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On the differential equation for the
conventional tide-well system

B.J. Noye

This paper discusses solutions to the differential equation

dy/dr + B_l|Y|?sgn(Y) = dx/dt
which governs the height
z(t) = x(1) - Y(1)

of the non-dimensional water level inside a conventional

tide-well when the corresponding height of the sea-level outside

is X(T) . A perturbation solution correct to O[Bh) , for small

B , for the particular case X = sinT described previously has

been extended to 0(86] for any function X(1) differentiable
at least three times. Two special cases, where X(T) is a
single sinusoid and the sum of two sinusoids, are treated in

detail.

1. Introduction

In [3] a class of differential equations which governed the response
of three types of tide-well systems was discussed. In this paper, the
non-linear response of the conventional type of tide-well, in which the
water inside the well is connected to that outside by means of a circular
orifice near the bottom of the well, is further investigated. It was shown
in [2] that the differential equation governing the response of the

conventional tide-well system to the fluctuating sea-level ho(t) is
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(1.1) di/dt + ClHl;ésgn(H) = dhy/dt ,

where hw(t) is the level inside the well, ¢ is the time, and the

excess external head is

(1.2) H(t) ho(t) - hw(t) .

The tide-well parameter is

(1.3) c Cc(2g)}5Ap/Aw s

where Cc is the coefficient of contraction of the orifice, g is the
gravitational constant, Ap is the area of cross-section of the orifice,
and Aw is the area of cross-section of the well. We are interested in
finding the well response

(1.1) h,=h, -H
for a given input ho(t).
A non-dimensional form of the tide-well equation is obtained by

rewriting it in terms of the dimensionless input X = ho/a , the dimension-

less head response Y = H/a and the dimensionless frequency B = w/ZVC ,
where X and Y are functions of T = wt , and a and w , respectively,
are the characteristic amplitude and circular frequency of the sea-level

oscillations. Equation (1.1) then becomes

(1.5) g(dr/dt) + |t|%sen(¥) = B(dx/dr)

The head response Y for a given input X must be found from this
equation; the dimensionless well response, Z = hw/a , is then given by
(1.6) Z2=X-X.

In [3] much was learned about the response of this system to an
arbitrary input from the steady state response to a sinusoidal input of

fixed amplitude a and circular frequency w , namely,

(1.7) ho = gsinwt ,
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that is, X = sinT .

Using a perturbation solution correct to O(Bh) , for small B , the

output was found to be

(1.8) Z = sinT - Bacosszgn(cosT) - hthosersinT + 0(86)
Writing the coefficients of 82 and Bh in their Fourier series, namely,
@
cos°Tsgn(cost) = § ¢ cos(2m-1)T ,
m=1
[+
2_ . - .
cos“TsintT = z Km51n(2m—l)T ,
m=1

gave

® ¥
(1.9) z = a(l)sin(T-O}})l - g2 ) [CZ+BhKi] sin{(2m-1)T-¢ } + 0(56) ,

f m=2
where
a}l) =1 - [Kl-gci]eh + 0(g%)
and
2 6
e;}) = c,8% + 0(8%)
With
_ 8(-1)" -
(1.10) Cp = Tem3) (eme) (am1) > ™ = 1, 2, 3, vu. ,
and
(1.11) K =1 for m=1, 2 ,

0 otherwise,
then the amplitude response of the oscillation in the output with the same

frequency as the input is, to O(Bh) s

(1.12) a}l) =1 - 0.6u8"

with corresponding phase-lag
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(1.13) o'l = .8562 .
f
Therefore, for a pure sinusoidal fluctuation of sea level, the water
level inside a conventional tide-well consists of a fundamental oscillation
at the same frequency as the input, but of reduced amplitude and with a

phase-lag, plus odd harmonics of rapidly decreasing amplitude.

Subsequently, Brown [1] examined (1.5) with (1.7) from a different
point of view. By meéans of a change of variable he transformed (1.5) to
the equation of motion for a pendulum with viscous damping, one of the
standard examples of a non-linear differential equation. He discussed
the behaviour of the solutions of the transformed equation as represented
in the phase plane and showed how they corresponded to the perturbation

solution of Noye [3].
In the following a perturbation solution for (1.5) is obtained correct

to 0(66] for any input X(T) which is differentiable at least three
times. The result is then used to estimate the response of the system to a
pure sinusoidal input to a higher order of accuracy than before, and to an
input consisting of the sum of two sinusoids of differing amplitude and

frequency.

