Sufficiency of Lakshmibai-Sandhya Singularity Conditions for Schubert Varieties

VESSELIN GASHAROV
Department of Mathematics, Cornell University, Ithaca, NY 14853, U.S.A. e-mail: vesko@math.cornell.edu

(Received: 9 June 1999; accepted: 11 April 2000)

Abstract

We establish one direction of a conjecture by Lakshmibai and Sandhya which describes combinatorially the singular locus of a Schubert variety. We prove that the conjectured singular locus is contained in the singular locus.

Mathematics Subject Classifications (2000). 05E, 06A07, 14M15.
Key words. Schubert variety, singular locus.

1. Introduction

Let n be a positive integer and S_{n} the group of permutations of the set $\{1, \ldots, n\}$. We use the one-line notation to write the elements of S_{n}; namely, for $w \in S_{n}$ we write $w=w_{1} w_{2} \ldots w_{n}$, where $w_{i}=w(i)$ for $1 \leqslant i \leqslant n$. We denote the cardinality of a finite set A by $|A|$. Let (n) be the complete flag variety consisting of flags $\mathbf{E}_{\mathbf{0}}=\left(E_{1} \subset E_{2} \subset \cdots \subset E_{n}=\mathbb{C}^{n}\right)$ of nested vector spaces in \mathbb{C}^{n}. For $1 \leqslant i \leqslant n$, let e_{i} be the i th standard basis vector of \mathbb{C}^{n} and $F_{i}=\left\langle e_{1}, \ldots, e_{i}\right\rangle$ the subspace of \mathbb{C}^{n} spanned by e_{1}, \ldots, e_{i}. The Schubert variety X_{w} is the subvariety of (n) consisting of the flags $\mathbf{E}_{\text {. }}$ such that $\operatorname{dim}\left(E_{p} \cap F_{q}\right) \geqslant\left|\left\{i \leqslant p \mid w_{i} \leqslant q\right\}\right|$ for $1 \leqslant p, q \leqslant n$. Equivalently, if B is the Borel subgroup of $G L_{n}(\mathbb{C})$ consisting of the upper triangular matrices, then $X_{w}=\overline{B w B / B}$. The Bruhat order \prec on S_{n} can be defined as follows:

$$
v \preceq w \quad \text { if } \quad\left|\left\{i \leqslant p \mid v_{i} \leqslant q\right\}\right| \geqslant\left|\left\{i \leqslant p \mid w_{i} \leqslant q\right\}\right| \text { for } 1 \leqslant p, q \leqslant n .
$$

Therefore $v \prec w$ if and only if $X_{v} \subset X_{w}$. The Bruhat order makes S_{n} into a graded poset. The length $l(w)$ of a permutation $w \in S_{n}$ is the rank of w in the Bruhat order on S_{n}. Equivalently, $l(w)$ is the number of inversions of w, i.e.,

$$
l(w)=\mid\left\{(i, j) \mid 1 \leqslant i<j \leqslant n \text { and } w_{i}>w_{j}\right\} \mid .
$$

We have that $\operatorname{dim} X_{w}=l(w)$. We associate to $v \in S_{n}$ the coordinate flag

$$
e_{v}=\left(\left\langle e_{v_{1}}\right\rangle \subset\left\langle e_{v_{1}}, e_{v_{2}}\right\rangle \subset \cdots \subset\left\langle e_{v_{1}}, \ldots, e_{v_{n}}\right\rangle=\mathbb{C}^{n}\right) .
$$

Then $e_{v} \in X_{w}$ if and only if $v \preceq w$. For an introduction to the theory of Schubert varieties see e.g. [2].

Smooth Schubert varieties are characterized combinatorially as follows:
THEOREM 1.1 (Lakshmibai and Sandhya [7]). The Schubert variety X_{w} is smooth if and only if w does not contain a subsequence $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ of 4 elements with the same relative order as 4231 or 3412.

THEOREM 1.2 (Gasharov [3]). Let $w \in S_{n}$. The Schubert variety X_{w} is smooth if and only if the Poincaré polynomial $p_{w}(t)=\sum_{v \leq w} t^{l(v)}$ factors into polynomials of the form $1+t+t^{2}+\ldots+t^{r}$.

A criterion for smoothness of Schubert varieties in terms of the nil Hecke ring was given by Kumar [6].

Let $\operatorname{Sing} X_{w}$ denote the singular locus of X_{w}. The Borel group B acts on X_{w} and Sing X_{w} is invariant under this action, so $\operatorname{Sing} X_{w}$ is a union of Schubert varieties X_{λ} for some $\lambda \prec w$. We have that $\operatorname{Sing} X_{4231}=X_{2143}$ and $\operatorname{Sing} X_{3412}=X_{1324}$ [7, Remark 3.1]. Lakshmibai and Sandhya conjectured a combinatorial description of $\operatorname{Sing} X_{w}$ in [7]:

