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Classification of subgroups isomorphic to PSL2(27) in the Monster

Robert A. Wilson

Abstract

As a contribution to an eventual solution of the problem of the determination of the maximal
subgroups of the Monster we prove that the Monster does not contain any subgroup isomorphic
to PSL2(27).

Supplementary materials are available with this article.

1. Introduction

The Monster is the largest of the 26 sporadic simple groups. The maximal subgroups of the
other 25 are all known, so it would be satisfying to complete this project also for the Monster.
The problem of determining the maximal subgroups of the Monster has a long history (see for
example [3, 5, 7, 8, 10–14]). The cases left open by previous published work are normalizers
of simple subgroups with trivial centralizer, and isomorphic to one of the groups

PSL2(8),PSL2(13),PSL2(16),PSL2(27),PSU3(4),PSU3(8),Sz(8).

Of these, PSL2(8) and PSL2(16) have apparently been classified in unpublished work of Holmes.
The cases PSL2(27) and Sz(8) are particularly interesting because no subgroup isomorphic to
PSL2(27) or Sz(8) is known. Here we consider the case PSL2(27), and show that in fact there
is no subgroup isomorphic to PSL2(27) in the Monster. The methods are partly theoretical
and partly computational, as is usual with problems of this nature. In § 2 we apply some local
analysis to obtain some restrictions on putative subgroups isomorphic to PSL2(27). In § 3 we
outline the computational methods and strategy adopted, while the rest of the paper is devoted
to the calculations themselves. The computer programs and data necessary to repeat or check
our calculations are available as online supplementary material available for download from
the publisher’s website. For all necessary facts about finite simple groups we refer to [2, 15].

2. Theoretical results

The overall strategy is the ‘obvious’ one for PSL2(q), namely to classify the possibilities for
the BN -pair, consisting in this case of B ∼= 33:13 and N ∼= D26 intersecting in the maximal
torus of order 13. The first step is therefore to use the 3-local and 13-local structure of the
Monster (see [14]) to analyse the various possibilities for B and N .

First we use the 3-local analysis to classify subgroups of the Monster isomorphic to 33:13.
Since neither 3A-elements nor 3C-elements can form a pure 33, the 3-elements in any 33:13
must be in class 3B. Moreover, the 13 subgroups of order 32 in 33 are all conjugate in 33:13,
and there are just three classes of 3B-pure 32 in the Monster, which are labelled (i)–(iii) in
[14, § 4].

Theorem 1. There are exactly two conjugacy classes of subgroups isomorphic to 33:13 in
the Monster.
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34 r. a. wilson

(i) In one case, the group contains 13A-elements, has centralizer 33:D8 and normalizer
(33:13:3× 32:D8).2.

(ii) In the other case, the group contains 13B-elements, has centralizer of order 3, and
normalizer 3× 33:(2× 13:3).

Proof. Clearly all the 32 subgroups of the 33 must be of the same type. Consider first the
case when they are of type 3B4(i) in the notation of [14]. Such a 32 has centralizer

32.35.310.M11.

It is shown in [14, Theorem 6.5] that there is a unique conjugacy class of such 33. The
normalizer of this 33 has the shape

33.32.36.36.(PSL3(3)× SD16).

Hence there is, up to conjugacy, a unique group 33:13 of this type. It has centralizer 32:D8,
and its normalizer is a group of shape

(33:(2× 13:3)× 32:SD16). 12 = (33:13:3× 32:D8).2,

that is, a subgroup of index 2 in 33:(2 × 13:3) × 32:SD16. This 33:13 contains 13A-elements,
since it lies inside a copy of 3.Fi24.

Next consider the cases 3B4(ii) and 3B4(iii). By [14, Corollary 6.3], the whole of the 33

lies inside a unique 31+12. Therefore 33:13 lies inside 31+12.2.Suz:2. Now in Suz:2 the Sylow
13-normalizer has the shape 13:12. Therefore the 13-element normalizes just four subgroups of
shape 33 in the 31+12, and these are permuted by the 13-normalizer. It follows that there is a
unique class of 33:13 of this type in the Monster. Such a subgroup has centralizer of order 3,
and normalizer of shape 3× 33:(2× 13:3). Since the 13-elements lie in 6.Suz they are in class
13B.

