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Abstract. Let C be a non-degenerate planar curve. We show that the curve is
of Khintchine-type for convergence in the case of simultaneous approximation in �2

with two independent approximation functions; that is if a certain sum converges then
the set of all points (x, y) on the curve which satisfy simultaneously the inequalities
‖qx‖ < ψ1(q) and ‖qy‖ < ψ2(q) infinitely often has induced measure 0. This completes
the metric theory for the Lebesgue case. Further, for multiplicative approximation
‖qx‖‖qy‖ < ψ(q) we establish a Hausdorff measure convergence result for the same
class of curves, the first such result for a general class of manifolds in this particular
setup.

2000 Mathematics Subject Classification. Primary 11J83; Secondary 11J13, 11K60.

1. Introduction. Before we state the main results of this paper we fix notation
and define some elementary, but essential, concepts.

Let ψ : �+ → �+ be a real, decreasing function. Throughout we shall refer to ψ

as an approximating function. Let x ∈ � and ‖x‖ be the distance of x from �. That is,
‖x‖ = inf{|x − z| : z ∈ �}. Further, if S is a (Lebesgue) measurable set in �n then we
shall denote the Lebesgue measure, or more simply the measure, of S by |S|�n .

Consider now the following system of n Diophantine inequalities

‖qxi‖ < ψi(q), (1)

where xi ∈ �, pi ∈ �, q ∈ � and ψ1, ψ2, . . . , ψn are approximation functions. Then a
point x ∈ �n is simultaneously (ψ1, ψ2, . . . , ψn)-approximable if there are infinitely
many q satisfying (1). The set of all such points x ∈ �n, will be denoted by
Sn(ψ1, ψ2, . . . , ψn).

Simultaneous approximation has another variant in the guise of multiplicative
approximation; let x ∈ �n, then x is multiplicatively ψ-approximable if the inequality

n∏
i=1

‖qxi‖ < ψ(q) (2)

holds for infinitely many q ∈ �. By analogy with the previous notion of simultaneous
approximation, we shall denote by S∗

n (ψ) the set of all multiplicatively ψ-approximable
points x in �n.

Let C(m)(U) be the space of all m-continuously differentiable functions f where
f : U → � with U being an open set in �n. A map g : U → � is said to be
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non-degenerate at u ∈ U if there exists some l ∈ � such that g ∈ C(l)(B(u, δ)) for some
sufficiently small δ > 0 with B(u, δ) ⊂ U and the partial derivatives of g, evaluated at u,
span �n. The map g is non-degenerate if it is non-degenerate at almost all points u ∈ U .
Let M be a sub-manifold of �n. Then M is said to be non-degenerate if M = g(U)
where g is non-degenerate. The geometric interpretation of non-degeneracy is that the
manifold is sufficiently curved that it deviates from any hyperplane. Non-degeneracy
is not a particularly restrictive condition and a large class of manifolds satisfy this
condition.

Note that if the topological dimension, dimM, of the manifold is strictly less than
n then |M|�n = 0. As we wish to make measure theoretic statements about points that
lie on a manifold we work with the induced measure, | · |M. All measure statements
made below are made with respect to this induced measure.

2. Statement of results. Let I be some open interval in � and f ∈ C(3)(I) such
that for almost all x ∈ I :

(1) there exist constants c1 > c2 > 0 with c1 > f ′(x) > c2,
(2) f ′′ �= 0.

Under these assumptions it is readily verified that the curve Cf , where

Cf := {(x, f (x)) : x ∈ I},

is non-degenerate. We shall be assuming these conditions throughout the remainder of
this article.

In [7], the authors conjectured that

|Cf ∩ S2(ψ1, ψ2)|Cf = 0 if
∞∑

h=1

ψ1(h)ψ2(h) < ∞ (3)

and

|Cf ∩ S∗
2 (ψ)|Cf = 0 if

∞∑
h=1

ψ(h) log h < ∞. (4)

The conjecture stated in (4) is a special case of Theorem 1 below. Before stating
the theorem we briefly define Hausdorff s-measures. For a more detailed exposition of
the theory of Hausdorff measures and its many applications in mathematics, see either
of the excellent books by Falconer ([4] or [5]).

