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Abstract
We show that the dimer algebra of a connected Postnikov diagram in the disc is bimodule internally 3-Calabi–
Yau in the sense of the author’s earlier work [43]. As a consequence, we obtain an additive categorification of the
cluster algebra associated to the diagram, which (after inverting frozen variables) is isomorphic to the homogeneous
coordinate ring of a positroid variety in the Grassmannian by a recent result of Galashin and Lam [18]. We show
that our categorification can be realised as a full extension closed subcategory of Jensen–King–Su’s Grassmannian
cluster category [28], in a way compatible with their bijection between rank 1 modules and Plücker coordinates.

1. Introduction

1.1. Main results

A Postnikov diagram, or alternating strand diagram [41], is a combinatorial object consisting of a
collection of strands in the disc. It encodes a great deal of further combinatorial, algebraic and geometric
data, mostly connected to questions regarding total positivity in the Grassmannian. From the point of
view of this paper, the key piece of data encoded by a Postnikov diagram D is that of an ice quiver with
potential (𝑄𝐷 , 𝐹𝐷 ,𝑊𝐷). Here 𝑄𝐷 is a quiver with a distinguished subquiver 𝐹𝐷 , which we call frozen,
so that the pair (𝑄𝐷 , 𝐹𝐷) is an ice quiver, and the potential𝑊𝐷 is, loosely speaking, a linear combination
of cycles in 𝑄𝐷 (see Definition 2.3 for a precise definition). The quiver 𝑄𝐷 and the vertex set of 𝐹𝐷

determine a cluster algebra 𝒜𝐷 with frozen variables; the reader unfamiliar with this construction can
find details in, for example, Keller’s survey [29]. In this paper, we will explain how to use the triple
(𝑄𝐷 , 𝐹𝐷 ,𝑊𝐷) to construct an additive categorification of this cluster algebra, in the case that D is
connected.

The construction proceeds via the frozen Jacobian algebra 𝐴𝐷 associated to (𝑄𝐷 , 𝐹𝐷 ,𝑊𝐷), also
known as the dimer algebra of D. This algebra is a quotient of the complete path algebra of 𝑄𝐷 by
the closure of an ideal generated by relations computed using the data of the arrow set of 𝐹𝐷 (or,
more directly, the complement of this set) and the potential 𝑊𝐷; again, precise definitions are found in
Definition 2.3. This algebra has a distinguished idempotent e, given by the sum of vertex idempotents
over the vertices of 𝐹𝐷 , from which we obtain a boundary algebra 𝐵𝐷 = 𝑒𝐴𝐷𝑒. We will show that the
category GP(𝐵𝐷) of Gorenstein projective 𝐵𝐷-modules is our desired categorification.
Theorem 1 (compare to Theorem 4.3 and Theorem 6.11). Let D be a connected Postnikov diagram,
and let 𝐵𝐷 = 𝑒𝐴𝐷𝑒 be the boundary algebra of its dimer algebra. Then the category GP(𝐵𝐷) is an
additive categorification of the cluster algebra 𝒜𝐷 .
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2 Matthew Pressland

While we use the term ‘additive categorification’ for brevity in the introduction, we acknowledge
that it does not have a widely accepted formal definition in this context and refer the reader to the more
precise statements below, which we hope justify our use of this terminology.

The main step in proving Theorem 1 is to establish a certain Calabi–Yau property for the algebra 𝐴𝐷 ,
relative to the boundary idempotent e, as referred to in the title. This result is likely to be of independent
interest and is analogous to Broomhead’s theorem [3, Thm. 7.1] concerning Calabi–Yau properties
of algebraically consistent dimer models on the torus (see also Davison [13] for higher genus closed
surfaces).

Theorem 2 (compare to Theorem 3.7). Let D be a connected Postnikov diagram with dimer algebra
𝐴𝐷 . Then 𝐴𝐷 is bimodule internally 3-Calabi–Yau with respect to the idempotent e given by summing
the vertex idempotents for the vertices of 𝐹𝐷 .

The general definition of a bimodule internally 3-Calabi–Yau algebra, and the role of this property in
constructing categorifications, is explained in [43]. We will not give this general definition here; since
𝐴𝐷 is presented as a frozen Jacobian algebra, we can work instead with a sufficient condition implying
the Calabi–Yau property, which appears in Theorem 3.7.

1.2. Positroid varieties

Postnikov diagrams and their associated cluster algebras are important in studying positroid varieties in
the Grassmannian—while this connection has only a minor logical role in the paper, we recall it here to
help contextualise and motivate our results. Positroid varieties were introduced by Knutson, Lam and
Speyer [32] and are closely related to various stratifications of the Grassmannian [4, 21, 36, 46]; see [32,
§5.3] for a discussion of this relationship. Intersecting a positroid variety with the totally nonnegative
Grassmannian produces a cell in Postnikov’s decomposition of this space, the study of which is one of
the main motivations of the work in [41].

In this context, a positroid is a subset P of the set
( [𝑛]

𝑘

)
of k-element subsets of {1, . . . , 𝑛} (see [38,

§1.4] for the defining properties). Each positroid is uniquely determined by a necklace, a cyclically
ordered set of n elements of

( [𝑛]
𝑘

)
(see [39, Defn. 4.2]). Strictly speaking, it is more compatible with

our conventions to use the reverse necklace (see [38, §2.1] and [11, §8]), but we will abuse terminology
by referring to the set I ⊆ P of elements of this reverse necklace as simply ‘the necklace I of P’.
Recall that the Grassmannian Gr𝑛𝑘 of k-dimensional subspaces of C𝑛 has as a standard generating set of
homogeneous coordinates the Plücker coordinates Δ 𝐼 for 𝐼 ∈

( [𝑛]
𝑘

)
.

