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On the differential equation for the

conventional tide-well system

B.J. Noye

This paper discusses solutions to the differential equation

dY/dr + eT1\x\KSa(y) = dX/di

which governs the height

Z(T) = *(T) - Y(T)

of the non-dimensional water level inside a conventional
tide-well when the corresponding height of the sear level outside

is X(i) . A perturbation solution correct to fl(B ] , for small
3 , for the particular case X = sinT described previously has

been extended to 0{& ) for any function X(T) differentiable
at least three times. Two special cases, where X(T) is a
single sinusoid and the sum of two sinusoids, are treated in
detail.

1. Introduction

In [3] a class of d i f fe ren t i a l equations which governed the response

of three types of t ide-wel l systems was discussed. In th i s paper, the

non-linear response of the conventional type of t i de -we l l , in which the

water inside the well i s connected t o tha t outside by means of a c i rcu la r

or i f ice near the bottom of the wel l , i s further invest igated. I t was shown

in [2] tha t the d i f f e ren t i a l equation governing the response of the

conventional t ide-wel l system to the f luc tuat ing sea- level hAt) i s
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(1.1) dH/dt + C|#|%sgn(#) = dhQ/dt ,

where hw(t) is the level inside the well, t is the time, and the

excess external head is

(1.2) B(t) = hAt) - hjt) .

The tide-well parameter is

(1.3) C - Co(2g)*Ap/Aw ,

where C is the coefficient of contraction of the orifice, g is the

gravitational constant, A is the area of cross-section of the orifice,

and A is the area of cross-section of the well. We are interested in
w •

finding the well response ;̂ _". " , ..— __

(l.U) hw = hQ - H

for a given input hAt) .

A non-dimensional form of the tide-well equation is obtained by-

rewriting i t in terms of the dimensionless input X = h-/a , the dimension-

less head response Y = H/a and the dimensionless frequency 8 = ttva/C ,

where X and Y are functions of T = ait , and a and u , respectively,

are the characteristic amplitude and circular frequency of the sea-level

oscillations. Equation ( l . l ) then becomes

(1.5) Z(dX/dt) + |y|%sgn(y) = UdX/dx) .

The head response Y for a given input X must be found from this

equation; the dimensionless well response, Z = h /a , is then given by

(1.6) 2 = X - Y .

In [3] much was learned about the response of this system to an

arbitrary input from the steady state response to a sinusoidal input of

fixed amplitude a and circular frequency u , namely,

(1.7) hQ = asimot ,
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that i s , X = sinT .

Using a perturbation solution correct to 0(3 J , for small 6 , the

output was found to be

cos2Tsi(1.8) Z = sinx - B2cos2Tsgn(cosx) - US cos2TsinT + 0(6 ) .

2 h
Writing the coefficients of 3 and 3 in their Fourier series, namely,

cos xsgn(cosx) = \ C cos(2m-l)x ,

oo

cos xsinx = 1 K sin(2m-l)x ,
m=l m

gave

(1.9)

where

and

\

With

o/ -, <j
Cm =

and

(1.11) K = 1 for m = 1, 2 ,

= 0 otherwise,

then the amplitude response, of the osc i l la t ion in the output with the same

frequency as the input i s , to 0 [6 J ,

(1.12) a{
f
l) = 1 - 0.6UBU

with corresponding phase-lag
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(1.13) e j ^ = O.8532 .

Therefore, for a pure sinusoidal fluctuation of sea level, the water

level inside a conventional tide-well consists of a fundamental oscillation

at the same frequency as the input, but of reduced amplitude and with a

phase-lag, plus odd harmonics of rapidly decreasing amplitude.

Subsequently, Brown [7] examined (1.5) with (1.7) from a different

point of view. By means of a change of variable he transformed (1.5) to

the equation of motion for a pendulum with viscous damping, one of the

standard examples of a non-linear differential equation. He discussed

the behaviour of the solutions of the transformed equation as represented

in the phase plane and showed how they corresponded to the perturbation

solution of Noye [3].

In the following a perturbation solution for (1.5) is obtained correct

to 0(g ) for any input X(T) which is differentiable at least three

times. The result is then used to estimate the response of the system to a

pure sinusoidal input to a higher order of accuracy than before, and to an

input consisting of the sum of two sinusoids of differing amplitude and

frequency.