Let X ⊂ �n and s ≥ 0. For any δ > 0, a δ–cover, Cδ(X), of X is a countable
collection of balls Bi such that X ⊂ ⋃

Bi and diamBi ≤ δ. The set function Hs
δ(·),

where

Hs
δ(X) := inf

{∑
diamsBi

}
with the infimum taken over all δ-covers of X , is an outer measure. Taking the limit of
this quantity as δ → 0 gives the Hausdorff s-measure of X . That is,

Hs(X) := lim
δ→0

Hs
δ(X).
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When s takes on values in � ∪ {0} then Hs coincides with s-dimensional Lebesgue
measure.

THEOREM 1. Let ψ be an approximating function and 0 < s ≤ 1. Then

Hs(Cf ∩ S∗
2(ψ)) = 0 if

∞∑
h=1

h1−s(logs h)ψ s(h) < ∞.

Note that as H1 coincides with 1-dimensional Lebesgue measure and as we are
working with the induced measure on the manifold, in this case a 1-dimensional
manifold, Conjecture 4 follows immediately as a special case of Theorem 1. For the
cases when 0 < s < 1 Theorem 1 appeared as a conjecture in [7].

Furthermore, the proof of Theorem 1 can be adapted to settle claim (3) and it is
exactly this result that we present as Theorem 2 below.

THEOREM 2. Let ψ1, ψ2 be approximating functions. Then

|Cf ∩ S2(ψ1, ψ2)|Cf = 0 if
∞∑

h=1

ψ1(h)ψ2(h) < ∞.

For the background to these problems, including a detailed survey of the classical
theory of simultaneous Diophantine approximation, we refer the reader to the articles
[2], [3] and [7]. Indeed, it is precisely the ideas of these papers, most notably those of
[7], that we use to prove Theorem 2 and Theorem 1.

3. Proof of Theorem 1. We are given that

∞∑
h=1

h1−s logs h · ψ s(h) < ∞. (5)

Therefore without loss of generality we can assume that

q1− 2
s (log q)−2− 1

s < ψ(q) (6)

for sufficiently large q. To see why, suppose that (6) is not satisfied. Then we replace ψ

with the auxiliary function

ψ̃ : q �→ ψ̃ := max
{
ψ(q), q1− 2

s (log q)−2− 1
s
}
.

Clearly, ψ̃ is an approximation function. One can easily check that (5) and (6)
are satisfied with ψ replaced by ψ̃ . Furthermore,

S∗
2(ψ̃) ⊃ S∗

2(ψ).

Thus it suffices to prove the theorem with ψ replaced by ψ̃ and (6) can be assumed.
As {(x, f (x)) : x ∈ �} is countable and therefore of 0 Hausdorff s-measure, the

value of Hs(Cf ∩ S∗
2(ψ)) will be unaltered if we omit such points. Hence we assume

without any loss of generality, that x �∈ �.
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The set Cf ∩ S∗
2(ψ) is a lim sup-set with the following natural representation:

Cf ∩ S∗
2(ψ) =

∞⋂
n=1

∞⋃
q=n

⋃
(p1,p2)∈�2

S∗(p1, p2, q)

where

S∗(p1, p2, q) :=
{

(x, y) ∈ Cf :

∣∣∣∣x − p1

q

∣∣∣∣ ·
∣∣∣∣y − p2

q

∣∣∣∣ <
ψ(q)

q2

}
.

Using the fact that ψ is decreasing, we have that for any n

Cf ∩ S∗
2(ψ) ⊂

∞⋃
t=n

⋃
2t�q<2t+1

⋃
(p1,p2)∈�2

S∗(p1, p2, q, t) (7)

where

S∗(p1, p2, q, t) :=
{

(x, y) ∈ Cf :

∣∣∣∣x − p1

q

∣∣∣∣ ·
∣∣∣∣y − p2

q

∣∣∣∣ <
ψ(2t)
(2t)2

}
.