Because (1.1) and (1.5) are non-linear the principle of superposition
of solutions does not hold, so no unique response function can be defined
which relates the output of the system to an input which consists of the
sum of a number of different waves. For an input consisting of the sum of
two sinusoidal waves, it is shown that odd harmonics of the two fundamental
frequencies occur in the output, together with contributions at frequencies
which are the sum and difference of various multiples of the fundamental
frequencies. The implication on the interpretation to be placed on the
results of analysis of tide-well records is profound. Harmonies of the
oscillations in the sea-level together with linear combinations of their
frequencies will appear in the tide-well record. Therefore one cannot be
sure whether small peaks which appear in the Fourier spectrum of a tide-
well record are contributions occurring in the sea-level oscillation or

merely due to the non-linear effects of the orifice.
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2. Asymptotic solution for small B8

Successive approximations to the steady-state solution of (1.5) can be

found, for small B and an arbitrary input X , by the method described in

[3]. Let Y =

He~3 8

Y |, where Y = o(Y ) compared with B . Successive
=1 M n+l n

approximations

r
) - Y , r=1,2, ...,
- n
n=1

(r)

are found where Y +>Y as r > o . Substitution in (1.5) gives

3
(2.1) Bd/dr(y; + 7, + ..+ |y, + 7, + ...|2sgn[Yl + Y, + ...) = Bdx/du .

Letting B > 0 , one finds to leading order in B ,
(2.2) |Yl|%sgn(Yl) = Bdx/dt
with
sen(¥)) = sen(dx/dr) ,
whence

(2.3) ¥, = 8%(dx/dv)sen(dx/dr)

The quantity Y can now be obtained by substituting this value of Yl

2

into a rearranged form of (2.1), namely,

_ 2 2
(2.4) Iyl tY,+ o] =8 {d/ar (x - Y, - ¥, - )l
with
(2.5) sen(y, + ¥, + ...) = sanld/dv{x - ¥, - ¥, - ...}} .

Taking again the limit B > O one finds that ¥, = O(Bh) and

2 2
wo ] -

&

de

The third approximation Y(3) is found by substituting (2.6) into (2.4)
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and (2.5) and taking the 1limit B = 0 , which gives

e 10 () -

sl e o

Working with the asymptotic solution correct to 0(86) , the tide-well

output becomes now

w0 2er- AEonls]

dT

e B ) o

Consider now two separate inputs: a single sinusoid, and a sum of two

sinusoids with different frequencies.
3. Single sinusoidal input
With the input X = sinT , the tide-well output is

(3.1) 2 = sinT - Bzcosszgn(cosT) - hBhCOS2TSinT

- hB6cosszgn(c05T){5—7c052r} + 0[88]

Expanding the terms in 62, Bh and 86 in Fourier series yields
2 o0
(3.2) Z = sinTt - B { Z C cos(2m—1)r} - B {m- Kﬁsin(am-l)r}
=1

m=1
- Bs{m_ D cos(2m—l)T} + 0(38) >
=1 7

where C_ , K are given by (1.10), (1.11) and
D, = 6cm - 7Cm-1 with C, =

Rearranging (3.2) the tide-well response takes the form
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(3.3) z = {(1-Bl‘)sinr - (§B—— + 2(—-- 7]86]005‘1'}

3m ™

- B {B sin3T + ——-(1-298 ]cos3T}

157
-3 (Cm82+Dme]cos(2m—l)T + 0(88)
m=3 )

The contribution to Z at the fundamental frequency can be written in the

form .

(3.1) z, = a;?)sin(T—e}?)] ,

where

(3.5) a;?) =1 - (1 - fig}sh +o(8% ,

(3.6) eJ(f) =%§E- (114 —%+ﬂ%}86 +0(8%) ,

that is, a}z) and 6}2) are the amplitude response and the phase lag of

the output at the fundamental frequency, correct to 0(86)

To O(Bh) these are the same as a};) and 9§}) given by (1.12) and

(1.13).