Because (1.1) and (1.5) axe non-linear the principle of superposition

of solutions does not hold, so no unique response function can be defined

which relates the output of the system to an input which consists of the

sum of a number of different waves. For an input consisting of the sum of

two sinusoidal waves, i t is shown that odd harmonics of the two fundamental

frequencies occur in the output, together with contributions at frequencies

which are the sum and difference of various multiples of the fundamental

frequencies. The implication on the interpretation to be placed on the

results of analysis of tide-well records is profound. Harmonics of the

oscillations in the sea-level together with linear combinations of their

frequencies will appear in the tide-well record. Therefore one cannot be

sure whether small peaks which appear in the Fourier spectrum of a tide-

well record are contributions occurring in the sea-level oscillation or

merely due to the non-linear effects of the orifice.
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2. Asymptotic solution for small &

Successive approximations to the steady-state solution of (1.5) can be

found, for small 3 and an arbitrary input X , by the method described in

GO

[3]. Let Y - 1 Y , where Y = o[Y ) compared with 3 . Successive

approximat i ons

(r) v
y = I Y , r = 1 , 2 , . . . ,

n = l

are found where Y •* Y as r -*• °° . Substitution in (1.5) gives

(2.1) &d/dj[Y + Y + . . .)

Letting 3 •* 0 , one finds to leading order in 3 ,

(2.2) Ir-J^sgntY-J = &dX/dT

with

s g n ^ ) = sgn(dA7dx) ,

whence

(2.3) Y = 6 (dX/di) sgn(dX/dj) .

The quantity Y can now be obtained by substituting this value of Y

into a rearranged form of (2.1), namely,

(2.1+) \YX + Y2 + ...\ = &2{d/di[x - Y± - Y2 - . . . ) } 2

with

(2 .5) s g n ( y i + Y2 + . . . ) = sgn{d/dt[X - Y± - Y2 - . . . ) } .

Taking again the l i m i t 3 •*• 0 one f inds t h a t Y = 0[& ) and

(2.6) y ( 2 ) = 62f

The th i rd approximation Y i s found by subst i tu t ing (2.6) into (2.!*)
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and (2.5) and taking the l imi t 3 -»• 0 , which gives

Icfx]

U2J
2

A 2 .

W o r k i n g w i t h t h e a s y m p t o t i c s o l u t i o n c o r r e c t t o 0 ( 3 ) , t h e t i d e - w e l l

o u t p u t 1)60011163 now

( 2 .8 ,

Consider now two separate inputs: a single sinusoid, and a sum of two

sinusoids with different frequencies.

3. Single sinusoidal input

With the input X = sinT , the tide-well output is

00 U 2

(3.1) Z = sinT - 3 cos Tsgn(cosT) - 1*6 cos TsinT

- k& cos2Tsgn(cosT){5-7cos2x} + 0[

2 k 6
Expanding the terms in 3 , 3 and 3 in Fourier series yields

(3.2) Z = sinx - 3 { I C cos(2m-l)T
1 ^ m T | - 3 I I Xms

where C , K are given by (1.10), ( l . l l ) and

Dm = W i t h C0 = 2 •

Rearranging (3.2) the t ide-well response takes the form
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(3.3) Z = |(l-BU)sinT - ( | | - + 2 ( | - 7]B6]COST}

B 2 +DB U ]COS(2BI-1)T + 0(B8) .
m m )

The contribution to Z at the fundamental frequency can be written in the

form

(3.1*) Z f = c

where

(3.5) c£2 ) = 1 -

(2) (2)
that i s , a\ and 9 V. are the amplitude response and the phase lag of

the output at the fundamental frequency, correct to 0(& ) .

To 0{& ) these are the same as cA and 8 ,̂ given by (1.12) and

(1.13).

The ra t io of the amplitude of the th i rd harmonic to the amplitude of

the fundamental in the output i s a measure of the distort ion of the output.

By (3.3) the amplitude of th i s harmonic is

and the required r a t io i s

These resul ts show the presence of higher harmonics in the response of

a conventional t ide-well to a sinusoidal input. Therefore care must be

taken in the interpretat ion of the resul ts of Fourier analysis of t ide
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records. Some of the components found may not exist in the fluctuations of

the sea level outside the well; they may appear in the oscillations of the

water inside the well simply because of the non-linearity of the tide-well

with an orifice.

