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THE FIXED POINT SET OF REAL 
MULTI-VALUED CONTRACTION MAPPINGS 

BY 

ARTHUR S. FINBOWC1) 

1. Introduction. Let (X, dj and (Y, d2) be metric spaces. A mapping f:X-+ Y 
is said to be a Lipschitz mapping if there exists a real number A such that 

d2(f(x)9f(y))<M1(x9y) 

for each x,y e X. We call A a Lipschitz constant for/ . If X e [0, l ) , / i s called a 
contraction mapping. Throughout this note CB(Y) denotes the set of closed and 
bounded subsets of Y equipped with the Hausdorff metric induced by d2. Letting 
jR1 be the set of real numbers and 

N(cc, A) = {y G Y :d2(y, a) < a for some a eA} 

for each cueR1 and each A e CB(Y), we recall that this metric, say D, is defined 
as follows : 

D(A, B) = inf{a e jR1:^ <= JV(a, B) and B c= JV(oc, A)} 

for each A,B e CB(Y). A mappingg:X->CB(Y) is called a multi-valued mapping 
from X to Y, and if X= Y, x e X is called a fixed point of g provided x e g(x). Iff 
and g are multi-valued mappings from X to Y, it is clear t h a t / U g:X->CB(Y) 
defined b y / U g(x)=f(x) U g(x) for all x e X is also a multi-valued mapping from 
Z t o F. 

In this note, we show that if X is a connected subset of R1 and 7 is JR1, then a 
multi-valued Lipschitz mapping/from X to F, with the property that / (x) has n 
components for each xeX, can be characterized as the union of n connected-
valued Lipschitz mappings. Thence we deduce that if/is a multi-valued contraction 
mapping from R1 to R1, with the property that / (x) has n components for each 
x e jR1, then its set of fixed points has exactly n components. At the same time we 
answer in the affirmative the following question of Helga Schirmer [2, p. 170]: 

"If the image of the contractive function <p:R1-^R1 consists of exactly n points 
for all x G R1, does the fixed point set of cp consist of n points ?" (where "contractive 
function" means multi-valued contraction mapping in our terminology). 
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2. Results. 

DEFINITION. Let (X, d±) and (7, d2) be metric spaces. We say that a mapping 
/ : X - > 7 i s a local radial Lipschitz mapping with Lipschitz constant X (>0) if for 
each xeXthere exists e(x)>0 such that 

di(x, y) < e(x) => d2(f(x),f(y)) <, Xdx(x, y) 

LEMMA 1. Le/ X be a connected subset of R1 and (Y, d) be a metric space. The 
function f:X->CB(Y) is a local radial Lipschitz mapping with Lipschitz constant X 
if and only if fis a Lipschitz mapping with Lipschitz constant X. 

Proof. Suppose/is a local radial Lipschitz mapping with Lipschitz constant X, 
and let D be the Hausdorff metric for CB{ Y) induced by d. 

To show t h a t / i s a Lipschitz mapping with Lipschitz constant X, let x'<x" be 
arbitrary elements of X and I=[x', x"]. Since X is connected, / <= X. For each 
x e I, let e(x) be such that 

\x-y\ < <*) => d(f(x)9f(y)) < X \x-y\ 

and then set Ox= {y:\x- y\<e(x)}. Since {Ox:xeI} is an open cover of the 
compact set / , there is a finite subset of / , say {xl9 x2i . . . ,xn}9 such that 
{Ox\i e {1, 2, . . . , n}} is a cover of/. We may assume: 

x-± <C. x 2 <C, • • • <C x n , 

X G Oxl9 X G Uxn> 
and 

0Xir\0Xi+1^ <f> for î e { l , 2 , . . . , n - l } 

Now we define j 0
= ; c ' > yin—x" a n d J ^ - i ^ * * f° r z e {1, 2 , . . . , n}. Finally, for 

each i G {1, 2 , . . . , « —1}, we choose j 2 i G OX. n Oa..+i satisfying*i<j2t<*i-+i-
Then it is clear that we have 

)>o < J>i < * ' " < y*n 

and 

D(f(yù,f(yi+1)) £ X \yi-yi+1\ for each i e { 0 , 1 , . . . , 2 n - l } . 