CONJECTURE 1.3. If $w \in S_{n}$, then $\operatorname{Sing} X_{w}=\cup_{\lambda} X_{\lambda}$, where λ runs over all maximal elements (in the Bruhat order) of the set Z consisting of all $\tau^{\prime} \prec w$ satisfying (1) or (2) below:
(1) There exists a subsequence $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ of 4 elements in w with the same relative order as 4231. Let $\tau \in S_{n}$ be the permutation obtained from w by replacing $w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, w_{i_{4}}$ as elements in w by $w_{i_{2}}, w_{i_{4}}, w_{i_{1}}, w_{i_{3}}$ respectively. There exists a $w^{\prime} \in S_{n}$ containing a subsequence $w_{j_{1}}^{\prime} w_{j_{2}}^{\prime} w_{j_{3}}^{\prime} w_{j_{4}}^{\prime}$ such that $w_{j_{1}}^{\prime}=w_{i_{1}}, w_{j_{2}}^{\prime}=w_{i_{2}}$, $w_{j_{3}}^{\prime}=w_{i_{3}}, w_{j_{4}}^{\prime}=w_{i_{4}}, \tau^{\prime}$ is obtained from w^{\prime} by replacing $w_{j_{1}}^{\prime}, w_{j_{2}}^{\prime}, w_{j_{3}}^{\prime}, w_{j_{4}}^{\prime}$ as elements in w^{\prime} by $w_{j_{2}}^{\prime}, w_{j_{4}}^{\prime}, w_{j_{1}}^{\prime}, w_{j_{3}}^{\prime}$ respectively, and $\tau \prec \tau^{\prime} \prec w^{\prime} \prec w$.
(2) There exists a subsequence $w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}$ of 4 elements in w with the same relative order as 3412. Let $\tau \in S_{n}$ be the permutation obtained from w by replacing $w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, w_{i_{4}}$ as elements in w by $w_{i_{3}}, w_{i_{1}}, w_{i_{4}}, w_{i_{2}}$ respectively. There exists a $w^{\prime} \in S_{n}$ containing a subsequence $w_{j_{1}}^{\prime} w_{j_{2}}^{\prime} w_{j_{3}}^{\prime} w_{j_{4}}^{\prime}$ such that $w_{j_{1}}^{\prime}=w_{i_{1}}, w_{j_{2}}^{\prime}=w_{i_{2}}$, $w_{j_{3}}^{\prime}=w_{i_{3}}, w_{j_{4}}^{\prime}=w_{i_{4}}, \tau^{\prime}$ is obtained from w^{\prime} by replacing $w_{j_{1}}^{\prime}, w_{j_{2}}^{\prime}, w_{j_{3}}^{\prime}, w_{j_{4}}^{\prime}$ as elements in w^{\prime} by $w_{j_{3}}^{\prime}, w_{j_{1}}^{\prime}, w_{j_{4}}^{\prime}, w_{j_{2}}^{\prime}$ respectively, and $\tau \prec \tau^{\prime} \prec w^{\prime} \prec w$.

Gonciulea and Lakshmibai showed that Conjecture 1.3 is true for a class of Schubert varieties related to ladder determinantal varieties [4, 5].

A permutation $\pi=\pi_{1} \ldots \pi_{n}$ which does not contain a subsequence $\pi_{i_{1}} \pi_{i_{2}} \pi_{i_{3}} \pi_{i_{4}}$ with the same relative order as 2143 is called vexillary. The Kazhdan-Lusztig polynomials $P_{\pi, w}(q), \pi \preceq w \in S_{n}$, measure the singularities of Schubert varieties. In [9] (see also [10]) Lascoux computed the polynomials $P_{\pi, w}(q)$ when π is a vexillary permutation. Other classes of Kazhdan-Lusztig polynomials are treated, e.g., in [11, 13].

Next we give an example which illustrates the above conjecture.

EXAMPLE 1.4. Let $w=53826471 \in S_{8}$. Then the irreducible components of Sing X_{w} are the Schubert varieties $X_{\pi^{(i)}}, i=1,2,3,4$, where $\pi^{(1)}=32548671$, $\pi^{(2)}=32816574, \pi^{(3)}=53218674$, and $\pi^{(4)}=53624187$. We have that $\pi^{(1)}$ satisfies condition (2) of Conjecture 1.3 with $i_{1}=1, i_{2}=3, i_{3}=4, i_{4}=6, j_{1}=2$, $j_{2}=3, j_{3}=4, j_{4}=5$, and

$$
\begin{aligned}
& w=53826471, \\
& w^{\prime}=35824671, \\
& \pi^{(1)}=\tau^{\prime}=32548671, \\
& \tau=23546871 .
\end{aligned}
$$

(The boldface numbers are the elements in positions $i_{1}, i_{2}, i_{3}, i_{4}$ in w and τ and the elements in positions $j_{1}, j_{2}, j_{3}, j_{4}$ in w^{\prime} and τ^{\prime}.)
We also have that $\pi^{(2)}$ satisfies condition (1) of Conjecture 1.3 with $i_{1}=1$, $i_{2}=4, i_{3}=6, i_{4}=8, j_{1}=2, j_{2}=4, j_{3}=6, j_{4}=8$, and

$$
\begin{aligned}
& w=53826471, \\
& w^{\prime}=35826471, \\
& \pi^{(2)}=\tau^{\prime}=32816574, \\
& \tau=23816574 .
\end{aligned}
$$