Definition 1.1. Given a positroid P ⊆
( [𝑛]

𝑘

)
, the (closed) positroid variety Π(P) is the subvariety of

the Grassmannian Gr𝑛𝑘 on which Δ 𝐼 = 0 for 𝐼 ∉ P . The open positroid variety Π◦(P) is the subvariety
of Π(P) on which additionally Δ 𝐼 ≠ 0 for 𝐼 ∈ I. We denote the cones on these varieties, which are
defined by the same conditions inside the affine cone Ĝr𝑛𝑘 on the Grassmannian, by Π̂(P) and Π̂◦(P),
respectively.

A Postnikov diagram D determines a positroid P𝐷 with necklace I𝐷 and a maximal weakly separated
(or maximal noncrossing) collection [39, Defn. 4.3] C𝐷 with I𝐷 ⊆ C𝐷 ⊆ P𝐷 . In particular, D
determines the numbers k and n such that P𝐷 , I𝐷 and C𝐷 consist of k-element subsets of {1, . . . , 𝑛};
see Definition 2.1. The elements of C𝐷 are attached to the alternating regions of D, or equivalently to the
vertices of the associated ice quiver 𝑄𝐷; the precise construction is given in Remark 2.7. While many
different Postnikov diagrams can determine the same positroid and necklace, it is rarer for two diagrams
to determine the same weakly separated collection—indeed, given a positroid P with necklace I,
Oh–Postnikov–Speyer [39, Thm. 1.5] show that the maximal weakly separated collections C with
I ⊆ C ⊆ P are in bijection with Postnikov diagrams D such that P𝐷 = P (equivalently, I𝐷 = I), up to
isotopy and certain moves (see Figure 4).

We may interpret the collection C𝐷 as a set of functions on Π̂◦(P𝐷) by restricting the Plücker
coordinates Δ 𝐼 for 𝐼 ∈ C𝐷 to this subvariety of Ĝr𝑛𝑘 . Since these functions are attached to the vertices
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of 𝑄𝐷 , we thus obtain a map 𝒜𝐷 → C(Π̂◦(P𝐷)), from the abstract cluster algebra 𝒜𝐷 associated to
D to the ring of rational functions on Π̂◦(P𝐷), sending each initial cluster variable to the restricted
Plücker coordinate corresponding to the same quiver vertex. A long-standing conjecture, formalised by
Muller and Speyer [37, Conj. 3.4] and recently verified by Galashin and Lam [18] (see also [48] for the
special case of Schubert varieties), is the following.

Theorem 1.2 [18]. The specialisation map 𝒜𝐷 → C(Π̂◦(P𝐷)) above is injective, and its image is
precisely the coordinate ring C[Π̂◦(P𝐷)].

Thus the coordinate ring C[Π̂◦(P𝐷)] has a cluster algebra structure, with initial seed (𝑄𝐷 , C𝐷),
isomorphic to the cluster algebra we categorify in Theorem 1. While Π◦(P𝐷) is an affine variety, and
so it is slightly unusual to consider its affine cone, it is this cone on which restricted Plücker coordinates
are functions. By contrast, the coordinate ring C[Π◦(P𝐷)] is the degree zero part of C[Π̂◦(P𝐷)] in
the Z-grading in which Plücker coordinates have degree 1. Said differently, the grading determines a
C
×-action on C[Π̂◦(P𝐷)] by 𝜆 · 𝑓 = 𝜆𝑑 𝑓 when f has degree d, and C[Π◦(P𝐷)] is the invariant subring
C[Π̂◦(P𝐷)]

C
× for this action.

Remark 1.3. For Theorem 1.2, it is necessary to adopt the convention that the frozen variables of
𝒜𝐷 are invertible, since the images of these frozen variables in C[Π̂◦(P𝐷)] are precisely the Plücker
coordinates Δ 𝐼 for 𝐼 ∈ I𝐷 , which are nonzero on Π̂◦(P𝐷) by definition. This convention is not relevant
to Theorem 1, however, so we will freely compare our results with those of authors who do not invert
frozen variables, such as [28].

As already observed, the positroid P𝐷 and its corresponding variety Π◦(P𝐷) do not determine D
uniquely; choosing a different Postnikov diagram with positroid P𝐷 amounts to choosing a different
initial seed in the cluster algebra structure on C[Π̂◦(P𝐷)]. This is reflected in our categorical picture by
the fact (Corollary 4.7) that if P𝐷 = P𝐷′ for two connected Postnikov diagrams D and 𝐷 ′, then the two
algebras 𝐵𝐷 and 𝐵′𝐷 are isomorphic, and hence the categories GP(𝐵𝐷) and GP(𝐵𝐷′ ) from Theorem 1
are equivalent.

The best understood case of these constructions is that in which P𝐷 =
( [𝑛]

𝑘

)
is the uniform positroid,

in which the notion of a maximal weakly separated collection from [39] coincides with that of Leclerc–
Zelevinsky [34]. In this case, we have Π(P𝐷) = Gr𝑛𝑘 , the open subvariety Π◦(P𝐷) is determined by the
nonvanishing of those Plücker coordinates labelled by cyclic intervals, and Muller–Speyer’s conjecture
was verified much earlier by Scott [47]. (The case 𝑘 = 2 even appears in Fomin–Zelevinsky’s first paper
on cluster algebras [16].) Scott in fact proves more, namely that a completely analogous specialisation
map to that of Theorem 1.2 is an isomorphism from the cluster algebra with noninvertible frozen
variables determined by 𝑄𝐷 to the homogeneous coordinate ring of Gr𝑛𝑘 . However, this depends on
special properties of the uniform positroid, and there is no corresponding result for arbitrary Postnikov
diagrams.