Theorem 2. There is no PSL2(27) in the Monster containing 13A-elements.

Proof. The invertilizer of a 13A-element has shape 13:2×PSL3(3). Hence there are just 118
copies of D26 containing a given element of class 13A, corresponding to the 117 involutions
and the identity element of PSL3(3). Elementary calculations show that the subgroup 32:D8

of PSL3(3) has orbits of lengths
9, 6, 6, 12, 12, 36, 36

on the 117 involutions in PSL3(3), and in particular has no regular orbit. It follows that any
PSL2(27) of this type would have a non-trivial centralizer. However, this is impossible, as none
of the element-centralizers in the Monster contains PSL2(27).

The corresponding method applied in the 13B-case yields a less satisfactory result.

Theorem 3. There are at most five conjugacy classes of PSL2(27) containing 13B-elements
in the Monster, comprising:

(i) at most four classes of self-normalizing subgroups PSL2(27); and
(ii) at most one class of subgroups with normalizer PΓL2(27) ∼= PSL2(27):6.

Proof. The invertilizer of a 13B-element is 131+2:4A4, and therefore there are exactly 78
copies of D26 containing a given 13B-element. Moreover, the group 33:13 has index 18 in its
normalizer, which is 3×33:(2×13:3), and therefore there is a group of shape 6×13:3 permuting
these 78 copies of D26. It is easy to see that there are two orbits of length 3 and four orbits of
length 18.
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subgroups isomorphic to psl2(27) in the monster 35

In particular, the group generated by 33:13 and a D26 in one of the orbits of length 3 is
normalized by a group of order 6, in such a way that the normalizer contains both types of
D26. If either of these groups was isomorphic to PSL2(27), then the other would be PGL2(27),
and their common normalizer would be PΓL2(27).

On the other hand, if any of the other groups generated by 33:13 and D26 is isomorphic to
PSL2(27), then it is self-normalizing.

3. Computational techniques and strategy

At this point the theoretical methods appear to be exhausted, and it is necessary to resort to
computer calculations to finish the job. In fact, I first did such calculations about ten years
ago, using the mod 2 construction of the Monster [9], but they have subsequently been lost.
The calculations were therefore repeated, as described here, using the mod 3 construction [6].
The general methods of computation in the Monster are described in [5, 6, 8], and summarized
in [12], which also contains some improved methods. As in these references, take a, b as
generators for the subgroup 21+24.Co1, and T as a ‘triality element’, cycling the three central
involutions in a subgroup 22.211.222.M24 of 21+24.Co1.

3.1. Changing post

One of the crucial tools required is a method of conjugating 2B-elements in 21+24.Co1 to the
central involution z. This method is explained in [12], but was not carried out systematically
there. To avoid repetitious calculation, it is worth carrying out the procedure once and for
all for a standard representative of each conjugacy class of 2B-elements in C(z) outside the
normal 21+24.

There is a unique conjugacy class of involutions in C(z) which map to Co1-class 2C. These
are all in Monster-class 2B. We make our ‘standard’ involution in this conjugacy class in
21+24.Co1 as follows. As in [12] make

h = (ab)34(abab2)3(ab)6,

i = (ab2)35((ababab2)2ab)4(ab2)5,

k1 = hihi2,

k2 = hihihi2,

k = (k1k2)3k2k1k2,

k′ = ((a2)(ab)
3

k8)11k11,

and choose k′ as the standard involution in this conjugacy class. This element is carefully
chosen so that T−1k′T is an element of the normal 21+24. We calculate once and for all an
element which conjugates this element to z. (A similar calculation was already done in [12],
but with a different involution.) Specifically, we found that if

k3 = (ab)3(ab2)20(ababab2abab2)8(ababab2ab)12(ababab2)5

then

(k′)Tk3T = z.

The other class which will be needed in this paper is one of the classes which maps to Co1-
class 2A. Specifically, it is a 2B-element whose product with z is a 2A-element. A representative
of this class can be made as

j0 = ((hi)4i)15.
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36 r. a. wilson

The same process as described in [12] for the previous case is applied here, and produces the
element

j4 = (ab)27(ab2)4(abab2)4(ababab2abab2)13(ababab2ab)9(ababab2)4

with the property that

(j0)Tj4T
−1

= z.