The permutation $\pi^{(3)}$ satisfies condition (1) of Conjecture 1.3 with $i_{1}=3, i_{2}=4$, $i_{3}=6, i_{4}=8, j_{1}=3, j_{2}=4, j_{3}=5, j_{4}=8$, and

$$
\begin{aligned}
& w=53826471, \\
& w^{\prime}=53824671, \\
& \pi^{(3)}=\tau^{\prime}=53218674, \\
& \tau=53216874 .
\end{aligned}
$$

Finally, $\pi^{(4)}$ satisfies condition (1) of Conjecture 1.3 with $i_{1}=3, i_{2}=6, i_{3}=7$, $i_{4}=8, j_{1}=5, j_{2}=6, j_{3}=7, j_{4}=8$, and

$$
\begin{aligned}
& w=53826471, \\
& w^{\prime}=53628471, \\
& \pi^{(4)}=\tau^{\prime}=53624187, \\
& \tau=53426187 .
\end{aligned}
$$

Remark 1.5. In Conjecture 1.3, given a τ^{\prime} satisfying condition (1) or (2), there is in general more than one choice for the permutations w^{\prime} and τ. Consider for instance the permutations w and $\tau^{\prime}=\pi^{(2)}$ from Example 1.4. They satisfy condition (1) of

Conjecture 1.3 with $i_{1}=1, i_{2}=2, i_{3}=6, i_{4}=8, j_{1}=1, j_{2}=4, j_{3}=6, j_{4}=8$, and

$$
\begin{aligned}
& w=\mathbf{5 3} 826471, \\
& w^{\prime}=\mathbf{5} 28 \mathbf{3 6 4 7 1}, \\
& \pi^{(2)}=\tau^{\prime}=\mathbf{3} 28 \mathbf{1 6 5 7 4} \\
& \tau=\mathbf{3 1 8 2 6 5 7 4}
\end{aligned}
$$

This is a different choice of w^{\prime} and τ than the one we made in Example 1.4.
In this paper we prove one direction of Conjecture 1.3, namely the sufficiency of Lakshmibai-Sandhya singularity conditions:

THEOREM 1.6. In the notation of Conjecture 1.3, $\cup_{\lambda} X_{\lambda} \subseteq \operatorname{Sing} X_{w}$.

2. Proof of Theorem 1.6

Theorem 1.6 follows immediately from Proposition 2.1 below.

PROPOSITION 2.1. Let w and τ^{\prime} satisfy conditions (1) or (2) in Conjecture 1.3.

 Then $X_{\tau^{\prime}} \subseteq \operatorname{Sing} X_{w}$.In the special case when $\tau^{\prime}=\tau$ and $w^{\prime}=w$ (in the notation of Conjecture 1.3), Proposition 2.1 was proved in [7, Lemma 3.1].

Before proving Proposition 2.1 we introduce some notation and prove a preliminary lemma. For $1 \leqslant i, j \leqslant n, i \neq j$, denote by $s_{i j} \in S_{n}$ the transposition which interchanges i and j. For $\pi \preceq \sigma \in S_{n}$, let $T(\sigma, \pi)$ denote the Zariski tangent space to X_{w} at e_{π} and

$$
A(\sigma, \pi)=\left\{(i, j) \mid 1 \leqslant i<j \leqslant n \text { and } \pi \circ s_{i j} \preceq \sigma\right\}
$$

Lakshmibai and Seshadri [8] proved that $\operatorname{dim} T(\sigma, \pi)=|A(\sigma, \pi)|$. Consider also the set

$$
B(\sigma, \pi)=\left\{(i, j) \mid 1 \leqslant i<j \leqslant n, \pi_{i}<\pi_{j}, \text { and } \pi \circ s_{i j} \preceq \sigma\right\} .
$$

Since $\pi \circ s_{i j} \prec \pi \preceq \sigma$ for all inversions (i,j) of π, it follows that

$$
A(\sigma, \pi)=\left\{(i, j) \mid 1 \leqslant i<j \leqslant n \text { and } \pi_{i}>\pi_{j}\right\} \cup B(\sigma, \pi),
$$

hence

$$
|A(\sigma, \pi)|=l(\pi)+|B(\sigma, \pi)| .
$$

Let $P=\left\{a_{1}, \ldots, a_{k}\right\}$ and $Q=\left\{b_{1}, \ldots, b_{k}\right\}$ be subsets of $\{1, \ldots, n\}$. We say that $P \leqslant Q$ if when the elements of P and Q are arranged in decreasing order, $a_{1} \geqslant \cdots \geqslant a_{k}$ and $b_{1} \geqslant \cdots \geqslant b_{k}$, we have that $a_{i} \leqslant b_{i}$ for $1 \leqslant i \leqslant k$. This gives a partial order on the k-element subsets of $\{1, \ldots, n\}$ for $1 \leqslant k \leqslant n$. For a sequence
θ of k numbers, denote by S_{θ} the set of elements of θ and by $\theta \leqslant i, 1 \leqslant i \leqslant k$, the subsequence of θ consisting of the first i elements. In [1] Ehresmann defined the following partial order on S_{n} (see also [10] and [12]): If $v, w \in S_{n}$, then

$$
v \preceq w \quad \Longleftrightarrow \quad S_{v \leqslant i} \leqslant S_{w \leqslant i} \text { for } 1 \leqslant i \leqslant n
$$

It is not difficult to check that the Ehresmann order coincides with the Bruhat order. We will use this fact later in the paper.
In the following lemma we identify (i, j) and (j, i) for $1 \leqslant i, j \leqslant n$.