1.3. The Grassmannian cluster category

When P𝐷 is the uniform positroid, a categorification of 𝒜𝐷 is provided by Jensen–King–Su [28] (see
also Demonet–Luo [14] for 𝑘 = 2). This Grassmannian cluster category, denoted CM(𝐶), consists of
Cohen–Macaulay modules over a certain algebra C (depending on k and n), defined directly via a quiver
with relations. Some of the results in [28] rely on the categorification by Geiß–Leclerc–Schröer [19]
of a cluster algebra obtained from 𝒜𝐷 by specialising a single frozen variable to 1 or, equivalently,
removing a frozen vertex and all adjacent arrows from the quiver.

Jensen–King–Su’s categorification is connected back to the combinatorics of Postnikov diagrams by
work of Baur–King–Marsh [2], which is our main inspiration. They show [2, Cor. 10.4] that for any
Postnikov diagram D for which P𝐷 is the uniform positroid, there is an isomorphism 𝐵𝐷 � 𝐶 between
the boundary algebra of D, with which we describe our categorification, and the algebra C describing
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the Grassmannian cluster category. Since C has the property that CM(𝐶) = GP(𝐶), our categorification
coincides with Jensen–King–Su’s in this case.

In our more general situation, because 𝐵𝐷 is defined as an idempotent subalgebra of the dimer
algebra 𝐴𝐷 , we do not typically know a presentation of 𝐵𝐷 via a quiver with relations. Our approach
therefore differs significantly from that of Jensen–King–Su, since we must deduce properties of the
category GP(𝐵𝐷) from the combinatorics of the diagram D and the representation theory of 𝐴𝐷 , for
which we do have such a presentation. This is done primarily via the internal Calabi–Yau property of
Theorem 3.7, which, in the full strength established here, is also a new result in the case that P𝐷 is the
uniform positroid.

For more general Postnikov diagrams D, a categorification analogous to that of Geiß–Leclerc–
Schröer’s in the uniform case is provided by Leclerc [33] in work on Richardson varieties; again, he
categorifies a cluster algebra obtained from 𝒜𝐷 by specialising a frozen variable to 1. Leclerc’s category
plays a crucial role in the construction of a cluster structure on C[Π̂◦(P𝐷)] in [18, 48]. In this paper,
we will always consider the full quiver 𝑄𝐷 and its associated cluster algebra—in particular, this means
that in the case of the uniform positroid, Theorem 1 recovers Jensen–King–Su’s category [28], not
Geiß–Leclerc–Schröer’s [19].

Our category GP(𝐵𝐷) is closely connected to the coordinate ringC[Π̂◦(P𝐷)] (and its cluster algebra
structure). To demonstrate this, we exhibit a cluster character on GP(𝐵𝐷), in the sense of Fu–Keller [17],
providing a bijection between reachable rigid indecomposable objects of GP(𝐵𝐷) and cluster variables
of C[Π̂◦(P𝐷)], and a bijection between reachable cluster-tilting objects of GP(𝐵𝐷) and clusters of
C[Π̂◦(P𝐷)]. We also recall results from joint work with Çanakçı and King [11] demonstrating even
stronger combinatorial connections between the representation theory of 𝐵𝐷 and the geometry of
Π̂◦(P𝐷). Precisely, there is a fully faithful functor 𝜌 : GP(𝐵𝐷) → CM(𝐶) from the categorification
described here to the Grassmannian cluster category (for the appropriate Grassmannian). For each
𝐼 ∈

( [𝑛]
𝑘

)
, there is a combinatorially defined C-module 𝑀𝐼 corresponding to the Plücker coordinate Δ 𝐼 ,

and we show (Theorem 7.6) that if 𝜌(𝑀) = 𝑀𝐼 , then the cluster character on GP(𝐵𝐷) takes M to the
restriction of Δ 𝐼 to Π̂◦(P𝐷).

Remark 1.4. Leclerc’s categories [33] can be used to categorify a cluster algebra structure on
C[Π◦(P𝐷)]—that is, on the coordinate ring of the open positroid variety itself rather than its affine
cone—but in a way that depends on choosing a frozen variable Δ 𝐼 with 𝐼 ∈ I𝐷 . Indeed, the construction
involves an isomorphism of Π◦(P𝐷) with the subvariety of Π̂◦(P𝐷) on which Δ 𝐼 = 1; this is the graph
of a global section of the line bundle Π̂◦(P𝐷) → Π◦(P𝐷). In ring-theoretic terms, this isomorphism
corresponds to splitting the inclusion

C[Π◦(P𝐷)] = C[Π̂
◦(P𝐷)]

C
×

⊆ C[Π̂◦(P𝐷)]

using the map taking 𝑓 ∈ C[Π̂◦(P𝐷)] of degree d to the C×-invariant function 𝑓Δ−𝑑
𝐼 , recalling that Δ 𝐼

is invertible on Π◦(P𝐷).
By avoiding this arbitrary choice, our categorification better reflects the symmetries of Π◦(P𝐷). For

example, in the case of the uniform positroid, both Π◦(P𝐷) and our category (which coincides with
Jensen–King–Su’s [28] in this case) carry an action of the order n cyclic group coming from natural
action of this group on the cyclically ordered set [𝑛], and by extension on the set

( [𝑛]
𝑘

)
labelling Plücker

coordinates. Since this action does not fix the frozen variables, but rather cyclically permutes them,
choosing a frozen vertex breaks the symmetry, which indeed is no longer present in Geiß–Leclerc–
Schröer’s category [19].