The ratio of the amplitude of the third harmonic to the amplitude of
the fundamental in the output is a measure of the distortion of the output.
By (3.3) the amplitude of this harmonic is

2 2
_8 2257 _ N 8
(3.7) ot = Je1 + ( 28 29]8 } +0(8") ,
and the required ratio is
a* 8 25T i 8
(3.8) @7 = 157 1+ (—lea i 30]6 } +0(8")

These results show the presence of higher harmonics in the response of
a conventional tide-well to a sinusoidal input. Therefore care must be

taken in the interpretation of the results of Fourier analysis of tide
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records. Some of the components found may not exist in the fluctuations of
the sea level outside the well; they may appear in the oscillations of the
water inside the well simply because of the non-linearity of the tide-well

with an orifice.
If the input ho is a sum of sinusoidal functions with varying
frequencies, namely,

N
ho = z ansin(wnt+6n) s
n=1
the position becomes more complicated. The nen-linearity of the system

does not permit the superposition of separate solutions for inputs

One would expect the output of such systems to contain components with sums
and differences of frequencies

wiiszi,j=la2;3a---smai#j’

as well as the fundamental frequencies

u% , m=1,2,3, ..., N,

and their harmonics

pwn s Py =1,2, 3, ... .

The following questions can be asked: Does the tide-well, because of its
non-linear characteristics, give measurable oscillations in the tide record
which do not exist in the sea-level fluctuations outside the well? Is it
possible that under certain circumstances these spurious oscillations
contribute to, or even are mistaken for small constituents such as certain

shallow water tidal components?

As s test case, we examine the response to an input which consists of

the sum of two sinusoids of slightly differing frequencies.

4. Sum of two sinusoids as input

Let the sea-level fluctuation take the form
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(4.1) hy = asinwt - an(n+1) Tsin(1+1/n)ut .
The dimensionless input in (1.5) is now

(4.2} X = sinT - n(n+1)‘lsin(1+1/n)r .

The solution (2.8) applies for small values of B = w/a/C , whence
(1.3) z=x- 8% + s, + 0(8%) ,

where, with T = n6 ,

(h.4) W = (dx/dv)Psgn(dx/dr)
= {1+%cos(2n8)+%cos (2n+2)6-cos (2n+1)B-cosB} -
« sgn{sin[(2n+1)8/2]sin(0/2)} ,

and

(4.5) Wy = (dx/dv)? (& x/d°)

= Y b_sin(pe) ,
pm1 P
with

1/4  for p = n-1, n+2, 3ntl, 3nt+2 ,
p = 3/b for p =n, n+l ,
P l1/12 for p = 3, 3n+3 ,

0 otherwise.

Next, the Fourier series representation of Wl is required to make

possible the comparison between the output Z and the input X , at the
frequencies of the sinusoidal components of X and various linear

combinations of these. Since Wi with period 2m is an even function of

6 , it can be written in the form

(4.6) W. = %a

1 0t ) apcos(pe) ,

p=l
where
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12n
(L.7) a, = E;'IO W, (8)cos(p6)do

A straightforward but tedious analysis, outlined in the Appendix, yields

very complicated but exact formulae for the coefficients ap » Which were

used'in the computations leading to Taeble 1. Substitution from (k4.2),

(4.5), (4.6) into (4.3) gives, to 0(8%) ,
- b 2 4 .
(4.8) Z=-3%a_ + ) {|-B°a_|cospd + |4B b_+c_|sinpb} ,
0 pa1 P p P
where
1 if p=n,
e, = n(n+1)™h i p=n+1l,
0 otherwise.
This may be rewritten in the form
(4.9) z = 4% + ! o sin(pt/n-e) ,
0 p=1 p p
where
Lk 2 () ¥
, = {e ap+[h6 bp+cp] } :

ep = arc ta.n{82ap/ [hBhbp*Pcp]} .