3.2. Shortening words

After ‘changing post’ as above, we typically have a number of elements from the old involution
centralizer which we want to use in the new involution centralizer. Such an element is expressed
as a word of the form

x′ = xT
±1yT±1

,

but in order to use it effectively we must express it as a word in a and b.
This is a classic ‘membership-testing’ problem. A good method for solving this problem in

a simple group is Ryba’s algorithm, described in [4], which essentially reduces the problem to
three instances of the same problem in involution centralizers. However, this method does not
work so well in groups with large normal 2-subgroups, which is the situation here. Nevertheless,
it is possible to use Ryba’s algorithm in the quotient Co1, and then to lift to 21+24.Co1 using
other methods.

We shall use slightly different methods, however, which exploit the fact that the 3A-elements
of Co1 form a very small conjugacy class with very nice properties. Thus the methods are
special to Co1 and not susceptible to generalization on the scale of Ryba’s algorithm.

First, we use the method described in [12] to find a 24× 24 matrix over F3, which gives the
action of our element x′ in the standard copy 〈a, b〉 of 2.Co1, modulo the central involution.
Then to find the centralizer in Co1 of x′, we search for 3A-elements in 〈a, b〉 which centralize it.
Assuming the centralizer contains a reasonably large number of 3A-elements, and is generated
by a reasonably small number of them, this method is effective, and the element itself can
then be found as a word in the generators of its centralizer. Various refinements of this general
method, together with methods for lifting to C(z), are described below.

3.3. The main steps of the calculation

We break the calculations down into a number of steps. First we shall make the part of the
13-normalizer that can be easily found inside 21+24.Co1. This is done in § 4, where we obtain
a group

13:(3× 4A4) ∼= (13:3× 2A4):2.

Then in § 5 we pick a non-central involution in this group, and find an element of the Monster
conjugating it to the central involution. This allows us in § 6 to find another element of order
13 commuting with the first one, thereby extending the subgroup to a group 131+2:(3× 4A4)
which has index 2 in the full 13B-normalizer. This group contains all the involutions which
extend 13 to D26.

Then in § 7 we find an element of order 3 which, together with our original element of order
13, generates 33:13. Finally, in § 8 the six cases are each tested to see if the group so generated
is PSL2(27).

4. Finding (13:3× 2A4):2

The strategy here is to work first in Co1, to find enough of the centralizer of a 2B-element to
obtain a group 22 × G2(4). Then we conjugate one of the central involutions to the other, in
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such a way as to obtain generators for A4 ×G2(4). Within this subgroup a copy of PSL2(13)
is located, by a random search, and then a copy of 13:6 inside PSL2(13). Finally we apply the
standard method known colloquially as ‘applying the formula’ in order to lift to elements of
21+24.Co1 which normalize a particular chosen element of order 13.

4.1. Constructing A4 ×G2(4) in Co1

We take a, b to be the original pair of generators of 21+24.Co1, and first work in the quotient
Co1 to make the element

c1 = (ab)4(ab2)3

of order 26, so that
i1 = (c1)13

is an element of class 2B in Co1. We make

c2 = abi1[ab, i1]5

which centralizes i1, and let
i2 = (c2)13.

The elements c1, c2 then generate 22 × G2(4), in which the central 22 is generated by i1, i2.
Then let

n1 = (ai1)5(ab)−2i2(ab)2a(ab)−2,

n2 = (ai1)5(i1i2a)5,

to give elements which normalize the 22 and generate a group A4 ×G2(4).
The normal subgroup A4 is generated by

a1 = i1,

a2 = (n1n2)13,

while the normal G2(4) is generated by

g1 = (c1)2,

g2 = (n1n2)3.

4.2. Constructing a subgroup A4 × 13:6

Standard generators of G2(4), as defined in [16], can be made as

g3 = (g41g2)4,

g4 = ((g1g2g1g
2
2)3)g

4
2 ,

and generators for a subgroup PSL2(13) can then be read off from [16] as

g5 = ((g3g4)3g4)3((g3g4)4g4g3g4(g3g
2
4)2)3((g3g4)3g4)−3,

g6 = (g3g4g3g
2
4)−2(g3g4(g3g4g3g

2
4)2)5(g3g4g3g

2
4)2.

