Absolute Riesz summability of Fourier series and their conjugate series

Masako Izumi and Shin-ichi Izumi

This paper contains two theorems. The first theorem treats the $|R, r, l|$ summability of Fourier series and their associated series of functions of bounded variation. The second concerns the $|R, r, l|$ summability of Fourier series of functions f such that $\varphi(t) m(1 / t)$ is of bounded variation where $m(u)$ increases to infinity as $u \rightarrow \infty$. These theorems generalize Mohanty's theorems.

1. Introduction and theorems

1.1. Suppose that $r(x)$ is defined on the interval $x>0$, $r(x)>0, r(x) \uparrow \infty$ as $x \uparrow \infty$ and $r(x)$ is differentiable continuously. We write $r(n)=r_{n}$ for integral n. The series $\sum a_{n}$ is said to be $|R, r, l|$ summable if
(1)

$$
\int_{B}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\sum_{n \leq x} r_{n} a_{n}\right|<\infty \text { for } a B>0
$$

By $|R, r, l|$ we denote the class of all $|R, r, l|$ summable series, so that (1) is equivalent to $\sum a_{n} \in|R, r, l|$. It is known that $|R, x, 1|=|C, 1|$ and $\left|R, e^{x}, 1\right|$ is the class of all absolutely convergent Fourier series. The following classes, each containing the

Received 9 June 1970.
the next, are usually treated:

$$
\begin{gathered}
\left|R,(\log x)^{a}, 1\right|,(a>0), \\
\left|R, x^{a}, 1\right|,(a>0) \\
\left|R, e^{(\log x)^{a}}, 1\right|,(a>1), \\
\left|R, e^{x^{a}}, 1\right|,(0<a<1), \\
\mid R, e^{x / e^{(\log x)^{a}}, 1 \mid,(0<a<1),} \\
\left|R, e^{x /(\log x)^{a}}, 1\right|,(a>0) .
\end{gathered}
$$

1.2. Let f be an integrable function periodic with period 2π and its Fourier series and its conjugate series be

$$
\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)=\sum_{n=0}^{\infty} A_{n}(x)
$$

and

$$
\sum_{n=1}^{\infty}\left(b_{n} \cos n x-a_{n} \sin n x\right)=\sum_{n=1}^{\infty} B_{n}(x)
$$

respectively. We write

$$
\varphi_{x}(t)=\varphi(t)=f(x+t)+f(x-t), \quad \psi_{x}(t)=\psi(t)=f(x+t)-f(x-t) .
$$

If a function g is of bounded variation on the interval $(0, \pi)$, then we write $g \in B V$.
1.3. R. Mohanty [1] proved the following

THEOREM I. $\varphi \in B V \Rightarrow \sum A_{n}(x) / \log n \in\left|R, e^{x^{a}}, \perp\right|(0<a<1)$.

We shall prove the following generalization.
THEOREM 1. (i) The case $x r^{\prime}(x) / r(x) \leq A$. If

$$
\begin{equation*}
r(x) / x \uparrow \text { and } r^{\prime}(x) / r(x) \downarrow 0 \text { as } x \uparrow \infty \tag{2}
\end{equation*}
$$

and
(3)

$$
\int_{u}^{\infty} \frac{r^{\prime}(x)}{x r(x)} d x \leq A \frac{r^{\prime}(u)}{r(u)} \text { for all } u>0,
$$

then

$$
\begin{aligned}
& \varphi \in B V \Rightarrow A_{n}(x) \in|R, r, I|, \\
& \psi \in B V \Rightarrow B_{n}(x) \in|R, r, I| .
\end{aligned}
$$

(ii) The case
(4)

$$
\lim _{x \rightarrow \infty}\left(x r^{\prime}(x) / r(x)\right)=\infty, \underset{x \rightarrow \infty}{\lim \inf }\left(x r^{\prime}(x) / r(x)\right)>0 .
$$