LEMMA 2.2. Let $\pi \prec v \preceq \sigma \in S_{n}$ be such that $v=\pi \circ s_{i j}$ for some $1 \leqslant i<j \leqslant n$. Define an injective map

$$
\phi=\phi_{i j}: A(\sigma, v) \hookrightarrow\{(p, q) \mid 1 \leqslant p, q \leqslant n\}
$$

as follows:

- If $(r, t) \in A(\sigma, v)$ and $r, t \notin\{i, j\}$ or $r=i, t=j$, then $\phi(r, t)=(r, t)$.

Now let $r \neq i, j$.

- If $(r, i),(r, j) \in A(\sigma, v)$, then $\phi(r, i)=(r, i)$ and $\phi(r, j)=(r, j)$.
- If $(r, i) \in A(\sigma, v)$, but $(r, j) \notin A(\sigma, v)$, then

$$
\phi(r, i)= \begin{cases}(r, i), & \text { if } r<j, \pi_{r}<\pi_{j} \\ (r, j), & \text { otherwise } .\end{cases}
$$

- If $(r, j) \in A(\sigma, v)$, but $(r, i) \notin A(\sigma, v)$, then

$$
\phi(r, j)= \begin{cases}(r, i), & \text { if } r<j, \pi_{r}<\pi_{j} \\ (r, j), & \text { otherwise }\end{cases}
$$

Then $\operatorname{Im} \phi \subseteq A(\sigma, \pi)$.
Proof. If $(r, t) \in A(\sigma, v)$ and $r, t \notin\{i, j\}$, then $\pi \circ s_{r t} \prec v \circ s_{r t} \preceq \sigma$, so $\phi(r, t)=$ $(r, t) \in A(\sigma, \pi)$. We also have that $\phi(i, j)=(i, j) \in A(\sigma, v), A(\sigma, \pi)$. It remains to show that for $r \neq i, j$ if both $(r, i),(r, j) \in A(\sigma, v)$, then $(r, i),(r, j) \in A(\sigma, \pi)$ and if at least one of $(r, i),(r, j)$ is in $A(\sigma, v)$, then $A(\sigma, \pi)$ contains (r, i) (resp. $(r, j))$ if $r<j$ and $\pi_{r}<\pi_{j}$ (resp. $r>j$ or $\pi_{r}>\pi_{j}$). There are six possible cases and we consider each one separately:

Case (1) $r>j, \pi_{r}>\pi_{j}$
In this case $\pi \circ s_{r j} \prec v \circ s_{r i}, v \circ s_{r j}$. Therefore, if one of $(r, i),(r, j) \in A(\sigma, v)$, then $(r, j) \in A(\sigma, \pi)$. It remains to prove that if both $(r, i),(r, j) \in A(\sigma, v)$, then $(r, i) \in A(\sigma, \pi)$. Let $\alpha=\pi \circ s_{r i}, \quad \beta=v \circ s_{r i}, \quad$ and $\quad \gamma=v \circ s_{r j}$. If $k<j$, then $S_{\alpha \leqslant k}=S_{\beta_{\leqslant k}} \leqslant S_{\sigma_{\leqslant k}}$. On the other hand, if $k \geqslant j$, then $S_{\alpha_{\leqslant k}}=S_{\gamma_{\leqslant k}} \leqslant S_{\sigma_{\leqslant k}}$. Therefore, $\alpha=\pi \circ s_{r i} \preceq w$.

Case (2) $r>j, \pi_{r}<\pi_{j}$
We have $\pi \circ s_{r j} \prec \pi \prec \sigma$, so $(r, j) \in A(\sigma, \pi)$. It remains to show that if both $(r, i),(r, j) \in A(\sigma, v)$, then $(r, i) \in A(\sigma, \pi)$. This follows from the fact that $\pi \circ S_{r i} \prec v \circ S_{r j}$.

Case (3) $i<r<j, \pi_{r}>\pi_{j}$
In this case $\pi \circ s_{r j} \prec \pi \prec w$, so $(r, j) \in A(\sigma, \pi)$. It remains to show that if $(r, i),(r, j) \in A(\sigma, v)$, then $(r, i) \in A(\sigma, \pi)$. This follows from the fact that $\pi \circ S_{r i} \prec v \circ S_{r i}$.

Case (4) $i<r<j, \pi_{r}<\pi_{j}$
We have that $\pi \circ s_{r i} \prec v \preceq \sigma$, hence $(r, i) \in A(\sigma, \pi)$. It remains to show that if $(r, i),(r, j) \in A(\sigma, v)$, then $(r, j) \in A(\sigma, \pi)$. This follows from the fact that $\pi \circ s_{r j} \prec v \circ s_{r j}$.

Case (5) $r<i, \pi_{r}>\pi_{j}$
We have that each of $\pi \circ s_{r i}, \pi \circ s_{r j}, v \circ s_{r i}, v \circ s_{r j}$ is smaller than v. Hence $(r, i),(r, j) \in A(\sigma, \pi), A(\sigma, v)$.