Inside here we find that a subgroup 13:6 is generated by g5 and

g7 = (g6)g5g
2
6 ,

and we may take the element of order 13 to be

g8 = g5g7g5g
2
7 .
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38 r. a. wilson

4.3. Lifting to 21+24.Co1

Now we ‘apply the formula’ to lift to 21+24.Co1. That is, the elements a1, a2, g5, g7 are replaced
by new elements, in the same cosets of 21+24, which normalize the subgroup 〈g8〉 of order 13.
Specifically,

a′1 = g8a1(g8a
−1
1 g8a1)6,

a′2 = (g8a2(g8a
−1
2 g8a2)6)2,

g′5 = g8g5(g−18 g−15 g8g5)6,

g′7 = (g8g7(g98g
−1
7 g8g7)6)2,

so that a′1, a
′
2 generate 2A4 and g′5, g

′
7 generate 26.6 = (2×13:3).2, commuting with each other.

Thus they together generate

2.(A4 × 13:6).

An element of order 12 normalizing 〈g8〉 and commuting with 〈a′1, a′2〉 ∼= 2A4 and with g′5 may
be obtained as

g9 = g′5g
3
8g
′
7g

10
8 .

5. Changing post and shortening words

The process of ‘changing post’ really consists of two parts. The first part consists of finding a
word x in the generators of the Monster, which conjugates a given involution in C(z), to z.
This part is more or less algorithmic. Here the involution which we want to map to z is

i3 = a′1g
′
5.

The second part consists of ‘shortening the word’ for an element gx, where both g and gx lie
in C(z). This part is more ad hoc, and involves often quite laborious search for a word in a and b
which is equal to the desired element. In this section, the element we want to write as a word in
a and b is the appropriate conjugate of the element g9 of order 12. The strategy is to first find a
word for its image in Co1, and then to lift to 21+24.Co1. Even within Co1, the search is not easy,
and we perform it in stages, first dealing with the involution which is its sixth power, and then
its fourth power, before finally reaching the element itself. In the course of these calculations,
we shall also identify two useful elements which centralize the given element of order 12.

5.1. Conjugating i3 to z

Since we have already conjugated k′, the ‘standard’ involution in this conjugacy class, to z, it
only remains to conjugate i3 to k′. Now if two elements of Co1-class 2C have product of order
13 or 35, then this product is fixed-point-free in its action on 224 = 21+24/2, and hence when
we lift to 224.Co1 the product remains of odd order. Thus we can conjugate one to the other
in 224.Co1 using the standard formula.

Lifting to 21+24.Co1 is then straightforward: if it had turned out that we conjugated i3 to
zk′ instead of k′, we simply need to replace T by T−1 in the appropriate place in the formula.

So we search for conjugates of i3 and k′ whose product has order 13 or 35, and thereby find
that if

l3 = (ab2)4(k′(i3)(ab
2)4)6

then l3 conjugates i3 to k′, and therefore l3Tk3T conjugates i3 to z.
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5.2. Finding the centralizer of (g′9)2 in Co1

The above conjugation takes the element g9 to an element

g′9 = gl3Tk3T9

which has order 12 in the quotient Co1. Using the procedure described in [12], we can obtain
a 24× 24 matrix over F3 which gives the action of g′9 as an element of 2.Co1, whose standard
generators we again denote a, b. We are now faced with the ‘membership-testing’ problem, to
find a word in a, b which gives the element g′9. After solving this problem in 2.Co1 (modulo
the central involution) we have to lift the solution to 21+24.Co1.

In this subsection we obtain a word for an element which is congruent to (g′9)2 modulo 21+24,
by first finding the centralizer of the involution g′69 and then the element g′49 of order 3. First
note that g69 = z, so that (g′9)6 is (modulo 21+24) in the normal 211 subgroup of the standard
copy 〈h, i〉 of 211:M24. By a random search we find a subgroup 211:M12 centralizing (g′9)6,
generated by

t1 = ((hi2)6(hi)17)27i2(hi2)6(hi)17,

t2 = ((hi2)5(hi)10)20i2(hi2)5(hi)10,

t3 = ((hihihi2hi)3(hi)21)11i2(hihihi2hi)3(hi)21.