$I f$
(5) $m(x) \downarrow 0, m(x) r(x) / x \uparrow$ and $r^{\prime}(x) / r(x) \downarrow 0$ as $x \uparrow \infty$,
(6) $\quad \int_{u}^{\infty} \frac{\left|m^{\prime}(x)\right|}{x} d t \leq \frac{A}{u}$ and $\int_{u}^{\infty} \frac{m(x) r^{\prime}(x)}{x r(x)} d x \leq \frac{A r^{\prime}(u)}{r(u)}$ for alz $u>0$
and further if

$$
\begin{equation*}
\int_{1 / t}^{x_{0}(t)}(m(x) / x) d x \leq A \text { for } a \downarrow Z \quad t>0 \tag{7}
\end{equation*}
$$

where $x_{0}(t)$ is the root $>1 / t$ of the equation $r^{\prime}(x) / r(x)=t$, then

$$
\begin{aligned}
& \varphi \in B V \Rightarrow \sum m_{n} A_{n}(x) \in|R, r, 1|, \\
& \psi \in B V \Rightarrow \sum m_{n} B_{n}(x) \in|R, r, 1|,
\end{aligned}
$$

where $m(n)=m_{n}$ for integer n.
We shall consider special cases of Theorem 1 . We take first $r(x)=x^{a}(a>1) ;$ then $r^{\prime}(x) / r(x)=a / x$. Therefore, Theorem 1 (i) gives

COROLLARY 1. $\varphi \in B V \Rightarrow \sum A_{n}(x) \in\left|R, x^{a}, 1\right|(a>1)$. The corresponding result holds for conjugate series.

We shall next take $r(x)=e^{(\log x)^{a}}(a>1)$, then
$r^{\prime}(x) / r(x)=a(\log x)^{a-1} / x$ and $x_{0}(t) \cong \frac{1}{t}\left(\log \frac{1}{t}\right)^{a-1}$, and then (7) gives $m(x)=1 / \log \log x$. Therefore, Theorem $l(i i)$ gives
$\operatorname{COROLLARY}$ 2. $\varphi \in B V=\sum A_{n}(x) / \log \log n \in\left|R, e^{(\log x)^{a}}, 1\right|(a>1)$. The corresponding result holds for conjugate series.

In the case $r(x)=e^{x^{a}}(0<a<1)$, we have $r^{\prime}(x) / r(x)=a / x^{1-a}$, $x_{0}(t) \cong 1 / t^{1 /(1-a)}$ and then $m(x) \cong 1 / \log x$. Therefore, Theorem 1 (ii) gives

COROLLARY 3. $\varphi \in B V=\sum A_{n}(x) / \log n \in\left|R, e^{x^{\alpha}}, 1\right| \quad(0<a<1)$. The corresponding result holds for conjugate series.

The first part of this corollary is Theorem I.
Similarly,
COROLLARY 4. $\varphi \in B V=\sum A_{n}(x) / \log n \log \log n \in\left|R, e^{x / e^{(\log x)^{a}}}, 1\right|$ $(0<a<1)$. The corresponding result holds for conjugate series.

Finally, consider the case $r(x)=e^{x /(\log x)^{a}}(a>0)$. Then $r^{\prime}(x) / r(x) \cong 1 /(\log x)^{a}, \quad x_{0}(t) \cong e^{1 / t^{1 / a}}$ and $m(x) \cong 1 / \log x(\log \log x)^{b}$ ($b>1$). Therefore

COROLLARY 5. $\varphi \in B V \Rightarrow \sum A_{n}(x) / \log n(\log \log n)^{b} \in\left|R, e^{x /(\log x)^{a}}, 1\right|$ ($a>0, b>1$). The corresponding result holds for conjugate series.
1.4. We know the following theorem due to R. Mohanty [1].

THEOREM II.
(i) $\varphi(t) \log \log \frac{4 \pi}{t} \in B V=\sum A_{n}(x) \in\left|R, e^{(\log x)^{a}}, 1\right|(a>1)$.
(ii) $\varphi(t) \log \frac{2 \pi}{t} \in B V \Rightarrow \sum A_{n}(x) \in\left|R, e^{x^{\alpha}}, 1\right| \quad(0<a<1)$.
(iii) $\psi(t) \log \frac{2 \pi}{t} \in B V, \psi(t) / t \in L(0, \pi) \Rightarrow \sum B_{n}(x) \in\left|R, e^{x^{\alpha}}, 1\right|$ ($0<a<1$).
(iv) $\varphi(t) t^{-a} \in B V=\sum A_{n}(x) \in\left|R, e^{x /(\log x)^{1+1 / a}}, 1\right|(a>0)$.

