
Suf¢ciency of Lakshmibai^Sandhya Singularity
Conditions for Schubert Varieties

VESSELIN GASHAROV
Department of Mathematics, Cornell University, Ithaca, NY 14853, U.S.A.
e-mail: vesko@math.cornell.edu

(Received: 9 June 1999; accepted: 11 April 2000)

Abstract. We establish one direction ofa conjecturebyLakshmibai and Sandhyawhich describes
combinatorially the singular locus of a Schubert variety.We prove that the conjectured singular
locus is contained in the singular locus.
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1. Introduction

Let n be a positive integer and Sn the group of permutations of the set f1; . . . ; ng. We
use the one-line notation to write the elements of Sn; namely, for w 2 Sn we write
w � w1w2 . . .wn, where wi � w�i� for 1W iW n. We denote the cardinality of a ¢nite
set A by jAj. Let �n� be the complete £ag variety consisting of £ags
E� � �E1 � E2 � � � � � En � Cn� of nested vector spaces in Cn. For 1W iW n, let
ei be the ith standard basis vector of Cn and Fi � he1; . . . ; eii the subspace of Cn

spanned by e1; . . . ; ei. The Schubert variety Xw is the subvariety of �n� consisting
of the £ags E� such that dim�Ep \ Fq�X jfiW pjwi W qgj for 1W p; qW n.
Equivalently, if B is the Borel subgroup of GLn�C� consisting of the upper triangular
matrices, then Xw � BwB=B. The Bruhat order � on Sn can be de¢ned as follows:

v � w if jfiW pjvi W qgjX jfiW pjwi W qgj for 1W p; qW n :

Therefore v � w if and only if Xv � Xw. The Bruhat order makes Sn into a graded
poset. The length l�w� of a permutation w 2 Sn is the rank of w in the Bruhat order
on Sn. Equivalently, l�w� is the number of inversions of w, i.e.,

l�w� � jf�i; j�j1W i < jW n and wi > wjgj:

We have that dimXw � l�w�. We associate to v 2 Sn the coordinate £ag

ev � �hev1i � hev1 ; ev2i � � � � � hev1 ; . . . ; evni � Cn� :
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Then ev 2 Xw if and only if v � w. For an introduction to the theory of Schubert
varieties see e.g. [2].

Smooth Schubert varieties are characterized combinatorially as follows:

THEOREM 1.1 (Lakshmibai and Sandhya [7]). The Schubert variety Xw is smooth if
and only if w does not contain a subsequence wi1wi2wi3wi4 of 4 elements with the same
relative order as 4231 or 3412.

THEOREM 1.2 (Gasharov [3]). Let w 2 Sn. The Schubert variety Xw is smooth if and
only if the Poincarë polynomial pw�t� �

P
v�w t

l�v� factors into polynomials of the form
1� t� t2 � . . .� tr.

A criterion for smoothness of Schubert varieties in terms of the nil Hecke ring was
given by Kumar [6].

Let SingXw denote the singular locus of Xw. The Borel group B acts on Xw and
SingXw is invariant under this action, so SingXw is a union of Schubert varieties
Xl for some l � w. We have that SingX4231 � X2143 and SingX3412 � X1324 [7,
Remark 3.1]. Lakshmibai and Sandhya conjectured a combinatorial description
of SingXw in [7]:

CONJECTURE 1.3. If w 2 Sn, then SingXw � [lXl ; where l runs over all maximal
elements (in the Bruhat order) of the set Z consisting of all t0 � w satisfying (1)
or (2) below:

(1) There exists a subsequence wi1wi2wi3wi4 of 4 elements in w with the same relative
order as 4231. Let t 2 Sn be the permutation obtained from w by replacing
wi1 ;wi2 ;wi3 ;wi4 as elements in w by wi2 ;wi4 ;wi1 ;wi3 respectively. There exists a
w0 2 Sn containing a subsequence w0j1w

0
j2w
0
j3w
0
j4 such that w0j1 � wi1 , w0j2 � wi2 ,

w0j3 � wi3 , w
0
j4 � wi4 , t

0 is obtained from w0 by replacing w0j1 ;w
0
j2 ;w

0
j3 ;w

0
j4 as elements

in w0 by w0j2 ;w
0
j4 ;w

0
j1 ;w

0
j3 respectively, and t � t0 � w0 � w.