If t ∈ �, (x, y) ∈ Cf , q ∈ � with 2t � q < 2t+1 and∣∣∣∣x − p1

q

∣∣∣∣ ·
∣∣∣∣y − p2

q

∣∣∣∣ <
ψ(2t)
(2t)2

for some (p1, p2) ∈ �2, then there is a unique integer m such that

2m−1

√
2ψ(2t)

2t
�

∣∣∣∣x − p1

q

∣∣∣∣ < 2m

√
2ψ(2t)

2t
.

For this m, it follows that∣∣∣∣y − p2

q

∣∣∣∣ <
ψ(2t)
(2t)2

2t

2m−1
√

2ψ(2t)
= 2−m

√
2ψ(2t)

2t
.

Then,

Cf ∩ S∗
2(ψ) ⊂

∞⋃
t=n

⋃
2t�q<2t+1

⋃
(p1,p2)∈�2

+∞⋃
m=−∞

Cf ∩ S(q, p1, p2, m) (8)

where

S(q, p1, p2, m) =
{

(x, y) ∈ �2 :

∣∣∣∣x − p1

q

∣∣∣∣ < 2m

√
2ψ(2t)

2t
,

∣∣∣∣y − p2

q

∣∣∣∣ < 2−m

√
2ψ(2t)

2t

}
.

Thus, we have constructed a sequence of coverings of Cf ∩ S∗
2(ψ). The aim is now

to show that if, for a given s, (5) holds then the associated sequence of Hausdorff
s-measures for these coverings tends to 0 as n → ∞. It then follows that we have
Hs(Cf ∩ S∗

2(ψ)) = 0, as required.
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To proceed we consider two separate cases. For a fixed t, Case (a): m ∈ � such that

2−|m| � t
√

ψ(2t). (9)

and Case (b): m ∈ � such that

2−|m| � t
√

ψ(2t). (10)

Case (a). First, observe that (9) together with (6) implies that

2−|m| � t
√

2t(1− 2
s ) · t−2− 1

s and so 2|m| � t
1
2s 2t

(
1
s − 1

2

)
.

Upon taking logarithms (to the base 2) of both sides of the above inequality, we arrive
at

|m| � t
(

2 − s
2s

)
+ 1

2s
log2 t � t. (11)

As c2 > f ′(x) > c1 for all x ∈ I it follows that

diam(Cf ∩ S(q, p1, p2, m)) � 2−|m|
√

ψ(2t)
2t

. (12)

The implied constant depends only on c1 and is irrelevant to the remainder of the
argument.

Given t and m, let N(t, m) denote the number of triples (q, p1, p2) with 2t � q < 2t+1

such that Cf ∩ S(q, p1, p2, m) �= ∅. Suppose now that Cf ∩ S(q, p1, p2, m) �= ∅. Then for
some (x, y) ∈ Cf and θ1, θ2 satisfying −1 < θ1, θ2 < 1, we have that

x = p1

q
+ θ12|m|

√
2ψ(2t)

2t
, y = p2

q
+ θ22|m|

√
2ψ(2t)

2t
.

Thus, it can be shown that

f
(

p1

q

)
− p2

q
= f

(
p1

q

)
− f (x) + f (x) − y + y − p2

q

= −θ2f ′(ξ ) · 2|m|
√

2ψ(2t)
2t

+ θ1 · 2|m|
√

2ψ(2t)
2t

where ξ lies between x and p1/q. Further, one can easily deduce that∣∣∣∣f (
p1

q

)
− p2

q

∣∣∣∣ � 2|m|
√

ψ(2t)
2t

� 1
t2t

.

Set Q = 2t+1. Then we have q � Q and∣∣∣∣f (
p1

q

)
− p2

q

∣∣∣∣ � 1
Q log Q

.
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A result of Vaughan & Velani is crucial to our argument. We now state this result,
which is Theorem 2 from [7].