We prove the following generalization.
THEOREM 2. If (2), (3) and (4) hold and

$$
\begin{equation*}
\int_{1}^{\infty} \frac{1}{x}\left(\frac{r^{\prime \prime}(x) r(x)}{\left(r^{\prime}(x)\right)^{2}}-1\right) d x<\infty, \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
m(x) \uparrow \text { as } x \uparrow \infty \text { and }(1 / m(1 / x))^{\prime} \downarrow \text { as } x \uparrow \text {, } \tag{9}
\end{equation*}
$$

and further if

$$
\begin{equation*}
t^{-1}<x_{0}(t) \leq t^{-1} e^{A m(1 / t)} \text { for all } t>0 \tag{10}
\end{equation*}
$$

where $x_{0}(t)$ is the root of the equation $r^{\prime}(x) / r(x)=t$, then

$$
\begin{aligned}
& \varphi(t) m(1 / t) \in B V \Rightarrow \sum A_{n}(x) \in|R, r, 1|, \\
& \psi(t) m(1 / t) \in B V \Rightarrow \sum B_{n}(x) \in|R, r, 1| .
\end{aligned}
$$

Theorem II, (i) and ($i i$) are deduced from Theorem 2 and ($i i i$) is also, without the second assumption. Further we have

COROLLARY 6.

(i) $\varphi(t)(\log 2 \pi / t)^{1 / a} \in B V \Rightarrow \sum A_{n}(x) \in\left|R, e^{x / e^{(\log x)^{\alpha}}, 1}\right|$

$$
(0<a<1) .
$$

(ii) $\varphi(t) t^{-1 / a} \in B V \Rightarrow \sum A_{n}(x) \in\left|R, e^{x /(\log x)^{a}}, 1\right| \quad(a \geq 1)$.

The corresponding result holds for conjugate series.
Corollary 6, (ii) is an improvement of Theorem II, (iv).
1.5. For the proof of the above theorems, we use the following known lemma. (See [2].)

LEMMA. If $p(x) \uparrow$ as $x \uparrow$, then

$$
\left|\sum_{n \leq x} p(n) \sin n t-\int_{1}^{x} p(u) \sin u t d u\right| \leq A p(x)
$$

for any $x>1$ and any $t \in(0, \pi)$.

2. Proof of the theorems

2.1. Proof of Theorem 1. We shall prove the theorem for Fourier series only, since our method of proof is also applicable to conjugate series.

We shall take $B=1$ in (1). By assumption and integration by parts,

$$
A_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \varphi(t) \cos n t d t=\frac{-1}{\pi n} \int_{0}^{\pi} \sin n t d \varphi(t),
$$

and then we have to prove, by (1), that

$$
\int_{1}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\sum_{n \leq x} \frac{m_{n}^{r} n}{n} \int_{0}^{\pi} \sin n t d \varphi(t)\right|<\infty
$$

We suppose φ is of bounded variation, so that it is sufficient to prove that

$$
\int_{1}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\sum_{n \leq x} \frac{m_{n}^{r} n}{n} \sin n t\right| \leq A \text { for all } t>0 .
$$

By (2), (3), (5), (6) and the lemma, this is equivalent to

$$
\begin{equation*}
\int_{I}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\int_{1}^{x} \frac{m(u) r(u)}{u} \sin u t d u\right| \leq A \text { for all } t>0 . \tag{11}
\end{equation*}
$$

The left side integral is

$$
\begin{aligned}
\int_{1}^{\infty} d x\left|\int_{1}^{x} d u\right| & \leq \int_{1}^{1 / t} d x\left|\int_{1}^{x} d u\right|+\int_{1 / t}^{\infty} d x\left|\int_{1}^{1 / t} d u\right|+\int_{1 / t}^{\infty} d x\left|\int_{1 / t}^{x} d u\right| \\
& =P+Q+R
\end{aligned}
$$

where

$$
\begin{aligned}
P & \leq t \int_{1}^{1 / t} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{1}^{x} m(u)_{r}(u) d u \\
& =t \int_{1}^{1 / t} m(u)_{r}(u) d u \int_{u}^{1 / t} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \leq A t \int_{1}^{1 / t} m(u) d u \leq A
\end{aligned}
$$

and

$$
Q \leq t \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{1}^{1 / t} m(u)_{r}(u) d u=\frac{t}{r(1 / t)} \int_{1}^{1 / t} m(u)_{r}(u) d u \leq A
$$

We shall now estimate R. The inner integral of R is

$$
\int_{1 / t}^{x} \frac{m(u) r(u)}{u} \sin u t d u=I \int_{1 / t}^{x} \frac{m(u)}{u} r(u) e^{i u t} d u
$$