(2) There exists a subsequence wi1wi2wi3wi4 of 4 elements in w with the same relative
order as 3412. Let t 2 Sn be the permutation obtained from w by replacing
wi1 ;wi2 ;wi3 ;wi4 as elements in w by wi3 ;wi1 ;wi4 ;wi2 respectively. There exists a
w0 2 Sn containing a subsequence w0j1w

0
j2w
0
j3w
0
j4 such that w0j1 � wi1 , w0j2 � wi2 ,

w0j3 � wi3 , w
0
j4 � wi4 , t

0 is obtained from w0 by replacing w0j1 ;w
0
j2 ;w

0
j3 ;w

0
j4 as elements

in w0 by w0j3 ;w
0
j1 ;w

0
j4 ;w

0
j2 respectively, and t � t0 � w0 � w.

Gonciulea and Lakshmibai showed that Conjecture 1.3 is true for a class of
Schubert varieties related to ladder determinantal varieties [4, 5].

A permutation p � p1 . . . pn which does not contain a subsequence pi1pi2pi3pi4
with the same relative order as 2143 is called vexillary. The Kazhdan^Lusztig
polynomials Pp;w�q�, p � w 2 Sn, measure the singularities of Schubert varieties.
In [9] (see also [10]) Lascoux computed the polynomials Pp;w�q�when p is a vexillary
permutation. Other classes of Kazhdan^Lusztig polynomials are treated, e.g., in
[11, 13].
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Next we give an example which illustrates the above conjecture.

EXAMPLE 1.4. Let w � 5 3 8 2 6 4 7 1 2 S8. Then the irreducible components of
SingXw are the Schubert varieties Xp�i� , i � 1; 2; 3; 4, where p�1� � 3 2 5 4 8 6 7 1,
p�2� � 3 2 8 1 6 5 7 4, p�3� � 5 3 2 1 8 6 7 4, and p�4� � 5 3 6 2 4 1 8 7. We have that p�1�

satis¢es condition (2) of Conjecture 1.3 with i1 � 1; i2 � 3; i3 � 4; i4 � 6; j1 � 2;
j2 � 3; j3 � 4; j4 � 5, and

w � 5 3 8 2 6 4 7 1;
w0 � 3 5 8 2 4 6 7 1;

p�1� � t0 � 3 2 5 4 8 6 7 1;
t � 2 3 5 4 6 8 7 1:

(The boldface numbers are the elements in positions i1; i2; i3; i4 in w and t and the
elements in positions j1; j2; j3; j4 in w0 and t0.)

We also have that p�2� satis¢es condition (1) of Conjecture 1.3 with i1 � 1;
i2 � 4; i3 � 6; i4 � 8; j1 � 2; j2 � 4; j3 � 6; j4 � 8, and

w � 5 3 8 2 6 4 7 1;
w0 � 3 5 8 2 6 4 7 1;

p�2� � t0 � 3 2 8 1 6 5 7 4;
t � 2 3 8 1 6 5 7 4:

The permutation p�3� satis¢es condition (1) of Conjecture 1.3 with i1 � 3; i2 � 4;
i3 � 6; i4 � 8; j1 � 3; j2 � 4; j3 � 5; j4 � 8, and

w � 5 3 8 2 6 4 7 1;
w0 � 5 3 8 2 4 6 7 1;

p�3� � t0 � 5 3 2 1 8 6 7 4;
t � 5 3 2 1 6 8 7 4:

Finally, p�4� satis¢es condition (1) of Conjecture 1.3 with i1 � 3; i2 � 6; i3 � 7;
i4 � 8; j1 � 5; j2 � 6; j3 � 7; j4 � 8, and

w � 5 3 8 2 6 4 7 1;
w0 � 5 3 6 2 8 4 7 1;

p�4� � t0 � 5 3 6 2 4 1 8 7;
t � 5 3 4 2 6 1 8 7:

Remark 1.5. In Conjecture 1.3, given a t0 satisfying condition (1) or (2), there is in
general more than one choice for the permutationsw0 and t. Consider for instance the
permutations w and t0 � p�2� from Example 1.4. They satisfy condition (1) of
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Conjecture 1.3 with i1 � 1; i2 � 2; i3 � 6; i4 � 8; j1 � 1; j2 � 4; j3 � 6; j4 � 8, and

w � 5 3 8 2 6 4 7 1;
w0 � 5 2 8 3 6 4 7 1;

p�2� � t0 � 3 2 8 1 6 5 7 4;
t � 3 1 8 2 6 5 7 4:

This is a different choice of w0 and t than the one we made in Example 1.4.
In this paper we prove one direction of Conjecture 1.3, namely the suf¢ciency of

Lakshmibai^Sandhya singularity conditions:

THEOREM 1.6. In the notation of Conjecture 1.3, [lXl � SingXw :

2. Proof of Theorem 1.6

Theorem 1.6 follows immediately from Proposition 2.1 below.