Moreover, the central involution of this group is

t0 = (t1t3t1t3t1t
2
3)11.

Then we conduct another random search in this subgroup for elements commuting with the
element (g′9)4 of order 3. Writing

u = t1,

v = t2t3,

v2 = (uvuvuv2uvuv2)9(uvuvuv2uv)10,

v3 = (uvuvuv2)10(uvuvuv2uvuv2)2,

t4 = v112 (uv)4v2,

t5 = v53(uv)4v3,

t6 = (t4t5t4t5t4t
2
5(t4t5)7)2t24t5t4t5t4t

2
5(t4t5)7,

we have that t6 is in fact the inverse of (g′9)4, modulo 21+24.

5.3. Finding the centralizer of g′9 in Co1

Working first in the M12 quotient of 〈u, v〉 we find that the following elements commute with
t6 modulo the 2-group:

t8 = u(uvuvuv
2)3v5 ,

t9 = u(uvuvuv
2uvuv2)7v6 .

(The conjugating elements have orders 24 and 32 respectively.) Applying the formula we obtain

t′8 = t26t8t
2
6t

2
8t

2
6t8,

t′9 = t26t9t
2
6t

2
9t

2
6t9,

and then

t10 = (t′9t
′
8t
′
9)3
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40 r. a. wilson

is congruent to (g′9)3, modulo 21+24. We also make some elements commuting with g′9 modulo
the 2-group, as follows:

t11 = ((t1t3)8t26)3t′8(t′9)2t10,

t12 = (t′8)2((t1t3)8t26)3(t′8)2(t′9)2.

5.4. Lifting to 21+24.Co1

Now we know that t10t6 is congruent modulo 21+24 to the inverse of g′9. It remains to find
the correct element of 21+24 to multiply by. Using the method explained in [12], with the
generators p1, . . . , p12, d1, . . . , d12 of 21+24 defined there, we obtain the element

w = t10t6p1d3d4d5d7d8d9d10d11d1p3p4p6p7p8.

Thus w−1 is actually equal to g′9 in the Monster.
We next lift the elements t11, t12 to elements which commute with w, by the following

method. First apply the formula, to get elements t′11, t
′
12 which commute with w4:

t′11 = w4t11w
4t−111 w

4t11,

t′12 = w4t12w
4t−112 w

4t12.

Then make the part of 21+24 which commutes with w4: by computing the nullspace of 1−w4

in the 24-dimensional F2-representation of Co1, whose 24 coordinates correspond to the given
generators p1, . . . , p12, d1, . . . , d12 of 21+24, we find that this is generated by

q1 = d9d12,

q2 = d1d4d5d6d10d11,

q3 = d3d5d7d10d12,

q4 = d2d6d7d8d10d12,

q5 = p4p6p9p12d5d8d10,

q6 = p3p6p7p9d4d7d12,

q7 = p2p5p6p7p10p12d7d11,

q8 = p1p7p8p9p10p12d4d8.

Finally we test all multiples of t′11 and t′12 by products of the qi. We find the following elements
which commute with w:

t′′11 = q4q5q6q7t
′
11,

t′′12 = q5q6q8t
′
12.

Note also that w commutes with q2q3q4, and, modulo the central involution, also with q4.

6. Finding the full 13B-centralizer

In order to extend (13:3 × 2A4):2 to 131+2:(3 × 2A4):2, we now seek an element of order 13
which is normalized by w. First we work in the quotient Co1, and afterwards lift to 21+24.Co1.

6.1. Extending 12 to 13:12 in Co1

Now the element t11 maps to a 2B-involution in the quotient Co1, and the element of order
13 we are looking for centralizes either this involution, or t0t11. However, conjugating by t12
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interchanges these two cases, so we can assume the former. We therefore begin by making the
centralizer of t11 in the quotient Co1. Let

h5 = ((at11)6t0t6)4,

h6 = (t0t6(at11)6)4,

which are elements of order 21 generating G2(4) in this centralizer. We search for a subgroup
PSL2(13) containing t6, and find that 〈h7, t6〉 is such a subgroup, where

h7 = (h5h
7
6)11(h5h6h5h

2
6)5h5h

7
6.