Since

$$
\begin{equation*}
\left(r(u) e^{i u t}\right)^{\prime}=r(u) e^{i u t}\left(r^{\prime}(u) / r(u)+i t\right), \tag{12}
\end{equation*}
$$

we have, using integration by parts,

$$
\begin{aligned}
\int_{1 / t}^{x} \frac{m(u)}{u} r(u) e^{i u t} d u= & \int_{1 / t}^{x} \frac{m(u)\left(r(u) e^{i u t}\right)^{\prime}}{u\left(r^{\prime}(u) / r(u)+i t\right)} d u \\
= & {\left[\frac{m(u) r(u) e^{i u t}}{u\left(r^{\prime}(u) / r(u)+i t\right)}\right]_{u=1 / t}^{x}-\int_{1 / t}^{x} \frac{m^{\prime}(u) r(u) e^{i u t}}{u\left(r^{\prime}(u) / r(u)+i t\right)} d u } \\
& +\int_{1 / t}^{x} \frac{m(u) r(u) e^{i u t}}{u^{2}\left(r^{\prime}(u) / r(u)+i t\right)^{2}}\left(\left[\frac{r^{\prime}(u)}{r(u)}+i t\right) d u+u d\left(\frac{r^{\prime}(u)}{r(u)}\right)\right) \\
= & S(x)-T-U(x)+V(x),
\end{aligned}
$$

where

$$
\begin{aligned}
I S(x) & =\frac{m(x) r(x)}{x\left(\left(r^{\prime}(x) / r(x)\right)^{2}+t^{2}\right)}\left[\frac{r^{\prime}(x)}{r(x)} \sin x t-t \cos x t\right), \\
T & =\frac{t m(1 / t) r(1 / t) e^{i}}{r^{\prime}(1 / t) / r(1 / t)+i t} .
\end{aligned}
$$

In case (i), $m(x)=1$ and $r^{\prime}(x) / r(x) \leq A / x$ and then

$$
W=\int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}}|I S(x)| d x \leq \frac{A}{t} \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{x r(x)} d x \leq A
$$

by (3). In case (ii),

$$
\begin{aligned}
W & \leq \int_{1 / t}^{x_{0}(t)} d x+\int_{x_{0}(t)}^{\infty} d x \\
& \leq A \int_{1 / t}^{x_{0}(t)} \frac{r^{\prime}(x)}{(r(x))^{2}} \frac{m(x) r(x)}{x\left[r^{\prime}(x) / r^{r}(x)\right)} d x+\frac{A}{t} \int_{x_{0}(t)}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} \frac{m(x) r(x)}{x} d x \\
& \leq A \int_{1 / t}^{x_{0}(t)} \frac{m(x)}{x} d x+A \leq A
\end{aligned}
$$

by (6) and (7).
In each case (i) and (ii),

$$
\begin{aligned}
& X=\int_{I / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}}|T| d x \leq m(I / t) r(1 / t) \int_{I / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \leq A, \\
& Y=\int_{I / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}}|U(x)| d x \leq \frac{A}{t} \int_{I / t}^{\infty} \frac{I m^{\prime}(u) \mid}{u} d u \leq A
\end{aligned}
$$

by (6). Finally,

$$
\begin{aligned}
Z & =\int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}}|V(x)| d x \\
& \leq \frac{A}{t} \int_{1 / t}^{\infty} \frac{m(u)}{u^{2}} d u+A \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{1 / t}^{x} \frac{m(u) r(u)}{u\left(\left(r^{\prime}(u) / r(u)\right)^{2}+t^{2}\right)}\left|d\left(\frac{r^{\prime}(u)}{r(u)}\right)\right| \\
& =A+A Z^{\prime} .
\end{aligned}
$$

In case (i),

$$
Z^{\prime} \leq \frac{A}{t} \int_{1 / t}^{\infty}\left|d\left(\frac{r^{\prime}(u)}{r(u)}\right)\right| \leq \frac{A}{t} \frac{r^{\prime}(1 / t)}{r(1 / t)} \leq A .
$$