PROPOSITION 2.1. Let w and t0 satisfy conditions (1) or (2) in Conjecture 1.3.
Then Xt0 � SingXw.

In the special case when t0 � t and w0 � w (in the notation of Conjecture 1.3),
Proposition 2.1 was proved in [7, Lemma 3.1].

Before proving Proposition 2.1 we introduce some notation and prove a prelimi-
nary lemma. For 1W i; jW n, i 6� j, denote by sij 2 Sn the transposition which
interchanges i and j. For p � s 2 Sn, let T �s; p� denote the Zariski tangent space
to Xw at ep and

A�s; p� � f�i; j�j1W i < jW n and p � sij � sg :
Lakshmibai and Seshadri [8] proved that dimT �s; p� � jA�s; p�j. Consider also the
set

B�s; p� � f�i; j�j1W i < jW n; pi < pj; and p � sij � sg :
Since p � sij � p � s for all inversions �i; j� of p, it follows that

A�s; p� � f�i; j�j1W i < jW n and pi > pjg [ B�s; p�;
hence

jA�s; p�j � l�p� � jB�s; p�j:

Let P � fa1; . . . ; akg and Q � fb1; . . . ; bkg be subsets of f1; . . . ; ng. We say that
PWQ if when the elements of P and Q are arranged in decreasing order,
a1 X � � � X ak and b1 X � � � X bk, we have that ai W bi for 1W iW k. This gives a
partial order on the k-element subsets of f1; . . . ; ng for 1W kW n. For a sequence
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y of k numbers, denote by Sy the set of elements of y and by yW i, 1W iW k, the
subsequence of y consisting of the ¢rst i elements. In [1] Ehresmann de¢ned the
following partial order on Sn (see also [10] and [12]): If v;w 2 Sn, then

v � w () SvW i W SwW i for 1W iW n :

It is not dif¢cult to check that the Ehresmann order coincides with the Bruhat order.
We will use this fact later in the paper.

In the following lemma we identify �i; j� and �j; i� for 1W i; jW n.

LEMMA 2.2. Let p � v � s 2 Sn be such that v � p � sij for some 1W i < jW n.
De¢ne an injective map

f � fij : A�s; v� ,!f�p; q�j1W p; qW ng

as follows:

. If �r; t� 2 A�s; v� and r; t =2 fi; jg or r � i, t � j, then f�r; t� � �r; t�.
Now let r 6� i; j.

. If �r; i�; �r; j� 2 A�s; v�, then f�r; i� � �r; i� and f�r; j� � �r; j�.

. If �r; i� 2 A�s; v�, but �r; j� =2 A�s; v�, then

f�r; i� � �r; i�; if r < j; pr < pj;
�r; j�; otherwise:

�
. If �r; j� 2 A�s; v�, but �r; i� =2 A�s; v�, then

f�r; j� � �r; i�; if r < j; pr < pj ;
�r; j�; otherwise:

�
Then Imf � A�s; p�.
Proof. If �r; t� 2 A�s; v� and r; t =2 fi; jg, then p � srt � v � srt � s, so f�r; t� �
�r; t� 2 A�s; p�. We also have that f�i; j� � �i; j� 2 A�s; v�;A�s; p�. It remains to show
that for r 6� i; j if both �r; i�; �r; j� 2 A�s; v�, then �r; i�; �r; j� 2 A�s; p� and if at least
one of �r; i�; �r; j� is in A�s; v�, then A�s; p� contains �r; i� (resp. �r; j�) if r < j and
pr < pj (resp. r > j or pr > pj). There are six possible cases and we consider each
one separately:

Case (1) r > j, pr > pj
In this case p � srj � v � sri, v � srj. Therefore, if one of �r; i�, �r; j� 2 A�s; v�, then
�r; j� 2 A�s; p�. It remains to prove that if both �r; i�, �r; j� 2 A�s; v�, then
�r; i� 2 A�s; p�. Let a � p � sri, b � v � sri, and g � v � srj . If k < j, then
SaW k � SbW k

WSsW k . On the other hand, if kX j, then SaW k � SgW k
WSsW k .

Therefore, a � p � sri � w.

