)n. Hence, xn = l + βn and ‖β‖ ≤ 2‖x‖∞. Now using
the argument of (i) for β, we obtained the functions Fj in AU (Bd∗(w,1)); since βn → 0 we
have that the sets Sj = {n ∈ � : αnj = 1} and S′

j = {n ∈ � : αnj = −1} are finite. Hence,
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f = ∑∞
j=1 2−j‖β‖Fj + l is the function we were looking for, and in this case

‖ f ‖ ≤ 2‖β‖∞ + |l| ≤ 4‖x‖ + ‖x‖ = 5‖x‖.
The general case it is similar to (i). We write each βn in the form pn + iqn, where

pn, qn ∈ � and we get f such that ‖ f ‖ ≤ 10‖x‖∞. �
The above proposition gave us c ⊂ R(AU (Bd∗(w,1))) and in the next theorem we

characterize, under some hypothesis on w, the range of the restriction operator R
associated to the usual basis of d∗(w, 1).

THEOREM 3.3. Let w ∈ c0 \ l1 be a decreasing sequence of positive real numbers.
Then, R(AU (Bd∗(w,1))) = c if and only if w �∈ lp for all p > 1. If w ∈ lp for some p > 1,
then R(AU (Bd∗(w,1))) = l∞.

Proof. Let us assume that w �∈ lp ∀p > 1. In view of Proposition 3.2 it suffices to
show R(AU (Bd∗(w,1))) ⊂ c. Let f ∈ AU (Bd∗(w,1)). As f is uniformly continuous, given
ε > 0, there exists δ > 0 such that ‖x − y‖ < δ ⇒ | f (x) − f (y)| < ε/2. Hence, taking
1 − δ < r < 1 we have that for all x ∈ Bd∗(w,1), ‖x − rx‖ < 1 − r < δ and therefore,

| f (rx) − f (x)| < ε/2, ∀x ∈ Bd∗(w,1).

The function x �→ f (rx) is analytic and bounded on 1
r

◦
Bd∗(w,1). Thus, the power

series of f (r · ) at zero converges uniformly on 1
r

◦
Bd∗(w,1) (see [7, Theorem 7.13]). Then,

there exist m ∈ � and Pk ∈ P(kd∗(w, 1)), k = 0, 1, . . . , m, such that∣∣∣∣∣ f (rx) −
m∑

k=0

Pk(x)

∣∣∣∣∣ < ε/2, ∀x ∈ Bd∗(w,1).

Therefore, for all x ∈ Bd∗(w,1), we have∣∣∣∣∣ f (x) −
m∑

k=0

Pk(x)

∣∣∣∣∣ ≤ | f (x) − f (rx)| +
∣∣∣∣∣ f (rx) −

m∑
k=0

Pk(x)

∣∣∣∣∣ < ε,

in particular, | f (en) − ∑m
k=0 Pk(en)| < ε.

As w �∈ lp, ∀p ≥ 1, by a result of Payá and Sevilla in [8] it follows that the
polynomials Pk are weakly sequentially continuous for each k = 1, . . . , m; that means
Pk maps weakly convergent sequences into convergent sequences. As (en) converges
weakly to zero, we have, for each k = 1, . . . , m, Pk(en) converges to zero and so

lim
n

∣∣∣∣∣ f (en) −
m∑

k=0

Pk(en)

∣∣∣∣∣ =
∣∣∣ lim

n
f (en) − f (0)

∣∣∣ ≤ ε.

Therefore, f (en) → f (0) and R(AU (Bd∗(w,1))) ⊂ c.
In the case w ∈ lp for some p > 1, by Remark 2.1 we have that d∗(w, 1) ⊂ lN , for

N > p. Hence, given any sequence y = (yn) ∈ l∞, we can define a N-homogeneous
polynomial on d∗(w, 1) by

P(x) =
∞∑

n=1

ynxN
n , x = (xn).

Therefore R(P) = y. The proof is complete. �
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