Case (6) $r<i, \pi_{r}<\pi_{j}$
In this case $\pi \circ s_{r i} \prec v \circ s_{r i}, v \circ s_{r j}$. Therefore, if one of $(r, i),(r, j) \in A(\sigma, v)$, then $(r, i) \in A(\sigma, \pi)$. It remains to prove that if both $(r, i),(r, j) \in A(\sigma, v)$, then $(r, j) \in A(\sigma, \pi)$. Let $\alpha=\pi \circ s_{r j}, \beta=v \circ s_{r i}$, and $\gamma=v \circ s_{r j}$. If $k<i$, then $S_{\alpha_{\leqslant k}}=$ $S_{\beta_{\leqslant k}} \leqslant S_{\sigma_{\leqslant k}}$. On the other hand, if $k \geqslant i$, then $S_{\alpha \leqslant k}=S_{\gamma \leqslant k} \leqslant S_{\sigma_{\leqslant k}}$. Therefore, $\alpha=\pi \circ s_{r j} \preceq \sigma$.

Proof of Proposition 2.1. Since the Borel group B acts on X_{w} and for $\sigma \prec w$ the closure of the orbit of e_{σ} is X_{σ}, to prove the inclusion $X_{\tau^{\prime}} \subseteq \operatorname{Sing} X_{w}$, it will be enough to show that $e_{\tau^{\prime}}$ is a singular point in X_{w}.

Let w and τ^{\prime} satisfy conditions (1) or (2) in Conjecture 1.3. We need to show that

$$
\left|A\left(w, \tau^{\prime}\right)\right|=\operatorname{dim} T\left(w, \tau^{\prime}\right)>\operatorname{dim} X_{w}=l(w)
$$

We will deal separately with conditions (1) and (2).
First assume that the permutations w and τ^{\prime} satisfy condition (1) in Conjecture 1.3. If $n=4$, then $w=w^{\prime}=4231$ and $\tau=\tau^{\prime}=2143$, hence

$$
A\left(w, \tau^{\prime}\right)=\{(i, j) \mid 1 \leqslant i<j \leqslant 4\}
$$

and $\left|A\left(w, \tau^{\prime}\right)\right|=6>l(w)=5$. Now let $n>4$. Suppose that $w_{i_{1}} \neq n$. Then $n \notin\left\{w_{i_{1}}, w_{i_{2}}, w_{i_{3}}, w_{i_{4}}\right\}$, hence n is in the same position in w and τ. Since $w \succeq w^{\prime} \succ \tau^{\prime} \succeq \tau$ it follows that n is in the same position in $w, w^{\prime}, \tau^{\prime}$, and τ. Therefore we can replace $w, w^{\prime}, \tau^{\prime}, \tau$ by $w \backslash n, w^{\prime} \backslash n, \tau^{\prime} \backslash n, \tau \backslash n$ respectively and conclude the proof by induction on n. Thus we can assume that $w_{i_{1}}=n$. Similarly we can assume that $w_{i_{4}}=1$. The fact that $w \succeq w^{\prime}, \tau^{\prime} \succeq \tau$, and $w_{i_{1}}=n$ implies the following
inequalities:

$$
\begin{equation*}
i_{1} \leqslant j_{1} \text { and } i_{3} \geqslant j_{3} \tag{1}
\end{equation*}
$$

The fact that $w \succeq w^{\prime}, \tau^{\prime} \succeq \tau$, and $w_{i_{4}}=1$ implies that

$$
\begin{equation*}
i_{4} \geqslant j_{4} \text { and } i_{2} \leqslant j_{2} \tag{2}
\end{equation*}
$$

Let $v \in S_{n}$ be the permutation obtained from τ^{\prime} by interchanging $\tau_{j_{1}}^{\prime}$ and $\tau_{j_{3}}^{\prime}$ as elements in τ^{\prime}, i.e., $v=\tau^{\prime} \circ s_{j_{1} j_{3}}$. Then $w^{\prime} \succ v \succ \tau^{\prime}$. The inequalities (1) and (2) imply that if $a=w_{i_{2}}<b=w_{i_{3}}$, then we can write $w, w^{\prime}, v, \tau^{\prime}$, and τ as follows:

$$
\begin{align*}
& w=\cdots \mathbf{n} \cdots \cdots \mathbf{a} \cdots \cdots \cdots \mathbf{b} \cdots \cdots \mathbf{1} \cdots \\
& w^{\prime}=\cdots \cdots \mathbf{n} \cdots \cdots \mathbf{a} \cdots \mathbf{b} \cdots \cdots \mathbf{1} \cdots \cdots \\
& v=\cdots \cdots \mathbf{n} \cdots \cdots \mathbf{1} \cdots \mathbf{a} \cdots \cdots \mathbf{b} \cdots \cdots \tag{3}\\
& \tau^{\prime}=\cdots \cdots \mathbf{a} \cdots \cdots \mathbf{1} \cdots \mathbf{n} \cdots \cdots \cdot \mathbf{b} \cdots \cdots \\
& \tau=\cdots \mathbf{a} \cdots \cdots \mathbf{1} \cdots \cdots \cdots \mathbf{n} \cdots \cdots \mathbf{b} \cdots
\end{align*}
$$

(As in Example 1.4, the boldface numbers are the elements in positions $i_{1}, i_{2}, i_{3}, i_{4}$ in w and τ and the elements in positions $j_{1}, j_{2}, j_{3}, j_{4}$ in w^{\prime}, v, and τ^{\prime}.) The only freedom in (3) is that the relative positions of the i_{2} th and j_{1} th columns can be interchanged, and also the relative positions of the i_{3} th and j_{4} th columns can be interchanged.