In the case of the uniform positroid, the distinction between Jensen–King–Su’s category and Geiß–
Leclerc–Schröer’s is even more critical, since in this case the homogeneous coordinate ringC[Π̂(P𝐷)] =
C[Ĝr𝑛𝑘 ] of the closed positroid variety carries its own cluster algebra structure, in which the n frozen
variables are noninvertible. For more general positroids P , the ring C[Π̂(P)] is not a cluster algebra,
but we still hope that the avoidance of symmetry-breaking in our constructions will allow us to use
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the algebra 𝐵𝐷 constructed here, and its category of Cohen–Macaulay modules, to study the closed
varieties Π(P) and Π̂(P)—see [11, Prop. 8.6] for a first step in this direction.

The structure of the paper is as follows. In Section 2, we recall the definition of a Postnikov diagram and
the construction of its dimer algebra. The necessary Calabi–Yau property of this algebra is established
in Section 3 and used to construct the categorification GP(𝐵𝐷) in Section 4. In Section 5, we show
that GP(𝐵𝐷) has a mutation class of cluster-tilting objects, again determined by D, whose quivers have
no loops or 2-cycles. This allows us to show in Section 6 that there is a cluster character on GP(𝐵𝐷)

inducing bijections between the cluster-tilting objects in this class and the clusters of 𝒜𝐷 , and between
their indecomposable summands and the cluster (and frozen) variables of 𝒜𝐷 . We close in Section 7 by
explaining how our categorification is related to Jensen–King–Su’s Grassmannian cluster category [28]
and how its cluster character relates to Galashin and Lam’s isomorphism of 𝒜𝐷 with the coordinate
ring C[Π̂◦(P𝐷)].

2. Postnikov diagrams and their dimer algebras

In this section, we introduce Postnikov diagrams in the disc and their associated dimer algebras, which
will be defined over a field K of characteristic zero.

Definition 2.1 [41, §14] (see also [47, §3] and [2, §2]). Let Σ be an oriented disc, with 𝑛 ≥ 3 marked
points on its boundary. A Postnikov diagram D in Σ consists of n oriented strands in Σ, starting and
ending at the boundary marked points, subject to the following constraints:

(P0) Each boundary marked point is the start point of exactly one strand and the end point of exactly
one strand.

(P1) The strands intersect in finitely many points, and each such crossing is transverse and involves
only two strands.

(P2) Moving along a strand, the signs of its crossings with other strands alternate.

(P3) A strand may not intersect itself in the interior of the disc.
(P4) If two strands intersect twice, the strands are oriented in opposite directions between these inter-

section points. In other words, the configuration

· · ·

· · ·

is not permitted, but the configuration obtained from this by reversing the orientation of one of the
strands is legal.

For axioms (P2) and (P4), the intersection of two strands at the boundary, with its natural sign, is also
treated as a crossing.

The diagram D divides Σ into regions, the connected components of the complement of the strands,
which have three types: the orientations of the strands around the boundary of such a region can be
inconsistent (in which case we call the region alternating), oriented anticlockwise (i.e. consistent with
the orientation of Σ) or oriented clockwise. We will use the terminology anticlockwise and clockwise for
regions with these boundary orientations. The alternating regions are further subdivided into boundary
regions, those incident with the boundary of Σ, and internal regions.
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We say that D is connected if the union of its strands is connected. This forces each boundary region
to meet the boundary of Σ in a single arc, so there are exactly n such regions.

There is an integer 𝑘 ∈ {1, . . . , 𝑛} such that each alternating region of D is on the left of exactly
k strands. We say that the type of D is (𝑘, 𝑛), recalling that n is the number of strands. One can also
compute k as the average number of boundary regions to the left of a strand. If D has the property that
every strand has exactly k boundary regions on its left, then each strand must terminate at a marked
point k steps clockwise from its source, and in this case D is sometimes [2] called a (𝑘, 𝑛)-diagram.
Diagrams of this kind are always connected.
Remark 2.2. It is possible to consider Postnikov diagrams on 𝑛 < 3 strands, but they do not lead to
interesting cluster algebras. For example, their associated ice quivers (see Definition 2.4 below) have
only frozen vertices and so describe a cluster algebra with only frozen variables: that is, a polynomial
ring. Thus the assumption that 𝑛 ≥ 3, which will be useful in Section 5, only excludes a small number
of highly degenerate examples. Both Theorems 1 and 2 do hold when 𝑛 < 3, but they reduce to the
claim that 𝐵𝐷 is an algebra of global dimension at most 3 with n indecomposable projective modules
up to isomorphism, which follows immediately from observing that 𝐵𝐷 is the complete path algebra of
an n-cycle in this case (or from the results of Section 3, which do not use the assumption 𝑛 ≥ 3).

A Postnikov diagram in the disc has an associated algebra called its dimer algebra, which, when D is
connected, is an instance of a frozen Jacobian algebra defined via an ice quiver with potential. We first
give the necessary definitions for this general construction and then explain how to read off the relevant
data from a Postnikov diagram.
Definition 2.3 (compare to [44, §2]). An ice quiver is a pair (𝑄, 𝐹), where Q is a quiver and F is a
(not necessarily full) subquiver of Q. We call 𝐹0, 𝐹1 and F the frozen vertices, arrows and subquiver,
respectively. Vertices in 𝑄m

0 := 𝑄0 \ 𝐹0 will be called mutable, whereas arrows in 𝑄m
1 := 𝑄1 \ 𝐹1 will

be simply called unfrozen. We assume for simplicity that Q has no loops.
Let K〈〈𝑄〉〉 denote the complete path algebra of Q (see [44, Defn. 2.6]). This algebra is graded by

path length, which makes its quotient K〈〈𝑄〉〉cyc by the vector subspace spanned by commutators into a
graded vector space. A potential on Q is an element𝑊 ∈ K〈〈𝑄〉〉cyc expressible as a linear combination
of homogeneous elements of degree at least 2. We usually think of W as a linear combination of cyclic
paths in Q (of length at least 2), considered up to cyclic equivalence: that is, the finest equivalence
relation on such paths such that

𝑎𝑛𝑎𝑛−1 · · · 𝑎1 ∼ 𝑎𝑛−1 · · · 𝑎1𝑎𝑛.