In case (ii),

$$
\begin{aligned}
z^{\prime} & \leq A \int_{1 / t}^{x_{0}(t)} \frac{m(u)}{u\left(r^{\prime}(u) / r(u)\right)^{2}}\left|d\left(\frac{x^{\prime}(u)}{r(u)}\right)\right|+\frac{A}{t^{2}} \int_{x_{0}(t)}^{\infty} \frac{m(u)}{u}\left|d\left(\frac{r^{\prime}(u)}{r(u)}\right)\right| \\
& \leq A t \frac{r\left(x_{0}(t)\right)}{r^{\prime}\left(x_{0}(t)\right)}+\frac{A}{t^{2} x_{0}(t)} \frac{r^{\prime}\left(x_{0}(t)\right)}{r\left(x_{0}(t)\right)} \leq A,
\end{aligned}
$$

by (5), since $(1 / t) r^{\prime}(1 / t) / r(1 / t) \geq A>0$ as $t \rightarrow 0$ by (4), $r^{\prime}\left(x_{0}(t)\right) / r\left(x_{0}(t)\right)=t$ and $t x_{0}(t)=x_{0}(t) r^{\prime}\left(x_{0}(t)\right) / r\left(x_{0}(t)\right) \geq A>0$ as $t \rightarrow 0$.

Thus we get $R \leq W+X+Y+Z$, where R is bounded uniformly in t and then the required inequality (11) is proved. This completes the proof of the theorem.
2.2. Proof of Theorem 2. We put $m(1 / t) \varphi(t)=g(t)$ and we can suppose $\varphi(\pi)=g(\pi)=0$ without loss of generality. Then

$$
A_{n}(x)=\frac{1}{\pi} \int_{0}^{\pi} \varphi(t) \cos n t d t=-\frac{1}{\pi} \int_{0}^{\pi} d g(t) \int_{0}^{t} \frac{\cos n u}{m(1 / u)} d u
$$

where

$$
\int_{0}^{t} \frac{\cos n u}{m(1 / u)} d u=\frac{\sin n t}{r m(1 / t)}-\frac{1}{n} \int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} \sin n u d u
$$

It is sufficient to prove that

$$
\int_{1}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\sum_{n \leq x} r_{n} \int_{0}^{t} \frac{\cos n u}{m(1 / u)} d u\right| \leq A \text { for all } t>0
$$

since $g(t)$ is of bounded variation. The left side integral is not greater than

$$
\begin{aligned}
& \frac{1}{m(1 / t)} \int_{1}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\sum_{n \leq x} \frac{r_{n} \sin n t}{n}\right| \\
&+\int_{1}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime}\left(\sum_{n \leq x} \frac{r_{n} \sin n u}{n}\right) d u\right|=M+N .
\end{aligned}
$$

M can be estimated similarly to the proof of Theorem 1 and we get, by (2) and (3),

$$
M \leq \frac{A}{m(1 / t)} \int_{1 / t}^{x_{0}(t)} \frac{d x}{x}+A=\frac{A}{m(1 / t)} \log \frac{x_{0}(t)}{1 / t}+A \leq A
$$

by (10). Using the lemma and (2), (3),

$$
\begin{aligned}
N & \leq \int_{1}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} d u \int_{1}^{x} \frac{r(v) \sin u v}{v} d v\right|+A \\
& \leq \int_{0}^{1 / t} d x\left|\int_{0}^{t} d u \int_{1}^{x} d v\right|+\int_{1 / t}^{\infty} d x\left|\int_{0}^{t} d u \int_{1}^{1 / t} d v\right|_{1} \\
& =P+\int_{1 / t}^{\infty} d x\left|\int_{0}^{t} d u \int_{1 / t}^{x} d v\right|+A
\end{aligned}
$$

where

$$
P \leq \int_{1}^{1 / t} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{1}^{x} r(v) d v \int_{0}^{t} u\left(\frac{1}{m(1 / u)}\right)^{\prime} d u \leq A
$$

by (9), and

$$
\begin{aligned}
Q & \leq \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{0}^{t} u\left(\frac{1}{m(1 / u)}\right)^{\prime} d u \int_{1}^{1 / t} r(v) d v \leq \frac{A t}{m(1 / t) r(1 / t)} \int_{1}^{1 / t} r(v) d v \\
& \leq A
\end{aligned}
$$