Inside this copy of PSL2(13), we find an element of order 13,

h′8 = (h7t
2
6)4t26h7t

2
6(h7t

4
6)2,

and the one normalized by t6 is

h8 = (h7h
′7
8 )11h′8h7(h′8)7.

Then we work with the centralizer of t6 in G2(4) to conjugate this 13-element to one which is
normalized also by t10. We first make this centralizer by a random search through 3A-elements
of G2(4) to find some which commute. We find

h10 = ((h5h6h5h6h5h
2
6h5h6)7)h

18
5 h10

6 ,

h11 = ((h5h6h5h6h5h
2
6h5h6)7)h

18
5 h15

6 ,

which generate A5. Conjugating by random elements of this centralizer we quickly find one of
the 13-elements we are looking for, namely

h12 = (h10h
2
11h10)4h8h10h

2
11h10.

6.2. Lifting the 13-element

The main lifting problem is to lift the element of order 13 to one which is normalized by
w. Since there are 224 elements of order 13 in the given coset of 21+24, only two of which
are normalized by w, a brute force search is out of the question (or, at least, unwieldy).
We therefore do this in two stages, first finding an appropriate conjugating element to get a
13-element inverted by w6. Since w6 centralizes just 212 out of the 224 factor, this divides the
problem into two searches, each in a population of size 212.

First we work in the 24-dimensional F2-representation of Co1 and find that the fixed space
of w6 is spanned by vectors which lift to the following elements of 21+24: all even products of
the di, together with

d1p1p3p6p8p10p12.

Hence in the first search we may test conjugates just by the pi. We find that the correct
conjugating element is

p1p3p5p6p7p12.

In the second search we test conjugates by didi+1 and d1p1p3p6p8p10p12. We find that exactly
two conjugating elements work:

d1d2d3d5d8d9d11p1p3p6p8p10p12,

d1d3d5d6d7d9d10d11d12p1p3p6p8p10p12.

Let h′12 and h′′12 be the respective conjugates of h12, that is

h′12 = (h12)d1d2d3d5d8d9d11p5p7p8p10 ,

h′′12 = (h12)d1d3d5d6d7d9d10d11d12p5p7p8p10 .

Then h′12 and h′′12 are elements of order 13 which are normalized by w in the Monster.
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6.3. Finding the 12-normalizer

In order to obtain all possible 13-elements normalized by the element w of order 12, it is
necessary to conjugate not just by elements of its centralizer, but by elements of its normalizer.
Indeed it turns out that w must be conjugated to its seventh power.

Such a normalizing element can be found inside the centralizer of w4 as follows. First we
conjugate a′1 to t′11, by conjugating by (t′11a

′
1)2, so that the full A4 × G2(4) is available. In

particular, the element
(t′11a

′
1)3(a′22 a

′
1a
′
2)(t′11a

′
1)2

is an involution in the A4, but not equal to t′11.
Within the A5 generated by h10, h11 the 15 involutions may be made as conjugates, by

powers of h10h11, of

(h10h11)2h11,

h11h10h
2
11h10

and their product. We find that the first involution conjugated by (h10h11)2 commutes with
w, and therefore the normalizing element we want is (modulo the 2-group)

t14 = (t′11a
′
1)3(a′22 a

′
1a
′
2)(t′11a

′
1)2(h10h11)3(h11h10h

2
11h10)(h10h11)2.

To lift to 21+24.Co1, we first apply the formula to get an element which commutes with w4:

t′14 = w4t14w
4t314w

4t14.

Finally multiplying by combinations of the qi we find that the element we want can be taken
to be

t′′14 = q3q7q8t
′
14.

We also made an element t′13 which conjugates w to its fifth power, but this turned out not
to be necessary.

6.4. Testing commuting with the first 13-element

We are aiming to find the normalizer of g8, so the candidate elements of order 13 have to be
tested to see which one(s) commute with

g′8 = gl3Tk3T8 .