For example, the permutations

$$
w=975328641 \quad \text { and } \quad \tau^{\prime}=753219864
$$

satisfy condition (1) in Conjecture 1.3 with $i_{1}=1, i_{2}=4, i_{3}=7, i_{4}=9, j_{1}=3$, $j_{2}=5, j_{3}=6$, and $j_{4}=8$. Indeed, in this example

$$
w^{\prime}=759236814, \quad \tau=375128946
$$

$w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}=w_{j_{1}}^{\prime} w_{j_{2}}^{\prime} w_{j_{3}}^{\prime} w_{j_{4}}^{\prime}=\mathbf{9 3 6 1}$ has the same relative order as 4231 , and $\tau \prec \tau^{\prime} \prec w^{\prime} \prec w$.

We know that $|A(w, v)|=\operatorname{dim} T(w, v) \geqslant \operatorname{dim} X_{w}$. So to prove the desired inequality $\left|A\left(w, \tau^{\prime}\right)\right|>\operatorname{dim} X_{w}$ it will be enough to show that $\left|A\left(w, \tau^{\prime}\right)\right|>|A(w, v)|$.

In the example above
$v=759213864$,
$B\left(w, \tau^{\prime}\right)=\{(1,6),(2,6),(3,6),(4,6),(5,6),(1,7),(2,7),(3,7),(4,7)$,
$(5,7),(2,8),(3,8),(4,8),(5,8),(3,9),(4,9),(5,9)\}$,
and
$B(w, v)=\{(1,3),(2,3),(4,6),(5,6),(6,7),(6,8),(6,9)\}$.
Therefore in this example we have that

$$
\left|A\left(w, \tau^{\prime}\right)\right|=l\left(\tau^{\prime}\right)+\left|B\left(w, \tau^{\prime}\right)\right|=19+17=36
$$

and

$$
|A(w, v)|=l(v)+|B(w, v)|=20+7=27
$$

hence $\left|A\left(w, \tau^{\prime}\right)\right|>|A(w, v)|$.
Apply Lemma 2.2 to the triple $\tau^{\prime} \prec v \prec w$. Since $\left(j_{2}, j_{4}\right) \in A\left(w, \tau^{\prime}\right)$, to prove the inequality $|A(w, v)|<\left|A\left(w, \tau^{\prime}\right)\right|$ it will be enough to show that $\left(j_{2}, j_{4}\right) \notin \phi$, where $\phi=\phi_{j_{1} j_{3}}: A(w, v) \hookrightarrow A\left(w, \tau^{\prime}\right)$ is the monomorphism from Lemma 2.2. We have that $j_{2}, j_{4} \notin\left\{j_{1}, j_{3}\right\}$, so from the definition of ϕ it follows that the only element that ϕ could possibly map to $\left(j_{2}, j_{4}\right)$ is $\left(j_{2}, j_{4}\right)$ itself. Thus, to prove the inequality $|A(w, v)|<\left|A\left(w, \tau^{\prime}\right)\right|$ it will be enough to show that $\left(j_{2}, j_{4}\right) \notin A(w, v)$.
In our example $v \circ s_{j_{2} j_{4}}=v \circ s_{58}=759263814 \npreceq w$, hence $(5,8) \notin A(w, v)$.
Assume that $\left(j_{2}, j_{4}\right) \in A(w, v)$ and let $\xi=v \circ s_{j_{2} j_{4}}$. Then $\xi \preceq w$. By (1) and (2) we have the inequalities $i_{2} \leqslant j_{2}<j_{3} \leqslant i_{3}$, hence

$$
\begin{array}{ll}
\text { if } S_{w \leqslant j_{2}}=\left\{n, \alpha_{2}, \ldots, \alpha_{j_{2}-1}, \alpha_{j_{2}}\right\}, & \text { then } S_{\tau \leqslant j_{2}}=\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{j_{2}}, 1\right\}, \\
\text { if } S_{w^{\prime} \leqslant j_{2}}=\left\{n, \beta_{2}, \ldots, \beta_{j_{2}-1}, \beta_{j_{2}}\right\}, & \text { then } S_{\tau^{\prime} \leqslant j_{2}}=\left\{\beta_{2}, \beta_{3}, \ldots, \beta_{j_{2}}, 1\right\} .
\end{array}
$$

Assume that $\alpha_{2} \geqslant \cdots \geqslant \alpha_{j_{2}}$ and $\beta_{2} \geqslant \cdots \geqslant \beta_{j_{2}}$. Since $w \succeq w^{\prime}$ and $\tau^{\prime} \succeq \tau$ it follows that $\alpha_{r} \geqslant \beta_{r} \geqslant \alpha_{r}$ for $2 \leqslant r \leqslant j_{2}$, hence $\alpha_{r}=\beta_{r}$ for $2 \leqslant r \leqslant j_{2}$ and $S_{w \leqslant j_{2}}=S_{w^{\prime} \leqslant j_{2}}$. Since $\xi_{r}=w_{r}^{\prime}$ for $1 \leqslant r \leqslant j_{2}-1$ and $\xi_{j_{2}}=w_{i_{3}}>w_{i_{2}}=w_{j_{2}}^{\prime}$ it follows that ${ }^{\leqslant} S_{\xi_{\leqslant j}}>$ $S_{w^{\prime} \leqslant j_{2}}=S_{w \leqslant j_{2}}$. This implies that $\xi \npreceq w$, which is a contradiction.