Particular interest attaches to the amplitudes of the oscillations in
the well which occur at the same frequencies as the oscillations in the

input, namely,

(4.10) a, =1~ (3—a721/2]6h + 0(38) s
(4.11) o = rz(n+1)_1{1-(3-a2 /2]Bh} + 0[88)
n+l n+l

Table 1 lists a typical set of contributions to the well response at
different frequencies for a double sinusoidal input of this kind, for

B=0.4 end n=3,L4, ..., 8 . Here, o gives the contribution at

longer periods than the incident waves; for example, for n = 3 , the
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frequencies of the incident oscillations are ®w and hw/3 , and at the
difference frequency w/3 an amplitude of 0.38% of the amplitude at the

frequency  occurs.

There are also significant contributions at side-bands to the
frequencies of the incident oscillations. For instance, with »n = 3 , an
amplitude of 2.89% of the incident amplitude at frequency w occurs at
the frequency 2w/3 and an amplitude 6.48% of the incident amplitude at
frequency Uw/3 at the frequency 5Sw/3 .

The contributions to the output at harmonics of double the incident

frequencies and the sum of these frequencies and a2

(see op,5 05, 2 )
are small compared with the contributions around three-times the incident
frequencies. The third harmonic of the incident frequencies are given by

a3n and a3n+3 . For n =3, the third harmonic of the wave with

frequency « has an amplitude of 2.61% of the incident amplitude at that
frequency, and the third harmonies of the incident frequencies are given by
arplitude of U4.59% of the corresponding incident amplitude. The most
striking feature of all is the large contribution at frequencies giveﬁ by
doubling one incident frequency and adding the other; for all values of =n

in Table 1, and o appear to be between 8 and 10% of the

%3n+1 In+2

incident amplitudes. In the past, contributions at such linear
conbinations of the frequencies of the incident waves have been attributed
to effects outside the tide-well system, for example, non-linear effects
on the tides due to shallow water. Such harmonics may be wholly or partly
due to the non-linear effects of the orifice. One would suspect that many
of the 114 +tidal constituents computed from tide-well records for
Anchorage, Alaska [5], and for Southend on the Thames Estuary [4], might
include non-linear contributions from the orifice. In the latter analysis
21 of the constituents have an amplitude less than 0.01 feet compared
with the M2 component of amplitude 6.666 feet.

5. Conclusion

] The implications surrounding the findings of this paper are far-
reaching when applied to the interpretation of tide records obtained from

conventional tide-wells.
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The conventional tide-well, consisting of a well with an orifice, has
been shown to be a non-linear device with all the inherent disadvantages of
non-linear systems. On the basis of the analysis, the water level in the
well may oscillate at the frequencies of the oscillations in the sea-level,
on which higher harmonics and oscillations with frequencies which are sums
and differences of these frequencies are superimposed. Furthermore, the
amplitudes of the resulting well oscillations are non-linear functions of
the amplitudes of the sea-level oscillations, a fact which creates many
difficulties in the use of tide-well records, for example, in the analysis
of harbour oscillations. Pseudo-response functions give a rough idea of
the attenuation and lag of a system, but they are difficult to use because

the response depends on the amplitude as well as the frequency.

Problems also arise when records from a conventional tide-well system
are analysed for tidal components. With an input which consists of waves
with different frequencies, such as tidal components, it has been shown
that the non-linearity of a system may contribute to the amplitudes of
harmonics of these components and to oscillations which occur at sum and
difference frequencies of these components. It is likely that some of the
energy attributed to shallow water components may not, in fact, be due to
influences from outside the well but rather arise from non-linear effects

at the orifice.
Appendix: Computation of the Fourier coefficients

1 27
% = on fo W, (08)cos(p6)de

In the range (r-l)en <8< ren , r=1,2, ..., (2n+l) , where

6, = an/(2n+l) ,
(4.1) sgn{sin[zfgl e]sin(g}} = (-1)1"b1 .

Substituting (A.1) into (4.k4) we find

1 2n§l -1 ren
(a.2) a == (-1)"" I k(p, 9)do ,
Po2m 5 (r-1)6_

where
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(a.3) k(p, 8) = cospd + %cos(2n+p)0 + %cos(2n-p)e
+ %cos(2n+2+4p)8 + %cos(2n+2-p)o
- %cos(2n+14p)6 - %cos(2n+1-p)o
- %cos(1+p)6 - %cos(1-p)o .