We call the triple (𝑄, 𝐹,𝑊) an ice quiver with potential.
Let 𝑝 = 𝑎𝑛 · · · 𝑎1 be a cyclic path, with each 𝑎𝑖 ∈ 𝑄1, and let 𝑎 ∈ 𝑄1 be any arrow. Then the cyclic

derivative of p with respect to a is

𝜕𝑎𝑝 :=
∑
𝑎𝑖=𝑎

𝑎𝑖−1 · · · 𝑎1𝑎𝑛 · · · 𝑎𝑖+1.

Extending 𝜕𝑎 by linearity and continuity, we obtain a map K〈〈𝑄〉〉cyc → K〈〈𝑄〉〉. For an ice quiver with
potential (𝑄, 𝐹,𝑊), we define the frozen Jacobian algebra

J (𝑄, 𝐹,𝑊) = K〈〈𝑄〉〉/〈𝜕𝑎𝑊 : 𝑎 ∈ 𝑄1 \ 𝐹1〉.

Here the closure is taken in the J-adic topology on K〈〈𝑄〉〉, where J is the ideal generated by arrows.
Definition 2.4. Let D be a Postnikov diagram in the disc. We associate to D an ice quiver (𝑄𝐷 , 𝐹𝐷) as
follows. The vertices of 𝑄𝐷 are the alternating regions of D, as in Definition 2.1. When the closures of
two different alternating regions 𝑣1 and 𝑣2 meet in a crossing point between strands of D, or at one of
the boundary marked points, we draw an arrow between 𝑣1 and 𝑣2, oriented in a way consistent with
these strands, as shown in Figure 1.
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𝑣1

𝑣2

𝑣1𝑣2

Figure 1. Arrows associated to strand crossings.

𝑓

𝑣1

𝑣2

𝑣3

𝑣4

Figure 2. A fundamental cycle around an oriented region.

The vertices of 𝐹𝐷 are the boundary regions, and the arrows of 𝐹𝐷 are those corresponding to
boundary marked points, as on the right in Figure 1.

Each clockwise or anticlockwise region f of D determines a fundamental cycle𝐶 𝑓 in Q, by following
the arrows corresponding to the crossing points in the boundary of the region, as shown in Figure 2 for
a quadrilateral anticlockwise region.

Thus we may define a potential

𝑊𝐷 =
∑

𝑓 anticlockwise
𝐶 𝑓 −

∑
𝑓 clockwise

𝐶 𝑓

on 𝑄𝐷 , and we call 𝐴𝐷 := J (𝑄𝐷 , 𝐹𝐷 ,𝑊𝐷) the dimer algebra of D.

Remark 2.5. While it is straightforward to describe the defining relations of 𝐴𝐷 directly without using
a potential (see, e.g., [11, Def. 2.11]), results on frozen Jacobian algebras will play a crucial role for us
in Section 3, making it important that 𝐴𝐷 has this structure.

Proposition 2.6 (compare to [2, Rem. 3.3]). The quiver 𝑄𝐷 is strongly connected: that is, any two
vertices are connected by a directed path.

Proof. Since the regions of D cover the disc, the underlying graph of𝑄𝐷 is connected. Moreover, every
arrow a of𝑄𝐷 is contained in at least one fundamental cycle—exactly one if a is frozen, and exactly two
otherwise. Thus every arrow has a path from its head to its tail, so 𝑄𝐷 is even strongly connected. �

Remark 2.7. Having now defined Postnikov diagrams and their associated quivers and algebras more
precisely, we may provide a few more details on the relationship to positroid varieties discussed in
Section 1.2.

Label the boundary marked points of Σ by {1, . . . , 𝑛}, in the clockwise direction. These labels can
be transferred first to the strands, by giving a strand the label of its source, and then to the alternating
regions, by applying the label of a strand to every alternating region on its left. By the definition of k,
this process labels each alternating region v of D by a k-label 𝐼𝑣 ∈

( [𝑛]
𝑘

)
, and it turns out [39, Thm. 6.6]

that the collection C𝐷 of these labels is a maximal weakly separated collection in the positroid P𝐷 . We
note here that P𝐷 =

( [𝑛]
𝑘

)
(i.e. P𝐷 is the uniform positroid) if and only if D is a (𝑘, 𝑛)-diagram.
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�

�

�
�

� ••

Figure 3. A Postnikov diagram (left), its corresponding dimer model (centre) and the ice quiver of its
dimer algebra (right). The frozen vertices of this ice quiver are shown as white diamonds, and the frozen
arrows are drawn in bold.

The cluster algebra𝒜𝐷 has initial cluster variables 𝑥𝑣 indexed by the vertices of𝑄𝐷 . By construction,
these vertices are the alternating regions of 𝐷, so each v has an attached k-label 𝐼𝑣 ∈

( [𝑛]
𝑘

)
and

Plücker coordinate Δ 𝐼𝑣 . The assignment 𝑥𝑣 ↦→ Δ 𝐼𝑣 induces Galashin and Lam’s isomorphism 𝒜𝐷 →

C[Π̂◦(P𝐷)] [18]. (Strictly speaking, Galashin and Lam use the complementary set of (𝑛 − 𝑘)-labels
obtained by labelling regions to the right of each strand, so they put a cluster structure on the coordinate
ring of an isomorphic positroid variety in Gr𝑛𝑛−𝑘 . Our isomorphism is obtained from theirs using the
natural isomorphism C[Gr𝑛𝑛−𝑘 ]

∼
→ C[Gr𝑛𝑘 ] with Δ 𝐼 ↦→ Δ 𝐼 𝑐 .)