THEOREM VV. Let Nf (Q, ψ, I) = #{p/q : q � Q, p1/q ∈ I, |f (p1/q) − p2/q| <

ψ(Q)/Q}. Suppose that ψ is an approximating function with ψ(Q) � Q−φ where φ

is any real number with φ � 2
3 . Then

Nf (q, ψ, I) � ψ(Q)Q2. (13)

In our case ψ(Q) = 2|m|√2ψ(2t) � 1
log Q which satisfies the conditions of

Theorem VV. Therefore there exists an absolute constant c > 0 such that

N(t, m) � c22t2|m|√ψ(2t). (14)

Now using (12) and (14) we can bound the Hausdorff sum associated with the set
Cf ∩ S∗

2(ψ):

Hs(Cf ∩ S∗
2(ψ)) �

∞∑
t=n

∑
m∈case (a)

(
2−|m|

√
ψ(2t)
2t

)s

× 2|m|22t
√

ψ(2t)

�
∞∑

t=n

∑
m∈case (a)

ψ(2t)
1
2 (1+s) · 2t(2−s) · 2|m|(1−s)

(9)�
∞∑

t=n

∑
m∈case (a)

ts−1ψ(2t)s2t(2−s)

(11)�
∞∑

t=n

ts2t(2−s)ψ(2t)s �
∞∑

q=2n

q1−s logs q · ψ(q)s.

The above comparability follows from the fact that ψ is an approximating function
and therefore decreasing. In view of (5),

∞∑
q=2n

q1−s logs q · ψ s(q) → 0 as n → ∞.

Therefore, for Case (a) it follows that Hs(Cf ∩ S∗
2(ψ)) = 0 as required.

Case (b). In view of (10), we have that

S(q, p1, p2, m) ⊂ (S′(q, p1) × [0, 1]) ∪ ([0, 1] × S′(q, p2))

where

S′(q, p) =
{

y ∈ [0, 1] :

∣∣∣∣y − p
q

∣∣∣∣ <
2tψ(2t)

2t

}
.

Thus, the set of (8) is a subset of

∞⋃
t=n

⋃
2t�q<2t+1

⋃
(p1,p2)∈�2

Cf ∩ ((S′(q, p1) × [0, 1]) ∪ ([0, 1] × S′(q, p2))). (15)
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As c1 > f ′(x) > c2 > 0, for any choice of p1, p2 and q appearing in (15),

diam(Cf ∩ (S′(q, p1) × [0, 1])) � t
ψ(2t)

2t

and

diam(Cf ∩ ([0, 1] × S′(q, p2)) � t
ψ(2t)

2t
.

The implied constants depends only on c1 and c2 and are irrelevant in the context
of the rest of the proof. Furthermore, for a fixed t and q in (15), there are � q pairs
(p1, p2) ∈ �2 for which the sets

Cf ∩ ((S′(q, p1) × [0, 1]) ∪ ([0, 1] × S′(q, p2)))

cover ⋃
(p1,p2)∈�2

Cf ∩ ((S′(q, p1) × [0, 1]) ∪ ([0, 1] × S′(q, p2))).

Drawing all the above considerations together it follows that the Hausdorff s-sum for
this covering of the set Cf ∩ S∗

2(ψ), as defined in (15), is bounded above by

∞∑
t=n

(
t
ψ(2t)

2t

)s

22t �
∞∑

q=2n

q1−s logs q · ψ s(q) → 0 as n → ∞.

As in the previous case, Case (a), by letting n → ∞ we conclude that

Hs(Cf ∩ S∗
2(ψ)) = 0.

This completes the proof of Theorem 1.

4. Proof of Theorem 2. We now proceed with establishing Theorem 2. The proof
is somewhat analogous to that of Theorem 1. Many of the estimates required to prove
Theorem 2 follow in exactly the same way as, or at worst require minor modifications
to the arguments used above. For this reason, and for the purpose of brevity, we leave
some of the technical details to the reader.

For the sake of convenience, let ψ = ψ1 and φ = ψ2. It is clear that

S2(φ,ψ) ⊂ S2(ψ∗, ψ∗) ∪ S2(ψ∗, ψ∗)

where

ψ∗ = min{ψ, φ} and ψ∗ = max{ψ, φ}.
Since ψ∗ψ∗ = ψφ, we have that

∑
ψ∗(q)ψ∗(q) < ∞. Thus to prove Theorem 2 it

is sufficient to show that both the sets Cf ∩ S2(ψ∗, ψ∗) and Cf ∩ S2(ψ∗, ψ∗) are of
Lebesgue measure zero. We will consider one of these two sets, the other case is similar.
Thus, without any loss of generality we assume that ψ(q) � φ(q) for all q ∈ �.