If the input h- is a sum of sinusoidal functions with varying

frequencies, namely,

N
ho = nlx v i n K t + e J >

the position becomes more complicated. The non-linearity of the system

does not permit the superposition of separate solutions for inputs

An) =hi ' = a sinfw t+6 ) .0 n *• n n>

One would expect the output of such systems to contain components with sums

and differences of frequencies

a) ± a) i, 3 = 1, 2, 3, • • • , N , i * 3 ,
T- d

as well as the fundamental frequencies

un , n = 1 , 2, 3 , . . . , N ,

and the i r harmonics

p u > n , p , n = 1 , 2 , 3 , ••• •

The following questions can be asked: Does the tide-well, because of its

non-linear characteristics, give measurable oscillations in the tide record

which do not exist in the sea-level fluctuations outside the well? Is i t

possible that under certain circumstances these spurious oscillations

contribute to, or even are mistaken for small constituents such as certain

shallow water tidal components?

As a test case, we examine the response to an input which consists of

the sum of two sinusoids of slightly differing frequencies.

4. Sum of two sinusoids as input

Let the sea-level fluctuation take the form
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(U.l) hQ = asinut - an(n+l) sin(l+l/n)wt .

The dimensionless input in (1.5) is now

(It.2) X = sinT - n(n+l)~Xsin(l+l/n)T .

The solution (2.8) applies for small values of 3 = u-Za/C , whence

(It. 3) Z = X - &\ + itgV, + 0(B6) ,

where, with T = n& ,

(lt.it) W± = (dX/dT)2s&i(dX/dT)

= {l+%cos(2n9)+%cos(2n+2)9-cos(2w+l)6-cos6} •

• sgn{sin[(2n+l)9/2]sin(9/2)} ,

and

(It.5) W2 ^ ^ 2

I b sin(p6) ,
p=l p

with

r =
P

1/k for p = n-1, n+2, 3n+l, 3n+2 ,

3/U for p = n, .n+1 ,

1/12 for p = 3w, 3n+3 ,

0 otherwise.

Next, the Fourier series representation of W~ is required to make

possible the comparison between the output Z and the input X , at the

frequencies of the sinusoidal components of X and various linear

combinations of these. Since W. with period 2TT is an even function of

9 , it can be written in the form

CO

Ct.6) W± = haQ + I a cos(p9) ,
p=l

where
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f2TT
Gp = it") V

A straightforward but tedious analysis, outlined in the Appendix, yields

very complicated but exact formulae for the coefficients a , which were

used'in the computations leading to Table 1. Substitution from (li.2),

(U.5), {h.6) into (It.3) gives, to 0[Q6) ,

(It.8) Z = -%g2aQ + I | f -B2a jcospe + lk&kb + e j s i n p e j ,

where

if p = n ,

-nin+l)'1 if p = n + 1 ,

0 otherwise.

This may be rewritten in the form

GO

C*.9) Z = -%B2aQ + I a_sin(px/n-eJ ,
p=l " "

where

e = arc tan
P

Particular interest attaches to the amplitudes of the oscillations in

the well which occur at the same frequencies as the oscillations in the

input, namely,

(U.ll)

Table 1 l i s t s a typical set of contributions to the well response at

different frequencies for a double sinusoidal input of this kind, for

6 = 0.U and n = 3, U, . . . , 8 . Here, ou gives the contribution' at

longer periods than the incident waves; for example, for n = 3 , the
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frequencies of the incident oscillations are w and Hu)/3 , and at the

difference frequency w/3 an amplitude of 0.38% of the amplitude at the

frequency o) occurs.

There are also significant contributions at side-bands to the

frequencies of the incident oscillations. For instance, with n = 3 , an

amplitude of 2.89? of the incident amplitude at frequency u) occurs at

the frequency 2u)/3 and an amplitude 6.1*8$ of the incident amplitude at

frequency W/3 at the frequency 5<*>/3 .

The contributions to the output at harmonics of double the incident

frequencies and the sum of these frequencies (see ou , ou and a ? )

are small compared with the contributions around three-times the incident

frequencies. The third harmonic of the incident frequencies are given by

a_ and aoM+o • F°r n = 3 , the third harmonic of the wave with

frequency to has an amplitude of 2.6l# of the incident amplitude at that

frequency, and the third harmonics of the incident frequencies are given by

amplitude of U.59$ of the corresponding incident amplitude. The most

striking feature of all is the large contribution at frequencies given by

doubling one incident frequency and adding the other; for all values of n

in Table 1, a_ . and a. „ appear to be between 8 and 10/5 of the

incident amplitudes. In the past, contributions at such linear

combinations of the frequencies of the incident waves have been attributed

to effects outside the tide-well system, for example, non-linear effects

on the tides due to shallow water. Such harmonics may be wholly or partly

due to the non-linear effects of the orifice. One would suspect that many

of the llU tidal constituents computed from tide-well records for

Anchorage, Alaska [5], and for Southend on the Thames Estuary [4], might

include non-linear contributions from the orifice. In the latter analysis

21 of the constituents have an amplitude less than 0.01 feet compared

with the Af2 component of amplitude 6.666 feet.