Hence 
2 w - l 

J>(/(*'),/(*")) ^ 2 WGO./GVM)) 

2 w - l 2 n - l 

< 2 * Itt-jv+il = ^ 2 Ovi-^) 
t=0 i=0 

= ^ n - J o ) = A |* ' -X"| . 

The proof is thus completed since the converse follows directly from the definitions. 
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The following lemma, stated previously by S. B. Nadler, Jr. [1, Theorem 3], is an 
immediate consequence of the definitions: 

LEMMA 2. Let X and Y be metric spaces. Iff:X-+CB(Y) is a Lipschitz mapping 
with Lipschitz constant a and g:X-+CB(Y) is a Lipschitz mapping with Lipschitz 
constant (5, thenfU g is a multi-valued Lipschitz mapping with Lipschitz constant 
max{a, /?}. 

THEOREM. Let A be a connected subset of R1. Then a necessary and sufficient 
condition for a multi-valued function f:A->CB(R}) to be a Lipschitz mapping with 
Lipschitz constant A^O and to be such thatf(x) has n components for each x G A is 
that there exist n connected-valued Lipschitz mappings 

f:A->CBi&), i e { 1 , 2 , . . . , a}, 

with nonintersecting graphs such that % is a Lipschitz constant for each f and 

Proof. Necessity follows directly from Lemma 2 and the hypothesis that the 
graphs of the f are nonintersecting. To prove sufficiency, let x e A. By hypothesis, 

fix) = [fll(x), h(x)] U [a2(x), b2(x)] u • • • U [an{x\ bn(x)] 

where 

0iOO < &i(*) < a2(x) <: b2(x) < • • • < an(x) <T bn(x). 

We setfi(x)= [a^x), b{(x)] for each x e A and each / e {1, 2 , . . . , n}. The proof 
is finished by showing that {f:i e {1, 2 , . . . , n}} forms the desired decomposition 
of/. 

Clearly / = ( j L i / i anc* the f are connected-valued and have nonintersecting 
graphs. Now if A=0, t h e n / i s a constant function and thence, so is e a c h / , 
/ e { l , 2 , . . . , « } , showing that each f is a Lipschitz mapping with Lipschitz 
constant A=0. Otherwise, let s(x)=%mm{\ai+1(x)— bi(x)\:iG {1, 2 , . . . , n — 1}} 
for each x G A. By Lemma 1, we are done if we show that for each / e {1, 2 , . . . , n}, 
f is a local radial Lipschitz mapping with Lipschitz constant L Therefore, we 
complete the proof by showing 

i*-*oi < £^Y=> W M / W ) <ç A ix-*oi 

for each X0GA and each / G {1, 2 , . . . , n}. 
To this end, let X0GA and let XGA be such that \x—x0\<e(x0)IL Since 

^(/(*o)>/(*))<^ I*—*ol> it follows that fix) <= jV(A |x—x0|,/(x0)) by the defini­
tion of the Hausdorff metric. Also, since X \x—x0\ < e(x0), N(X \x—x0\,f(x0)) has 
the n components N(À \x— x0\9fi(x0)), iG {1, 2 , . . . , n). Hence, for each is 
{1, 2 , . . . , n} there exists a unique kt G {1, 2 , . . . , n) such that 

f{x) c tf(A \x-x0\,fkiix0)). 
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Setting J={1 , 2 , . . . , n}, we may thus define a mapping k:I->Iby lettingk(i)=ki 
for each i e I. 

Now if we can show that k is the identity mapping on / , then the following 
argument will complete the proof: for each / e / , 

Mx) c JV(A \x-x0\,fki (x0)) = iV(A |x-XoUOo)). 