LAKSHMIBAI^SANDHYA SINGULARITY CONDITIONS 51

https://doi.org/10.1023/A:1017585921369 Published online by Cambridge University Press

https://doi.org/10.1023/A:1017585921369


Case (2) r > j, pr < pj
We have p � srj � p � s, so �r; j� 2 A�s; p�. It remains to show that if both
�r; i�; �r; j� 2 A�s; v�, then �r; i� 2 A�s; p�. This follows from the fact that
p � sri � v � srj.

Case (3) i < r < j, pr > pj
In this case p � srj � p � w, so �r; j� 2 A�s; p�. It remains to show that if
�r; i�; �r; j� 2 A�s; v�, then �r; i� 2 A�s; p�. This follows from the fact that
p � sri � v � sri.

Case (4) i < r < j, pr < pj
We have that p � sri � v � s, hence �r; i� 2 A�s; p�. It remains to show that if
�r; i�; �r; j� 2 A�s; v�, then �r; j� 2 A�s; p�. This follows from the fact that
p � srj � v � srj.

Case (5) r < i, pr > pj
We have that each of p � sri, p � srj, v � sri, v � srj is smaller than v. Hence
�r; i�; �r; j� 2 A�s; p�;A�s; v�.

Case (6) r < i, pr < pj
In this case p � sri � v � sri, v � srj . Therefore, if one of �r; i�, �r; j� 2 A�s; v�, then
�r; i� 2 A�s; p�. It remains to prove that if both �r; i�, �r; j� 2 A�s; v�, then
�r; j� 2 A�s; p�. Let a � p � srj, b � v � sri, and g � v � srj. If k < i, then SaW k �
SbW k

WSsW k . On the other hand, if kX i, then SaW k � SgW k
WSsW k . Therefore,

a � p � srj � s. &

Proof of Proposition 2.1. Since the Borel group B acts on Xw and for s � w the
closure of the orbit of es is Xs, to prove the inclusion Xt0 � SingXw, it will be enough
to show that et0 is a singular point in Xw.

Let w and t0 satisfy conditions (1) or (2) in Conjecture 1.3. We need to show that

jA�w; t0�j � dimT �w; t0� > dimXw � l�w�
We will deal separately with conditions (1) and (2).

First assume that the permutations w and t0 satisfy condition (1) in Conjecture 1.3.
If n � 4, then w � w0 � 4231 and t � t0 � 2143, hence

A�w; t0� � f�i; j�j1W i < jW 4g
and jA�w; t0�j � 6 > l�w� � 5. Now let n > 4. Suppose that wi1 6� n. Then
n =2 fwi1 ;wi2 ;wi3 ;wi4g, hence n is in the same position in w and t. Since
w � w0 � t0 � t it follows that n is in the same position in w, w0, t0, and t. Therefore
we can replace w, w0, t0, t by w n n, w0 n n, t0 n n, t n n respectively and conclude
the proof by induction on n. Thus we can assume that wi1 � n. Similarly we can
assume that wi4 � 1. The fact that w � w0, t0 � t, and wi1 � n implies the following
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inequalities:

i1 W j1 and i3 X j3: �1�

The fact that w � w0, t0 � t, and wi4 � 1 implies that

i4 X j4 and i2 W j2: �2�

Let v 2 Sn be the permutation obtained from t0 by interchanging t0j1 and t0j3 as
elements in t0, i.e., v � t0 � sj1j3 . Then w0 � v � t0. The inequalities (1) and (2) imply
that if a � wi2 < b � wi3 , then we can write w, w0, v, t0, and t as follows:

w � � � � n � � � � � � a � � � � � � � � � b � � � � � � 1 � � � ;
w0 � � � � � � � n � � � � � � a � � � b � � � � � � 1 � � � � � � ;
v � � � � � � � n � � � � � � 1 � � � a � � � � � � b � � � � � � ;
t0 � � � � � � � a � � � � � � 1 � � � n � � � � � � b � � � � � � ;
t � � � � a � � � � � � 1 � � � � � � � � � n � � � � � � b � � �

�3�

(As in Example 1.4, the boldface numbers are the elements in positions i1; i2; i3; i4 in
w and t and the elements in positions j1; j2; j3; j4 in w0, v, and t0.) The only freedom
in (3) is that the relative positions of the i2th and j1th columns can be interchanged,
and also the relative positions of the i3th and j4th columns can be interchanged.