The candidate elements are conjugates of h′12 and h′′12 by combinations of t′′11, t′′12, t′13 and t′′14.
Of these, we found that the one which works is

w1 = (h′′12)t
′′
11t
′′
14 .

We now have generators for 131+2:(3 × 4A4). These are best taken as the generators
a′1, a

′
2, g
′
5, g
′
7 given above, together with the conjugate of w1 by (l3Tk3T )−1, that is

w′1 = l3Tk3Tw1T
−1k−13 T−1l−13 .

7. Finding 33:13

The element g8 of order 13 lies inside a subgroup 6.Suz of 21+24.Co1. Now 6.Suz also lies in a
(unique) subgroup

31+12.3.Suz,

of index 2 in a maximal subgroup 31+12.3.Suz:2 of the Monster. If we can find generators for
this subgroup, then we can write down generators for a group 33:13 containing g8.
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The strategy is to find such a subgroup 6.Suz, which may be taken to be the centralizer
in the Monster of the element za′2, and then move to the centralizer of a suitable non-central
involution, where we can find an element of order 3 extending 3× 21+6.2.U4(2) to

(31+4:2× 21+6).U4(2),

and thereby extending 6.Suz to 31+12.2.Suz. It is then easy to write down a word for the
element we want.

7.1. The subgroup 6.Suz

The element

s1 = abababab2abab2ab2

has order 66, so s221 is conjugate to a′2. In the quotient Co1, the elements s221 and a′2 generate
a subgroup A4, and a′2s

22
1 conjugates s221 to a′2 modulo the 2-group. Let

s′1 = (a′2s
22
1 )5s1a

′
2s

22
1 .

Then, modulo the 2-group, both s′1 and g1 = c21 commute with a′2, and generate 3.Suz.
Hence, applying the formula, we obtain the following elements centralizing a′2, and generating

6.Suz:

s′′1 = a′2s1a
′
2s
−1
1 a′2s1,

s2 = a′2c
2
1a
′
2c
−2
1 a′2c

2
1.

7.2. Changing post again

The element

j2 = (s22s
′′
1)6

turns out to be an involution mapping to Co1-class 2A, and forming a 22-group of Monster-type
2BAB with the central involution z of 21+24.Co1. The ‘standard’ involution of this type is

j0 = ((hi)4i)15.

Moreover, j0j2 has order 5, so

j3 = (j0j2)2

conjugates j2 to j0. Hence

j3Tj4T
−1

conjugates j2 to z.

7.3. Identifying the element of order 3

Writing

j5 = ((s′′1)22)j3Tj4T
−1

we want to find words for the centralizer of the element zj5 of order 6. This centralizer is a
group of shape

(21+6 × 31+4:2).U4(2).

In particular, we want to find a non-central element of the normal 31+4.
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We begin as usual in the Co1 quotient, and look for 3A-elements which commute with j5.
Writing

j6 = (ab)(ab2)6(ababab2ab)9(ababab2)9,

j7 = (ab)(ab2)8(ababab2ab)11(ababab2)4,

j8 = (ab)3(ab2)5(ababab2ab)13(ababab2)6,

j9 = (ab)3(ab2)30(ababab2ab)10(ababab2)4,

j10 = (ab)6(ab2)17(ababab2ab)12(ababab2)9,

we have that j′n = (a′2)jn is such a 3A-element for n ∈ {6, 7, 8, 9, 10}. Moreover

j′5 = (j′6j
′
7j
′
8j
′
9j
′
10)12

is congruent to j5 modulo the 2-group.
To find out which of the pn and dn to multiply by, we apply the element j5(j′5)−1 to 13

carefully selected coordinate vectors, as described in [12], and read off the answer from the
result. We find that the correct answer is

j′′5 = p1p6p8p9p10p11p12d1d2d5d6d10d11d12j
′
5.

That is, j′′5 is actually equal to j5 in the Monster.

7.4. Finding 31+12

Now apply the formula so that we get generators for the centralizer of j′′5 as follows. For
n ∈ {6, 7, 8, 9, 10}, define

j′′n = j′′5 j
′
nj
′′
5 j
′−1
n j′′5 j

′
n.