It remains to prove that $\left|A\left(w, \tau^{\prime}\right)\right|>\operatorname{dim} X_{w}$ when w and τ^{\prime} satisfy condition (2) in Conjecture 1.3. The proof is similar to the one for condition (1).

First, we can assume that $w_{i_{2}}=n$ and $w_{i_{3}}=1$. The fact that $w \succeq w^{\prime}, \tau^{\prime} \succeq \tau$, and $w_{i_{2}}=n$ implies that:

$$
\begin{equation*}
i_{2} \leqslant j_{2} \text { and } i_{4} \geqslant j_{4} \tag{4}
\end{equation*}
$$

The fact that $w \succeq w^{\prime}, \tau^{\prime} \succeq \tau$, and $w_{i_{3}}=1$ implies that:

$$
\begin{equation*}
i_{3} \geqslant j_{3} \text { and } i_{1} \leqslant j_{1} \tag{5}
\end{equation*}
$$

For example, the permutations

$$
w=65872143 \quad \text { and } \quad \tau^{\prime}=51763284
$$

satisfy condition (2) in Conjecture 1.3 with $i_{1}=1, i_{2}=3, i_{3}=6, i_{4}=8, j_{1}=2$, $j_{2}=4, j_{3}=5$, and $j_{4}=7$. Indeed, in this example

$$
w^{\prime}=56781234, \quad \tau=15672348
$$

$w_{i_{1}} w_{i_{2}} w_{i_{3}} w_{i_{4}}=w_{j_{1}}^{\prime} w_{j_{2}}^{\prime} w_{j_{3}}^{\prime} w_{j_{4}}^{\prime}=\mathbf{6 8 1 3}$ has the same relative order as 3412 , and $\tau \prec \tau^{\prime} \prec w^{\prime} \prec w$.

Let $v \in S_{n}$ be the permutation obtained from τ^{\prime} by interchanging $\tau_{j_{1}}^{\prime}$ and $\tau_{j_{2}}^{\prime}$ as elements in τ^{\prime}, i.e., $v=\tau^{\prime} \circ s_{j_{1} j_{2}}$. Then $w^{\prime} \succ v \succ \tau^{\prime}$. As in the case of condition (1), to prove that $\left|A\left(w, \tau^{\prime}\right)\right|>\operatorname{dim} X_{w}$ it will be enough to show that $\left|A\left(w, \tau^{\prime}\right)\right|>|A(w, v)|$.

In the example above

```
v=56713284,
B(w, \tau')}={(1,4),(2,4),(2,5),(2,6),(3,7),(4, 7),(5,7),(5, 8)
and
B(w,v)={(1, 2),(4, 5),(4, 6),(3,7),(5,7),(5, 8)}.
```

Therefore in this example we have that $\left|A\left(w, \tau^{\prime}\right)\right|=l\left(\tau^{\prime}\right)+\left|B\left(w, \tau^{\prime}\right)\right|=13+8=21$ and $|A(w, v)|=l(v)+|B(w, v)|=14+6=20$, hence $\left|A\left(w, \tau^{\prime}\right)\right|>|A(w, v)|$.

We have that $\left(j_{2}, j_{4}\right) \in A\left(w, \tau^{\prime}\right)$. We will prove that $|A(w, v)|<\left|A\left(w, \tau^{\prime}\right)\right|$ by showing that $\left(j_{2}, j_{4}\right) \notin \phi$, where $\phi=\phi_{j_{1} j_{2}}$ is the monomorphism from Lemma 2.2 applied to the triple $\tau^{\prime} \prec v \prec w$. Since $j_{4} \neq j_{1}, j_{2}$, it follows from the definition of ϕ that if $\left(j_{2}, j_{4}\right) \in \phi$, then $\phi^{-1}\left(j_{2}, j_{4}\right)$ is either $\left(j_{1}, j_{4}\right)$ or $\left(j_{2}, j_{4}\right)$. We will prove that this is impossible by showing that $\left(j_{1}, j_{4}\right),\left(j_{2}, j_{4}\right) \notin A(w, v)$.

In our example

$$
v \circ s_{j, j_{4}}=v \circ s_{27}=58713264 \npreceq w
$$

and

$$
v \circ s_{j 2 j_{4}}=v \circ s_{47}=56783214 \npreceq w,
$$

hence $(2,7),(4,7) \notin A(w, v)$.
Assume first that $\left(j_{1}, j_{4}\right) \in A(w, v)$ and let $\xi=v \circ s_{j_{j} j_{4}}$. Then $\xi \preceq w$, so in particular $i_{2} \leqslant j_{1}$. By (5) we also have that $i_{3} \geqslant j_{3}$. Therefore,

$$
\begin{array}{ll}
\text { if } S_{w \leqslant j_{1}}=\left\{n, \alpha_{2}, \ldots, \alpha_{j_{1}-1}, \alpha_{j_{1}}\right\}, & \text { then } S_{\tau \leqslant j_{1}}=\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{j_{1}}, 1\right\}, \\
\text { if } S_{\xi_{\leqslant j_{1}}}=\left\{n, \beta_{2}, \ldots, \beta_{j_{1}-1}, \beta_{j_{1}}\right\}, & \text { then } S_{\tau_{\leqslant j_{1}}^{\prime}}=\left\{\beta_{2}, \beta_{3}, \ldots, \beta_{j_{1}}, 1\right\} .
\end{array}
$$