For example, the permutations

w � 9 7 5 3 2 8 6 4 1 and t0 � 7 5 3 2 1 9 8 6 4

satisfy condition (1) in Conjecture 1.3 with i1 � 1; i2 � 4; i3 � 7; i4 � 9; j1 � 3;
j2 � 5; j3 � 6; and j4 � 8. Indeed, in this example

w0 � 7 5 9 2 3 6 8 1 4; t � 3 7 5 1 2 8 9 4 6;

wi1wi2wi3wi4 � w0j1w
0
j2w
0
j3w
0
j4 � 9 3 6 1 has the same relative order as 4 2 3 1, and

t � t0 � w0 � w.
We know that jA�w; v�j � dimT �w; v�X dimXw: So to prove the desired

inequality jA�w; t0�j > dimXw it will be enough to show that jA�w; t0�j > jA�w; v�j.
In the example above

v � 7 5 9 2 1 3 8 6 4;
B�w; t0� � f�1; 6�; �2; 6�; �3; 6�; �4; 6�; �5; 6�; �1; 7�; �2; 7�; �3; 7�; �4; 7�;

�5; 7�; �2; 8�; �3; 8�; �4; 8�; �5; 8�; �3; 9�; �4; 9�; �5; 9�g;
and

B�w; v� � f�1; 3�; �2; 3�; �4; 6�; �5; 6�; �6; 7�; �6; 8�; �6; 9�g:
Therefore in this example we have that

jA�w; t0�j � l�t0� � jB�w; t0�j � 19� 17 � 36
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and

jA�w; v�j � l�v� � jB�w; v�j � 20� 7 � 27;

hence jA�w; t0�j > jA�w; v�j.
Apply Lemma 2.2 to the triple t0 � v � w. Since �j2; j4� 2 A�w; t0�, to prove the

inequality jA�w; v�j < jA�w; t0�j it will be enough to show that �j2; j4� =2 f, where
f � fj1j3 : A�w; v�,!A�w; t0� is the monomorphism from Lemma 2.2. We have that
j2; j4 =2 fj1; j3g, so from the de¢nition of f it follows that the only element that f
could possibly map to �j2; j4� is �j2; j4� itself. Thus, to prove the inequality
jA�w; v�j < jA�w; t0�j it will be enough to show that �j2; j4� =2 A�w; v�.

In our example v � sj2j4 � v � s58 � 7 5 9 2 6 3 8 1 4 �= w, hence �5; 8� =2 A�w; v�.
Assume that �j2; j4� 2 A�w; v� and let x � v � sj2j4 . Then x � w. By (1) and (2) we

have the inequalities i2 W j2 < j3 W i3, hence

if SwW j2
� fn; a2; . . . ; aj2ÿ1; aj2g; then StW j2

� fa2; a3; . . . ; aj2 ; 1g;
if Sw0

W j2
� fn; b2; . . . ; bj2ÿ1; bj2g; then St0

W j2
� fb2; b3; . . . ; bj2 ; 1g:

Assume that a2 X � � � X aj2 and b2 X � � � X bj2 . Since w � w0 and t0 � t it follows
that ar X br X ar for 2W rW j2, hence ar � br for 2W rW j2 and SwW j2

� Sw0
W j2

. Since
xr � w0r for 1W rW j2 ÿ 1 and xj2 � wi3 > wi2 � w0j2 it follows that SxW j2

>

Sw0
W j2
� SwW j2

. This implies that x �= w, which is a contradiction.
It remains to prove that jA�w; t0�j > dimXw when w and t0 satisfy condition (2) in

Conjecture 1.3. The proof is similar to the one for condition (1).
First, we can assume that wi2 � n and wi3 � 1. The fact that w � w0, t0 � t, and

wi2 � n implies that:

i2 W j2 and i4 X j4: �4�

The fact that w � w0, t0 � t, and wi3 � 1 implies that:

i3 X j3 and i1 W j1: �5�

For example, the permutations

w � 6 5 8 7 2 1 4 3 and t0 � 5 1 7 6 3 2 8 4

satisfy condition (2) in Conjecture 1.3 with i1 � 1; i2 � 3; i3 � 6; i4 � 8; j1 � 2;
j2 � 4; j3 � 5; and j4 � 7. Indeed, in this example

w0 � 5 6 7 8 1 2 3 4; t � 1 5 6 7 2 3 4 8;

wi1wi2wi3wi4 � w0j1w
0
j2w
0
j3w
0
j4 � 6 8 1 3 has the same relative order as 3 4 1 2, and

t � t0 � w0 � w.
Let v 2 Sn be the permutation obtained from t0 by interchanging t0j1 and t0j2 as

elements in t0, i.e., v � t0 � sj1j2 . Then w0 � v � t0. As in the case of condition (1),
to prove that jA�w; t0�j > dimXw it will be enough to show that jA�w; t0�j > jA�w; v�j.
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In the example above

v � 5 6 7 1 3 2 8 4;
B�w; t0� � f�1; 4�; �2; 4�; �2; 5�; �2; 6�; �3; 7�; �4; 7�; �5; 7�; �5; 8�;
and