On the other hand, since X \x—xQ\<e(x0) and ft(x) <= C(A.\x—x0\,fi(x0))9 it 
follows that 

W \x-x0\,Mx)) c N(X | x - x 0 | , N(X Ix-XolMxo))) 

c ^ ( X o ) , / ^ ) ) 
and hence 

JV(A \x-x0\9fjtx)) n / , (x 0 ) = <£ for i 7e j . 

However, since D(f(x),f(x0))<iÀ \x—x0\ implies f(x0) <= iV(A |x—x0l >/(*))> it 
now follows that/iOfo) c NQ. \x—x0l >/*(*)) for each i e I. Thus, by the definition 
of the Hausdorff metric, we have £(/X*)>/i(*o))<^ |x—x0\ for each f G /. 

Now in order to show that k is the identity mapping on /, we first show that k 
is a bijection. For this it is sufficient to show that k is a surjection because / is 
finite. If k is not surjective, then there exists I e I such that 

/<(*) <tN(X\x-x0lfy(xQ)) 

for each i e I. Thus, setting I'=I~{1}, we have 

/(x)c= \J N(X\x-x0\,f1M)9 
t e l ' 

and hence 

N(l | x -x 0 | , / (x ) ) <= JV̂ A | x - x 0 | , U iV(A |x-x0l,/<(*o))) 

<= U iV(2£(x0),/i(x0)) 
*e/ ' 

since A |x—x0|<e(x0). However, by the definition of £(x0), 

M*o) n ( U iV(2£(x0),./;(x0))) = <£ 

and thence fi(x0) <t JV(A |x—x0\,f(x)). Thus/(x0) 4= JV(A |x—x0 |,/(x)) and then 
by the definition of the Hausdorff metric, D(/(x), /(x0))>A \x—x0|. This con­
tradicts the hypotheses and hence we deduce that k is a bijection. 

Now, suppose k is not the identity, and let i be the first integer in / such that 
k{i)^i. Let k(i)=ï. Since k is a bijection, ï>i and there exists y G / , j>i, such 
that k(j) = i. Then we have 

/<(*) e #(A \x-x0\fMxo)) <= iv(£(x0),/i<x0)) 
and similarly 
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Thus, diipc) eN(e(x0),fif(xQ)) and a^(x) e7V(e(x0),/^(x0)). However, since ï>i and 
since 

N(e(xQ),Mx0)) O N(e(x0),Mxo)) = & 
it follows from the definition of the/^, pel, that for each x e N(e(x0),/j(x0)) and 
each JJ; G N(S(X0), f, (x0)), x<y. Hence we have ^ < ^ which implies j<i by the 
definition of the a^pel. This contradiction shows that k is the identity mapping 
on / and thus completes the proof of the theorem. 

Helga Schirmer has shown [2, Theorem 2] that a connected-valued contraction 
mapping from JR1 to R1 has a compact connected set of fixed points. From this 
we deduce the following corollary: 

COROLLARY 1. Let f: R1->CB(R1) be a contraction mapping such that fix) has n 
components for each x e R1. Then the set of fixed points of fis a compact set with 
n components. 

Proof. By the theorem, we have / = (j£=i./i w ^ e r e fi is a connected-valued 
contraction mapping for each / e {1, 2 , . . . , n}, and the graphs of the/^. are non-
intersecting. We note that the set of fixed points of / i s the union of those of t h e / . 
Hence, since the graphs of t h e / are nonintersecting, we are done by the preceding 
remark. 

Finally, we answer in the affirmative the question of Helga Schirmer stated in 
the introduction. 

COROLLARY 2. Let f:R1->CB(R1) be a contraction mapping such that f{x) con­
sists of exactly n points for each xe R1. Then the set of fixed points off consists of 
exactly n points. 

Proof. By the theorem,/= U?=i/*' w h e r e / is a connected-valued contraction 
mapping for each / e {1, 2 , . . . , n}, and the graphs of t h e / are nonintersecting. 
Clearly each / must be single-valued, and thus, by Banach's contraction principle, 

/ has a unique fixed point, / G {1, 2, . . . , n}. The corollary thus follows since the 
graphs of t h e / are nonintersecting. 
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