Since $w \succeq \xi$ and $\tau^{\prime} \succeq \tau$ it follows that $\alpha_{r} \geqslant \beta_{r} \geqslant \alpha_{r}$ for $2 \leqslant r \leqslant j_{1}$, hence $S_{w \leqslant j_{1}}=S_{\xi_{\leqslant j_{1}}}$. But $w_{i_{1}} \in S_{w \leqslant j_{1}}$, whereas $w_{i_{1}}=\xi_{j_{4}} \notin S_{\xi_{\leqslant j_{1}}}$, which is a contradiction. Therefore $\left(j_{1}, j_{4}\right) \notin A(w, v)$.

Now assume that $\left(j_{2}, j_{4}\right) \in A(w, v)$ and let $\eta=v \circ s_{j_{2} / 4}$. Then $\eta \preceq w$, so in particular $i_{3} \geqslant j_{4}$. By (4) we also have that $i_{2} \leqslant j_{2}$. This implies that

$$
\begin{array}{ll}
\text { if } S_{w \leqslant j_{3}}=\left\{n, \alpha_{2}, \ldots, \alpha_{j_{3}-1}, \alpha_{j_{3}}\right\}, & \text { then } S_{\tau \leqslant j_{3}}=\left\{\alpha_{2}, \alpha_{3}, \ldots, \alpha_{j_{3}}, 1\right\}, \\
\text { if } S_{\eta_{\leqslant j_{3}}}=\left\{n, \beta_{2}, \ldots, \beta_{j_{3}-1}, \beta_{j_{3}}\right\}, & \text { then } S_{\tau_{\leqslant}^{\prime} j_{3}}=\left\{\beta_{2}, \beta_{3}, \ldots, \beta_{j_{3}}, 1\right\} .
\end{array}
$$

Since $w \succeq \eta$ and $\tau^{\prime} \succeq \tau$ it follows that $\alpha_{r} \geqslant \beta_{r} \geqslant \alpha_{r}$ for $2 \leqslant r \leqslant j_{3}$, hence $S_{w \leqslant j_{3}}=S_{\eta_{\leqslant j_{3}}}$. But $w_{i_{4}} \notin S_{w_{\leqslant j_{3}}}$, while $w_{i_{4}}=\eta_{j_{3}} \in S_{\eta_{\leqslant j_{3}}}$, which is a contradiction. Therefore $\left(j_{2}, j_{4}\right) \notin A(w, v)$.
This completes the proof of Proposition 2.1.

Acknowledgement

I thank the referees for the helpful comments.

References

1. Ehresmann, C.: Sur la topologie de certains espaces homogènes, Ann. Math. 35 (1934), 396-443.
2. Fulton, W.: Young Tableaux; with Applications to Representation Theory and Geometry, London Math. Soc. Student Texts 35, Cambridge Univ. Press, Cambridge, 1997.
3. Gasharov, V.: Factoring the Poincaré polynomials for the Bruhat order on S_{n}, J. Combin. Theory Ser. A 83 (1998), 159-164.
4. Gonciulea, N. and Lakshmibai, V.: Singular loci of ladder determinantal varieties and Schubert varieties, J. Algebra 229 (2000), 463-497.
5. Gonciulea, N. and Lakshmibai, V.: Schubert varieties, toric varieties, and ladder determinantal varieties, Ann. Inst. Fourier (Grenoble) 47 (1997), 1013-1064.
6. Kumar, S.: The nil Hecke ring and singularity of Schubert varieties, Invent. Math. 123 (1996), 471-506.
7. Lakshmibai, V. and Sandhya, B.: Criterion for smoothness of Schubert varieties in SL(n)/B, Proc. Indian Acad. Sci. (Math. Sci.) 100 (1990), 45-52.
8. Lakshmibai, V. and Seshadri, C. S.: Singular locus of a Schubert variety, Bull. Amer. Math. Soc. 11 (1984), 363-366.
9. Lascoux, A.: Polynômes de Kazhdan-Lusztig pour les variétés de Schubert vexillaires, C.R. Acad. Sci. Paris Sér. I Math. 321 (1995), 667-670.
10. Lascoux, A.: Ordonner le groupe symétrique: pourquoi utiliser l'algèbre de IwahoriHecke?, In: Proc. Internat. Cong. Mathematicians, Vol. III (Berlin, 1998).
11. Lascoux, A. and Schützenberger, M.-P.: Polynômes de Kazhdan-Lusztig pour les grassmanniennes, Astérisque 87-88 (1981), 249-266.
12. Proctor, R.: Classical Bruhat orders and lexicographic shellability, J. Algebra 77 (1982), 104-126.
13. Shapiro, B., Shapiro, M. and Vainshtein, A.: Kazhdan-Lusztig polynomials for certain varieties of incomplete flags, Discrete Math. 180 (1998), 345-355.