Since
∑∞

q=1 ψ(q)φ(q) < ∞ and both ψ, φ are decreasing we have that ψ(q)φ(q) <

q−1 for all sufficiently large q. Hence, φ(q) � q−1/2 for sufficiently large q. Further, we
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can assume that

ψ(q) � q−2/3 (16)

for all q ∈ �. To see this consider the auxiliary function ψ̃ where

ψ̃(q) = max{ψ(q), q−2/3}.
Clearly, ψ̃ is an approximating function. It also satisfies the following set inclusion,

S2(ψ, φ) ⊂ S2(ψ̃, φ).

Moreover,

∞∑
q=1

ψ̃(q)φ(q) �
∞∑

q=1

ψ(q)φ(q) +
∞∑

q=1

q−2/3φ(q)

�
∞∑

q=1

ψ(q)φ(q) +
∞∑

q=1

q−2/3q−1/2 < ∞.

This means that it is sufficient to prove Theorem 2 with ψ replaced by ψ̃ and therefore
without any loss of generality, (16) can be assumed.

In a manner analogous to that of (7), it is readily verified that for any n � 1

Cf ∩ S2(ψ, φ) ⊂
∞⋃

t=n

⋃
2t�q<2t+1

⋃
(p1,p2)∈�2

Cf ∩ S2(p1, p2, q) (17)

where

S2(p1, p2, q) =
{

(x, y) ∈ �2 :

∣∣∣∣x − p1

q

∣∣∣∣ <
ψ(2t)

2t
,

∣∣∣∣y − p2

q

∣∣∣∣ <
φ(2t)

2t

}
and t is uniquely defined by 2t � q < 2t+1. Next, we can use the same argument as that
used in (12) to verify that

|Cf ∩ S2(q, p1, p2)|Cf � φ(2t)
2t

. (18)

Finally, for fixed t let N(t) be the number of triples (q, p1, p2) with 2t � q < 2t+1 such
that Cf ∩ S(q, p1, p2) �= ∅. On modifying the argument used to establish (14), one
obtains the estimate

N(t) � 22tψ(2t). (19)

The upshot of (17), (18) and (19) is that

|Cf ∪ S2(ψ, φ)|Cf �
∞∑

t=n

∑
2t�q<2t+1

∑
(p1,p2)∈�2

|Cf ∩ S2(q, p1, p2)|Cf

�
∞∑

t=n

N(t)
φ(2t)

2t
�

∞∑
t=n

2tψ(2t)φ(2t) �
∞∑

q=2n

ψ(q)φ(q).
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Since
∑∞

q=1 ψ(q)φ(q) < ∞, we have that
∑∞

q=2n ψ(q)φ(q) → 0 as n → ∞ and it follows
that

|Cf ∩ S2(ψ, φ)|Cf = 0

as required.
This completes the proof of Theorem 2.

5. Remarks and possible developments. An obvious next step is to establish the
divergence counterpart to Theorem 1. That is, one would like to show that

∞∑
h=1

h1−s(logs h)ψ s(h) = ∞ ⇒ Hs(Cf ∩ S∗
2(ψ)) = ∞.

By adapting the arguments in this paper and using the ideas of local ubiquity, as
developed in [1], it is likely that one could establish a zero-full result forHh(Cf ∩ S∗

2(ψ))
where h is a general dimension function. This would include the above result and
Theorem 1 as a special case. A dimension function h : �+ → �+ is an increasing,
continuous function such that h(r) → 0 as r → 0. By replacing the quantity diams(Ci)
with h(diam(Ci)) in the definition of Hs, one can define the Hausdorff h-measure of a
set. For further details see [5] or [6]. Dimension functions give very precise information
about the measure theoretic properties of a set. The convergence part of such a theorem
follows almost immediately on from Theorem 1. Most of the estimates obtained in the
proof of Theorem 1 remain the same, the generalisation to Hausdorff h-measures
affects only the estimates involving the measures of the actual covers defined in the
proof. The main task in proving such a theorem would be in the proof of the divergence
case.
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