Denote I(p, 6) = [ k(p, 6)d8 ; then

(A.4) I(p, 8) =Ly =Ly + Ly, =Lpppy + Lpypo =My + My =My 0 ¥ My o
where
Lm=9/qm if p=m,
= sin(m-p)e/qm(m-p) otherwise,
and

M = sin(m+p)9/qm(m+p) s

with g5 =1, q) = Qo4 T2 5 9, T, = b -

Therefore
1 antl r-1 6=r6n
(A.5) ap = 5r 2 (-1) {z(p, e)]e=(r—l)9
r=1 n

2n
2(p, em-1(p, 0)} +%r£1 -1"1(p, x6 )

Cases of special interest occur when
p=0,1, ..., n=1, n, ntl, n¥2, ..., 2n, 2n+l,
2n+2, ..., 3n, 3n+l, 3In+2, 3In+3, ... .
For p=0,

_ sin2n8 | sin(2n+2)8 sin(2n+1)0 .
I(O, 9) = 6 + hn + (hn+h) - T2n+l) - 51n9 .

Since for any ¥ ,

2n %]
Z (-1)* lsinWre = tan [IV _n} s
r=1 n 2
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2n
) (-1)"1re =-nd ,
r=1 n n

then substitution in equation (A.5) gives

3 af. .1
(4.6) % = on+1 ~ F{l + hn(n+1)}ta'nen

In a similar fashion we obtain the folldwing values:

C}
_ -1 1 1 °n
(A.7) “1'5@?&7*?“1*Eﬁzﬁﬂt”(§]‘

1
- (1‘ * (2n—l)(2n+3)]ta'nen} ,

(4.8) a = %{(- = - h(nil) + h(3711+1)}c°t[eTn] +

* [nfl eaY - ]°°t[ en]

) [2(;£2) * T u<52-1>]°°t[52”]} g
(.9) a =Tlx{(ﬁ%+n+1' 2(33”1) h(3n+2)]cot[en]

y [2(n1-1) * B ﬁ]mt[si ]} ’

l 5

1 1 5 1)
010) = H(- 3+ sy - Ty * mE) ot

Lav]
Rl B

' [h(;tl) * 5wwa) - 12(i+1)}°°t(36n]} ’

0
/12 1 n
(A1) a ., = ;{[ﬂ;-+ L) - h(3n+2)Jc°t( ]

N 1 1 ] 39n
) [2(n-1> Y e " 6(n+1)J°°t[T]

1 1 1) 56n
* [wn_e) * 33y " n(3n+h)J°°t[T]} ;
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2) = [+ - i) (2 - E + (2]

1 1
* (;"' Tt (2n-1)]tanen} ,
_ n),if,,1__1 __1
(.13) ay 4 = ('% * 2n+1] Yo\l Y 2n T Ze) T 2(EnD)

6
1 n
* e('u‘n"“+3)}ta"[?] g

:
_ n 1 1 1 n
(A.14) ayppp = [% B 2(2n+l)] ¥ 211‘['1 T T (lm+3)]ta“(2] *

1 1
¥ [" "~ (2n+3) 8(n+1)J’°‘”‘e} ’

(A'.15) as, %{(ﬁ - 2(;”1) * h(5i+2)}c°t(eTn]
- (2—(?‘%1—)- - % + m]cot(iiﬂ]

¥ (h(nl-z) e = e%n]“t(@]} ;

i 2 1 11
(A.26) ag,) = F{[‘ on = W(n+1) T (ne1) | 2(3ne2)  2(5n+2)

"W 5n+3)] cot [en}
+ (e - &+ v (1))
(BIT) 3z = %{(ﬁ * FeT) ~ B3 - (o) * Gy
2(51+3)]°°t(en]

1 1 1 ) (3%
} [h(n+2) "By " Sn+h)Jc°t( R ]} :
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o
1 1 1 1 ). . [n
(A.18) ag,,3 = ?r‘{‘[h(nﬂ) I ET h(5n+3)J°°t[h]
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n

36
1 1 1 n
+ [2(n+2) ECTY I 2(5n+h)]c°t[—ﬂ_i

1 1 1) 59,
- [h(n+3) "G 20(n+1)Jc°t[ N ]} :
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