We shall now estimate R. The inner integral of R is

$$
\int_{1 / t}^{x} \frac{r(v) \sin u v}{v} d v=I \int_{1 / t}^{x} \frac{r(v) e^{i u v}}{v} d v
$$

and, by (12),

$$
\begin{aligned}
& \int_{1 / t}^{x} \frac{r(v) e^{i u v}}{v} d v=\left[\frac{r(v) e^{i u v}}{v\left(r^{\prime}(v) / r(v)+i u\right)}\right]_{v=1 / t}^{x}+\int_{1 / t}^{x} \frac{r(v) e^{i u v}}{v^{2}\left(r^{\prime}(v) / r(v)+i u\right)} d v \\
&+\int_{1 / t}^{x} \frac{r(v) e^{i u v}}{v\left(r^{\prime}(v) / r(v)+i u\right)^{2}} d\left(\frac{r^{\prime}(v)}{r(v)}\right) \\
&=S(x)-T+U(x)+V(x) .
\end{aligned}
$$

Now

$$
\begin{aligned}
W & =\int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} I S(x) d u\right| \\
& =\int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{x r(x)} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} \frac{\left(r^{\prime}(x) / r(x)\right) \sin u x-u \cos u x}{\left(r^{\prime}(x) / r(x)\right)^{2}+u^{2}} d u\right| \\
& \leq \int_{1 / t-}^{\infty}\left(\frac{r^{\prime}(x)}{r(x)}\right)^{2} \frac{d x}{x}\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} \frac{\sin u x}{\left(r^{\prime}(x) / r(x)\right)^{2}+u^{2}} d u\right|
\end{aligned}
$$

$$
+\int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{x r(x)} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} \frac{u \cos u x}{\left(r^{\prime}(x) / r(x)\right)^{2}+u^{2}} d u\right|
$$

$$
=W_{1}+W_{2}
$$

where

$$
\begin{aligned}
W_{1} & \leq \int_{1 / t}^{\infty} d x\left|\int_{0}^{1 / x} d u\right|+\int_{1 / t}^{\infty} d x\left|\int_{1 / x}^{t} d u\right| \\
& \leq \int_{1 / t}^{\infty} d x \int_{0}^{1 / x}\left(\frac{1}{m(1 / u)}\right)^{\prime} u d u+\int_{1 / t}^{\infty} \frac{m^{\prime}(x)}{(m(x))^{2}} x d x\left|\int_{1 / x}^{t^{\prime}} \sin u x d u\right| \\
& \leq \int_{1 / t}^{\infty} d x \int_{x}^{\infty} \frac{m^{\prime}(v)}{(m(v))^{2}} \frac{d v}{v}+\int_{1 / t}^{\infty} \frac{m^{\prime}(x)}{(m(x))^{2}} d x \leq A
\end{aligned}
$$

and

$$
\begin{aligned}
W_{2} & \leq \int_{1 / t}^{\infty} \frac{r(x)}{x r^{\prime}(x)} d x \int_{0}^{1 / x}\left(\frac{1}{m(1 / u)}\right)^{\prime} u d u+\int_{1 / t}^{\infty} \frac{r(x)}{x r^{\prime}(x)} \frac{m^{\prime}(x)}{(m(x))^{2}} d x \\
& \leq A \int_{1 / t}^{\infty} \frac{m^{\prime}(u)}{(m(u))^{2}} d u \leq A
\end{aligned}
$$

by (4). Further we have

$$
X=\int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / t)}\right)^{\prime} I T d u\right| \leq A \frac{r(1 / t)}{m(1 / t)} \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \leq A,
$$

$$
\begin{aligned}
& Y= \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} I U(x) d x\right| \\
& \leq A \int_{I / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \left\lvert\, \int_{1 / t}^{x} \frac{r(v)}{v^{2}} d v \int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime}\right. \\
& \left.\frac{\left(r^{\prime}(v) / r(v)\right) \sin u v-u \cos u v}{\left(r^{\prime}(v) / r(v)\right)^{2}+u^{2}} d u \right\rvert\, \\
& \leq A \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{1 / t}^{x} \frac{r(v)}{v^{2}} d v\left(\int_{0}^{1 / v}\left(\frac{1}{m(1 / u)}\right)^{\prime} \frac{u v}{r^{\prime}(v) / r(v)} d u\right. \\
&+\left|\int_{1 / v}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} \frac{\left(r^{\prime}(v) / r(v)\right) \sin u v}{\left(r^{\prime}(v) / r(v)\right)^{2}+u^{2}} d v\right|+\int_{0}^{1 / v}\left(\frac{1}{m(1 / u)}\right)^{\prime} \frac{u d u}{\left(r^{\prime}(v) / r(v)\right)^{2}} \\
&=\left.+\left|\left(\int_{1 / v}^{r(v) / r(v)}+\int_{r^{\prime}(v) / r(v)}^{t}\right)\left(\frac{1}{m(1 / u)}\right)^{\prime} \frac{u \cos u v}{\left(r^{\prime}(v) / r(v)\right)^{2}+u^{2}} d u\right|\right)
\end{aligned}
$$