We note that we could have obtained a different set of k-labels, and hence a different specialisation
map 𝒜𝐷 → C(Π̂◦(P𝐷)), by instead giving the strands of D the labels of their targets. This can produce
a different cluster algebra structure (in the sense that different functions are cluster variables) on
C[Π̂◦(P𝐷)], isomorphic to the same abstract cluster algebra 𝒜𝐷 . While this paper is mostly concerned
with categorifying 𝒜𝐷 , and so is insensitive to such labelling conventions, they will reappear in Section
7 when we use results of the author with Çanakçı and King [11] to relate our categories more directly
with the coordinate rings C[Π̂◦(P𝐷)]. In particular, it will turn out to be the source labelling convention
that is most compatible with our categorification and its relationship to Jensen–King–Su’s Grassmannian
cluster category CM(𝐶) [28].

Remark 2.8. Given a Postnikov diagram D in the disc Σ, we can construct from D a bipartite graph G
as follows. The vertices of G are given by the anticlockwise and clockwise regions of D, and two such
vertices are connected by an edge if the the closures of the regions meet at a crossing of strands in the
interior of Σ. The graph G is connected if and only if D is connected. Adding to G the data of half-edges,
which connect the vertex corresponding to a region to any boundary marked points in its closure, we
obtain a dimer model in Σ in the sense of [44, Ex. 2.5]. This construction appears in [41, §14], where
the dimer model is called a plabic graph. The dimer algebra 𝐴𝐷 is precisely the dimer algebra of (Σ, 𝐺),
as defined in [44, Ex. 2.12]. An example of a Postnikov diagram, its corresponding dimer model and
the ice quiver of its dimer algebra is shown in Figure 3.

Given the data of a dimer model G in the disc, or indeed in any oriented surface Σ with or without
boundary, it is always possible to produce a collection of strands, dividing Σ into alternating, clockwise
and anticlockwise regions, from which G may be recovered by the above rules. These strands are usually
called the zig-zag paths or flows of G [3, §3.3]. Note that in general these strands can either travel
between points on the boundary of Σ, as in Definition 2.1, or be closed curves in the interior. In the case
that Σ is a disc, these strands will always satisfy conditions (P0)–(P2) from Definition 2.1. Requiring
that they also satisfy (P3) and (P4)—which in particular rules out any closed curves in the interior—
places an extra condition on the dimer model G, the analogue of Broomhead’s geometric consistency
[3, Prop. 3.12]. Since these conditions, particularly (P4), will be important for us, we prefer to start from
the data of a Postnikov diagram.
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←→

←→

Figure 4. Twisting (right-to-left) and untwisting (left-to-right) moves for a Postnikov diagram, in the
interior (above) and at the boundary (below). The reflections of these figures in a horizontal line also
show twisting and untwisting moves.

•

•

𝑎 𝑏 ←→

•

•

•

•

𝑎 𝑏 ←→

•

•

𝑏

Figure 5. The effect on the quiver of applying a twisting or untwisting move in the interior (left) or at
the boundary (right). Bold arrows are frozen.

Postnikov diagrams are typically considered up to isotopy fixing the boundary, which does not affect
the construction of the dimer algebra at all, and certain twisting and untwisting moves shown in Figure 4.
These moves do affect the construction of the dimer algebra, in the sense that two Postnikov diagrams
related by such a move determine different ice quivers with potential, as shown in Figure 5 (compare to
[44, Ex. 4.5]). However, the frozen Jacobian algebras of these two quivers with potential—that is, the
dimer algebras of the two Postnikov diagrams—are isomorphic in a natural way. These moves also do
not affect the k-labels attached to the quiver vertices.

Proposition 2.9 (compare to [2, Lem. 12.1]). Let D and 𝐷 ′ be Postnikov diagrams such that 𝐷 ′ is
obtained from D via an untwisting move. Then the dimer algebras 𝐴𝐷 and 𝐴𝐷′ are isomorphic.

Proof. First we consider the case that the untwisting move happens in the interior, as in the upper part
of Figure 4. Then𝑄𝐷′ is obtained from𝑄𝐷 by removing two arrows a and b, which form a fundamental
cycle, as in the left-hand side of Figure 5. Since these arrows are unfrozen, they are each contained in a
second fundamental cycle, and we write these cycles as 𝑎𝑝 and 𝑏𝑞 for some paths p and q, respectively.
Since these paths do not contain the arrows a or b, they are also paths in 𝑄𝐷′ . Moreover, the relation
𝜕𝑎𝑊𝐷 = 0 implies that 𝑏 = 𝑝 in 𝐴𝐷 , and the relation 𝜕𝑏𝑊𝐷 = 0 that 𝑎 = 𝑞 in 𝐴𝐷 . Define a map
𝜑 : K〈〈𝑄𝐷〉〉 → K〈〈𝑄𝐷′ 〉〉, fixing all vertex idempotents (the two quivers having the same vertex set) and
all arrows different from a and b, and with 𝜑(𝑎) = 𝑞 and 𝜑(𝑏) = 𝑝. This map induces a homomorphism
𝐴𝐷 → 𝐴𝐷′ inverse to that induced by the map K〈〈𝑄𝐷′ 〉〉 → K〈〈𝑄𝐷〉〉 arising from the inclusion map
between arrow sets.