Then j′′6 j
′′
7 (j′′8 j

′′
9 j
′′
10)2 has order 10 and we find that

j = (j′′6 j
′′
7 (j′′8 j

′′
9 j
′′
10)2)5(j′′8 j

′′
9 j
′′
10j
′′
6 j
′′
7 j
′′
8 j
′′
9 j
′′
10)5

is an element in the normal 31+4 as required.
We now know that, under the action of 6.Suz generated by s′′1 and s2, the element

j′ = jTj
−1
4 T−1j−1

3

and its conjugates generate a group 31+12.

7.5. Finding the right 33

We know from the character table of 6.Suz that the element g8 of order 13 acts fixed-point-
freely on the natural 312 quotient of 31+12. Elementary linear algebra then tells us that if we
want a 33 on which the minimum polynomial of the action of g8 is x3−x−1, then we compute

x13 − 1

(x− 1)(x3 − x− 1)
= x9 + x8 − x7 + x5 − x3 − x2 − 1,

and compute the image of the linear map obtained by substituting g8 for x. In other words,
(modulo the central 3) the element

j′′ = j′−1g48j
′g8j

′g8j
′−1g28j

′g28j
′−1g8j

′−1g28

is an element in the 33 that we want. In fact, it turned out that no correction for the centre
was required.
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8. Proof of the main theorem

8.1. Analysing the cases

The 78 ways of extending 13 to D26 are obtained by taking the six non-central involutions in
4A4, and conjugating by suitable elements of 131+2. First take the involution

i4 = a′1g
′3
5

and check that w1i4 has order 2, so that the 13 conjugates of i4 by powers of w′1 can be written
as

(w′1)ni4

for 0 6 n 6 12. Then conjugate these 13 involutions by suitable elements of 〈a′1, a′2〉 ∼= 2A4 to
get the full set of 78. For example, we may conjugate in turn by each of the six elements

1, a′2, a
′2
2 , a

′
2a
′
1, a
′
2a
′
1a
′
2, a
′
2a
′
1a
′2
2 .

However, a subgroup 3× 2× 3 (generated by a′2, a′21 and g′7) of 131+2:(3× 4A4) normalizes
33:13, and we have already observed that it fuses the 78 cases into six orbits, of lengths
3, 3, 18, 18, 18, 18. These six cases are represented by the elements

i4,

i5 = w′1i4,

i6 = w′21 i4,

i7 = i
a′2a
′
1

4 ,

i8 = (w′1i4)a
′
2a
′
1 ,

i9 = (w′21 i4)a
′
2a
′
1 .

In each of these six cases we perform the following test. Given the fixed generators j′′, g8 for
33:13, and the six involutions i, test each of the 13 words

j′′igm8

(for 0 6 m 6 12) on a random vector to see if it has order 3. Since j′′ is a word involving exactly
28 occurrences of T or T−1, and i averages just four such occurrences, each test involves on
average 96 applications of T or T−1, and a slightly larger number of applications of elements
of 21+24.Co1. On my rather old laptop, such a test takes around 15 minutes, and therefore the
total calculation takes around 1.5 hours.

8.2. Proofs

Most of the computer calculations were performed without proof, and therefore it is necessary
to provide proofs for the few statements which we actually need in order to prove our main
theorem.

Theorem 4. There is no subgroup of the Monster isomorphic to PSL2(27).

Proof. By Theorems 1 and 2, there is a unique class of 33:13 which could lie in a subgroup
PSL2(27). We prove computationally that the elements j′′ and g8 generate a group 33:13, by
checking relations on two vectors whose joint stabilizer in the Monster is known to be trivial.
The relations can be taken as

α3 = β13 = [α, αβ ] = [α, αβ
2

] = 1, αβ
3

= αβα,

with α = j′′ and β = g8. Moreover, g8 lies in 21+24.Co1, and so is in Monster-class 13B.
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Next we check that w′1, a
′
1, a
′
2 centralize g8, while g′5 inverts it and g′7 cubes it. In particular,

they all lie in the normalizer of the subgroup 〈g8〉 of order 13, and it follows easily that the
given elements generate 131+2:(3× 4A4), as required.

Therefore, the test runs through all the involutions inverting g8, and since the test fails in
every one of the six cases, the proof is complete.
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