where

$$
Y_{1}+Y_{3} \leq A \int_{1 / t}^{\infty} \frac{d v}{v r^{\prime}(v) / r(v)} \int_{v}^{\infty} \frac{m^{\prime}(w)}{(m(w))^{2}} \frac{d w}{w} \leq A \int_{1 / t}^{\infty} \frac{m^{\prime}(w)}{(m(w))^{2}} d w \leq A
$$

by (4). By (9) and the fact that $u /\left(\left(r^{\prime}(u) / r(u)\right)^{2}+u^{2}\right) \uparrow$ as $u \uparrow$, $\left(1 / v<u<r^{\prime}(v) / r(v)\right)$, and using the second mean value theorem for the integral concerning u, we get

$$
Y_{2}+\left|Y_{4}\right| \leq A \int_{1 / t}^{\infty} \frac{1}{v^{2}} \frac{v^{2} m^{\prime}(v)}{(m(v))^{2}} \frac{d v}{v\left(r^{\prime}(v) / r(v)\right)} \leq A \int_{1 / t}^{\infty} \frac{m^{\prime}(v)}{(m(v))^{2}} d v \leq A
$$

On the other hand, by (9) and the fact that $u /\left(\left(r^{\prime}(v) / r(v)\right)^{2}+u^{2}\right) \downarrow$ as $u \uparrow,\left(r^{\prime}(u) / r(u)<u<t\right)$, and again using the second mean value theorem for the integral concerning u, then

$$
\left|Y_{5}\right| \leq A \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{1 / t}^{x} \frac{r(v)}{v^{2}}\left[\left(\frac{1}{m(1 / v)}\right)^{\prime}\right]_{u=r^{\prime}(v) / r(v)} \frac{d v}{v r^{\prime}(v) / r(v)}
$$

Since $r^{\prime}(v) / r(v)>A / v$,

$$
\left[\left(\frac{1}{m(1 / u)}\right)^{\prime}\right]_{u=r^{\prime}(v) / r(v)} \leq\left[\left(\frac{1}{m(1 / u)}\right)^{\prime}\right]_{u=A / v}=A \frac{m^{\prime}(A v)}{(m(A v))^{2}} v^{2}
$$

and then

$$
\left|Y_{5}\right| \leq A \int_{1 / t}^{\infty} \frac{m^{\prime}(A v)}{(m(A v))^{2}} d v \leq A
$$

Thus we have proved that $Y \leq A$. Finally

$$
\begin{aligned}
Z & =\int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x\left|\int_{0}^{t}\left(\frac{1}{m(1 / u)}\right)^{\prime} I v(x) d u\right| \\
& \leq \frac{A}{m(1 / t)} \int_{1 / t}^{\infty} \frac{r^{\prime}(x)}{(r(x))^{2}} d x \int_{1 / t}^{x} \frac{r(v)}{v\left(r^{\prime}(v) / r(v)\right)^{2}}\left|d\left(\frac{r^{\prime}(v)}{r(v)}\right)\right| \\
& \leq \frac{A}{m(1 / t)} \int_{1 / t}^{\infty} \frac{1}{v\left(r^{\prime}(v) / r(v)\right)^{2}}\left|d\left(\frac{r^{\prime}(v)}{r(v)}\right)\right| \\
& \leq \frac{A}{m(1 / t)} \int_{1 / t}^{\infty} \frac{1}{v}\left(\frac{r^{\prime \prime}(v) r(v)}{\left(r^{\prime}(v)\right)^{2}}-1\right) d v \leq A
\end{aligned}
$$

by (8). Since $R \leq W+X+Y+Z, R$ is bounded and then the theorem is proved.

References

[1] R, Mohanty, "On the absolute Riesz summability of Fourier series and allied series", Proc. London Math. Soc. (2) 52 (1951), 295-320.
[2] Shin-ichi Izumi and Masako Satô (= Masako Izumi), "Integrability of trigonometric series. I", Tôhoku Math. J. (2) 6 (1954), 258-263.

Department of Mathematics, Institute of Advanced Studies, The Australian National University, Canberra, ACT.