On the other hand, if the untwisting move takes place at the boundary, then𝑄𝐷′ is obtained from𝑄𝐷

by removing a frozen arrow a lying in a fundamental 2-cycle, and 𝐹𝐷′ is obtained from 𝐹𝐷 by replacing
a by the other arrow b in this 2-cycle. As before, since b is unfrozen it lies in a second fundamental
cycle 𝑏𝑞 for some path q not involving a, and it follows from the relation 𝜕𝑏𝑊𝐷 = 0 that 𝑎 = 𝑞 in 𝐴𝐷 .
Thus defining 𝜑 as in the first case except for 𝜑(𝑏) = 𝑏 provides an isomorphism of dimer algebras in
an analogous way. �

We call a Postnikov diagram reduced if no untwisting moves can be applied to it; any Postnikov
diagram D is equivalent under untwisting moves to a reduced diagram 𝐷 ′, unique up to isotopy fixing
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the boundary. The reader is warned that this does not correspond to Postnikov’s definition of reducedness
for plabic graphs [41, §12] but rather is compatible with terminology for quivers with potential: the
ice quiver with potential (𝑄𝐷′ , 𝐹𝐷′ ,𝑊𝐷′ ) is the reduction of (𝑄𝐷 , 𝐹𝐷 ,𝑊𝐷), in the sense of [44, §3].
Indeed, the above isomorphisms of dimer algebras in the proof of Proposition 2.9 are local versions of
the reduction isomorphism given at the end of the proof of [44, Thm. 3.6].

Proposition 2.10. If D is reduced, the quiver 𝑄𝐷 has no 2-cycles.

Proof. A 2-cycle in 𝑄𝐷 containing at least one unfrozen arrow corresponds to a possible untwisting
move (see Figures 4 and 5) and so does not occur when D is reduced. A 2-cycle consisting only of
frozen arrows would correspond to a pair of boundary regions meeting at two points on the boundary
of the disc, which must then be the only boundary regions. But D has at least 3 boundary regions, so
this is also impossible. �

Before moving on to the homological part of the paper, we discuss one additional feature of the dimer
algebra 𝐴𝐷 of a connected Postnikov diagram D. For each vertex v of 𝑄𝐷 , choose a path 𝑡𝑣 : 𝑣 → 𝑣
representing a fundamental cycle. Writing 𝑡 =

∑
𝑣 ∈𝑄0 𝑡𝑣 ∈ 𝐴𝐷 , it follows from connectedness of D that t

does not depend on the choices of paths 𝑡𝑣 . Moreover, t is a central element of the algebra. Thus 𝐴𝐷 has
the structure of an algebra over 𝑍 = K[[𝑡]]; the abuse of notation in identifying the abstract generator
of Z with the element 𝑡 ∈ 𝐴𝐷 , thus making the Z-action clear, is justified by the following result, which
is also fundamental to the arguments in Section 3. The proof is close to that of Baur–King–Marsh [2]
for the case that D is a (𝑘, 𝑛)-diagram, and we refer to their paper when the arguments apply without
change to our more general setting.

Proposition 2.11. The dimer algebra 𝐴𝐷 of a connected Postnikov diagram D is thin, meaning that for
any vertices v and w, there is some 𝑝 ∈ 𝑒𝑤 𝐴𝐷𝑒𝑣 such that

𝑒𝑤 𝐴𝐷𝑒𝑣 = 𝑍𝑝,

and moreover that 𝑍𝑝 is a free Z-module of rank 1. Moreover, there is a unique such p expressible as
the image of a path from v to w under the projection K〈〈𝑄𝐷〉〉 → 𝐴𝐷 .

Proof. As in [2, §4], we may weight the arrows of 𝑄 = 𝑄𝐷 by elements of the set {1, . . . , 𝑛}, labelling
the boundary marked points of Σ. An arrow a of Q is crossed by two strands of D, say that starting at
marked point i from right to left and that starting at j from left to right. We then weight a by the (indicator
function of) the cyclic interval [𝑖, 𝑗 − 1] (compare to [2, Defn. 4.1]). A path in Q is weighted by the sum
wt𝑝 of weights of its arrows, and its total weight is defined to be

∑𝑛
𝑖=1 wt𝑝 (𝑖), which is always at least 1

if the path has nonzero length.
The proof of [2, Cor. 4.4], stated for (𝑘, 𝑛)-Postnikov diagrams, remains valid in our more general

setting to show that every fundamental cycle has constant weight 𝑤(𝑖) = 1 for all 1 ≤ 𝑖 ≤ 𝑛. If 𝑝+ = 𝑝−
is one of the defining relations of 𝐴𝐷 , then there is an arrow 𝑎 ∈ 𝑄1 such that both 𝑎𝑝+ and 𝑎𝑝− are
fundamental cycles, from which it follows that the weights of 𝑝+ and 𝑝− agree. It follows that the weight,
and hence the total weight, descends to a grading of A.

Now let 𝑣, 𝑤 ∈ 𝑄0. Since Q is strongly connected as in Proposition 2.6, there is some path from v to
w in Q, and we choose p to be such a path with minimal total weight. If q is any other path from v to w,
then [2, Prop. 9.3] applies to show that there is a path 𝑟 : 𝑣 → 𝑤 and nonnegative integers 𝑁𝑝 and 𝑁𝑞

such that

𝑝 = 𝑡𝑁𝑝𝑟, 𝑞 = 𝑡𝑁𝑞𝑟

in 𝐴𝐷 . As before, this proposition is stated only in the case that D is a (𝑘, 𝑛)-Postnikov diagram, but its
proof is still valid under our weaker assumptions—the key property of D here is (P4).