5. Conclusion

The implications surrounding the findings of this paper are far-

reaching when applied to the interpretation of tide records obtained from

conventional tide-wells.
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The conventional tide-well, consisting of a well with an orifice, has

been shown to be a non-linear device with all the inherent disadvantages of

non-linear systems. On the basis of the analysis, the water level in the

well may oscillate at the frequencies of the oscillations in the sea-level,

on which higher harmonics and oscillations with frequencies which are sums

and differences of these frequencies are superimposed. Furthermore, the

amplitudes of the resulting well oscillations are non-linear functions of

the amplitudes of the sea-level oscillations, a fact which creates many

difficulties in the use of tide-well records, for example, in the analysis

of harbour oscillations. Pseudo-response functions give a rough idea of

the attenuation and lag of a system, but they are difficult to use because

the response depends on the amplitude as well as the frequency.

Problems also arise when records from a conventional tide-well system

are analysed for tidal components. With an input which consists of waves

with different frequencies, such as tidal components, i t has been shown

that the non-linearity of a system may contribute to the amplitudes of

harmonics of these components and to oscillations which occur at sum and

difference frequencies of these components. It is likely that some of the

energy attributed to shallow water components may not, in fact, be due to

influences from outside the well but rather arise from non-linear effects

at the orifice.

Appendix: Computation of the Fourier coefficients

In the range ( r - l )8 < 6 < r6 , r = 1, 2 , . . . , (2M+1) , where
n n

6n = 2ir/(2n+l) ,

/» -, \ / • few+1 J - f e l l t i \ * * - i
(A.I) sgnjsinI—— 6 s m l j l j = (-1)

Substituting (A.I) into (k.k) we find

(A.2) a =rb I (-I)*"1

where
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(A.3) K(p, 6) = cospS + %cos(2w+p)9 + %cos(2n-p)9

Denote I(p, 9) = <{p, 9)d9 ; then

(A.U) J(p, 9) = LQ - Lx + L2n -

where

%cos(2«+2-p)9

- %cos(2«+l+p)6 - £cos(2n+l-p)9

- %cos(l+p)6 - %cos(l-p)6 .

Lm = Q/% if P = m '

= sin(m-p)8/t7m(m-p) otherwise,

and

with qQ = 1 , ? 1 = ? 2 n + 1 = 2 , ? 2 n = ? 2 n + 2 = k .

Therefore

2M+1 9=r6

2n
= 5^i"(p> 2v)-I(p, 0)} + £•

Cases of special interest occur when

p = 0, 1, ..., »-l, n, n+1, n+2, ..., 2n, 2n+l,

2M+2 , ... , 3n, 3«+l, 3«+2, 3«+3,

For p = 0 ,

J(0, 9) = 9 + — j ^ — + —HI^J-II \ ToZZT\ s i n 9 •

Since for any H ,

1 (-:
r=l

and
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-r-1

then substitution in equation (A.5) gives

In a similar fashion we obtain the following values:

<A-8»

(2W-1)(2H+3)

e

tanG

+ l - ^ +
 X

n- l 2(«+2) 6M cot

+ ——rrr + rr-r—r-H cot2(n-2) lt(n+3) U(3n-l

5GMi

( A - 9 )

1 . 1
D 12n

6

c o t

2(3«+2MHT]

(n+2) •

1
2(M+3)

cot

56.
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(A.12) On_ o U . - "

(A.13) a2n+1 = \-H

i f f , 1

_1
kn+1)

<A.UO * 2 n + 2 = |% -
1

(n+1) lW3lJt a n(f]
1

 +
 1

(2M+3) 8(n+1) tan9' .}•

(A.15) 3n
111 1

2(3n+l)

f36

U(n-2) +

+1) 2(3M+2) 2(5«+2)

f6»
l*(5»+3: cot ffl

(n-1) 6n l»(5n+l)]-(^)},
lfU 1

2(n+l)
1

2(3n+l) I

. 1 ^
2(5n+3)j

f 1
" U(«+2)

1 + .
(3*+2) 1

|cot(f]

1
6(w+l)

1 .

+ 1
M5n+1+)
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