B�w; v� � f�1; 2�; �4; 5�; �4; 6�; �3; 7�; �5; 7�; �5; 8�g:
Therefore in this example we have that jA�w; t0�j � l�t0� � jB�w; t0�j � 13� 8 � 21
and jA�w; v�j � l�v� � jB�w; v�j � 14� 6 � 20, hence jA�w; t0�j > jA�w; v�j.

We have that �j2; j4� 2 A�w; t0�. We will prove that jA�w; v�j < jA�w; t0�j by showing
that �j2; j4� =2 f, wheref � fj1j2 is the monomorphism from Lemma 2.2 applied to the
triple t0 � v � w. Since j4 6� j1; j2, it follows from the de¢nition of f that if �j2; j4� 2 f,
then fÿ1�j2; j4� is either �j1; j4� or �j2; j4�. We will prove that this is impossible by
showing that �j1; j4�; �j2; j4� =2 A�w; v�.

In our example

v � sj1j4 � v � s27 � 5 8 7 1 3 2 6 4 �= w

and

v � sj2j4 � v � s47 � 5 6 7 8 3 2 1 4 �= w;

hence �2; 7�; �4; 7� =2 A�w; v�.
Assume ¢rst that �j1; j4� 2 A�w; v� and let x � v � sj1j4 . Then x � w, so in particular

i2 W j1. By (5) we also have that i3 X j3. Therefore,

if SwW j1
� fn; a2; . . . ; aj1ÿ1; aj1g; then StW j1

� fa2; a3; . . . ; aj1 ; 1g;
if SxW j1

� fn; b2; . . . ; bj1ÿ1; bj1g; then St0
W j1
� fb2; b3; . . . ; bj1 ; 1g:

Since w � x and t0 � t it follows that ar X br X ar for 2W rW j1, hence SwW j1
� SxW j1

.
But wi1 2 SwW j1

, whereas wi1 � xj4 =2 SxW j1
, which is a contradiction. Therefore

�j1; j4� =2 A�w; v�.
Now assume that �j2; j4� 2 A�w; v� and let Z � v � sj2j4 . Then Z � w, so in particular

i3 X j4. By (4) we also have that i2 W j2. This implies that

if SwW j3
� fn; a2; . . . ; aj3ÿ1; aj3g; then StW j3

� fa2; a3; . . . ; aj3 ; 1g;
if SZW j3

� fn; b2; . . . ; bj3ÿ1; bj3g; then St0
W j3
� fb2; b3; . . . ; bj3 ; 1g:

Since w � Z and t0 � t it follows that ar X br X ar for 2W rW j3, hence SwW j3
� SZW j3

.
But wi4 =2 SwW j3

, while wi4 � Zj3 2 SZW j3
, which is a contradiction. Therefore

�j2; j4� =2 A�w; v�.
This completes the proof of Proposition 2.1. &
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3. Gasharov, V.: Factoring the Poincarë polynomials for the Bruhat order on Sn, J. Com-
bin. Theory Ser. A 83 (1998), 159^164.

4. Gonciulea, N. and Lakshmibai, V.: Singular loci of ladder determinantal varieties and
Schubert varieties, J. Algebra 229 (2000), 463^497.

5. Gonciulea, N. and Lakshmibai, V.: Schubert varieties, toric varieties, and ladder
determinantal varieties, Ann. Inst. Fourier (Grenoble) 47 (1997), 1013^1064.

6. Kumar, S.: The nil Hecke ring and singularity of Schubert varieties, Invent. Math. 123
(1996), 471^506.

7. Lakshmibai, V. and Sandhya, B.: Criterion for smoothness of Schubert varieties in
SL�n�=B, Proc. Indian Acad. Sci. (Math. Sci.) 100 (1990), 45^52.

8. Lakshmibai, V. and Seshadri, C. S.: Singular locus of a Schubert variety, Bull. Amer.
Math. Soc. 11 (1984), 363^366.

9. Lascoux, A.: Polynoª mes de Kazhdan^Lusztig pour les variëtës de Schubert vexillaires,
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