Since the total weight of t is nonzero, and p has minimal total weight among paths from v to w, we
must have 𝑁𝑝 = 0 and 𝑝 = 𝑟 in 𝐴𝐷 . Thus 𝑞 = 𝑡𝑁𝑞 𝑝, and we see that 𝑒𝑤 𝐴𝑒𝑣 is generated over Z by p.
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It is moreover freely generated since each element of {𝑡𝑁 𝑝 : 𝑁 ≥ 0} has a different total weight, which
implies that these elements are linearly independent in 𝐴𝐷 . �

Definition 2.12. We call a path 𝑝 : 𝑣 → 𝑤 in 𝑄𝐷 a minimal path if 𝑒𝑤 𝐴𝐷𝑒𝑣 = 𝑍𝑝. Proposition 2.11
then states that there is a minimal path between any pair of vertices in 𝑄𝐷 and that any two such paths
define the same element of 𝐴𝐷 . We write 𝑝𝑤𝑣 for the class in 𝐴𝐷 of any minimal path from v to w.

Thinness of 𝐴𝐷 , as in Proposition 2.11, is the analogue of algebraic consistency for dimer models on
the torus, as described by Broomhead [3, Def. 5.12] (the analogue of geometric consistency, compare to
[3, Prop. 3.12], being conditions (P3) and (P4) in the definition of a Postnikov diagram). The following
observation about minimal paths is straightforward but useful.
Lemma 2.13. Let D be a connected Postnikov diagram, and let 𝑝 : 𝑢 → 𝑣 and 𝑞 : 𝑣 → 𝑤 be paths in
𝑄𝐷 . If the composition 𝑞𝑝 is a minimal path, then both p and q are minimal paths.
Proof. By Proposition 2.11, there are 𝑚, 𝑛 ≥ 0 such that 𝑝 = 𝑡𝑚𝑝𝑣𝑢 and 𝑞 = 𝑡𝑛𝑝𝑤𝑣 in 𝐴𝐷 . Thus
𝑞𝑝 = 𝑡𝑚+𝑛𝑝𝑤𝑣 𝑝𝑣𝑢 = 𝑡𝑚+𝑛+𝛿 𝑝𝑤𝑢 for some 𝛿 ≥ 0. But 𝑞𝑝 is minimal, so by Proposition 2.11 again we
must have 𝑚 + 𝑛 + 𝛿 = 0, and so in particular 𝑚 = 𝑛 = 0. Hence both p and q are minimal paths. �

3. The Calabi–Yau property

Let 𝐴 = 𝐴𝐷 be the dimer algebra of a connected Postnikov diagram D. In this section, we show that
this algebra is bimodule internally 3-Calabi–Yau, in the sense of [43], with respect to the idempotent
corresponding to the boundary regions of D, thus proving Theorem 2. Since A is presented as a frozen
Jacobian algebra, we will prove this statement via [43, Thm. 5.6], which tells us that it is enough to
check the exactness of a certain complex of A-bimodules.

Throughout the proof, we will write

H𝑣 = {𝑎 ∈ 𝑄1 : ℎ𝑎 = 𝑣}, T𝑣 = {𝑎 ∈ 𝑄1 : 𝑡𝑎 = 𝑣}

for the set of arrows with head, respectively tail, at 𝑣 ∈ 𝑄0, and

Hm
𝑣 = H𝑣 ∩𝑄

m
1 , Tm

𝑣 = T𝑣 ∩𝑄
m
1

for their intersections with the set 𝑄m
1 of unfrozen arrows.

As well as using the fact that A is thin, as in Proposition 2.11, we will also rely on the following
gradability property of A, which allows us to deduce exactness of the relevant complex of bimodules
from the exactness of certain complexes of (one-sided) A-modules.
Proposition 3.1. The dimer algebra 𝐴𝐷 of a connected Postnikov diagram D admits a grading in which
all arrows have positive degrees.
Proof. The algebra 𝐴𝐷 may be graded by total weights of paths, as discussed in the proof of
Proposition 2.11. As already mentioned in that proof, each arrow has positive total weight. �

Most of the arguments in this section will depend on the fact that A is thin, as in Proposition 2.11,
so that each piece 𝑒𝑤 𝐴𝑒𝑣 is freely generated over 𝑍 = K[[𝑡]] by a minimal path. Before introducing
the complexes of A-modules whose exactness implies the required 3-Calabi–Yau property of A, we give
one more lemma concerning these paths.
Lemma 3.2. Let 𝑣, 𝑤 ∈ 𝑄0 with v mutable, and consider a minimal path 𝑝𝑤𝑣 : 𝑣 → 𝑤. Then there is
some 𝑎 ∈ H𝑣 such that 𝑝𝑤𝑣𝑎 = 𝑝𝑤,𝑡𝑎 in A.
Proof. We first observe that if 𝑝 : 𝑢 → 𝑤 is a minimal path in Q passing through the vertex v, then p
includes our desired arrow as follows. Write 𝑝 = 𝑝2𝑎𝑝1 for some 𝑎 ∈ H𝑣 . Then by Lemma 2.13, each
subpath of p is also minimal, so in A we have 𝑝2 = 𝑝𝑤𝑣 and 𝑝2𝑎 = 𝑝𝑤,𝑡𝑎, and hence a is our desired
arrow.
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• • •

𝑣

𝑤

𝑚𝑎+

𝑎+

𝑝 𝑞

𝑎−

𝑚𝑎−

𝑏

Figure 6. Fundamental cycles 𝑎+𝑝𝑏 and 𝑎−𝑞𝑏 together with minimal paths 𝑚𝑎± : 𝑡𝑎± → 𝑤 such that
𝑝′ = 𝑚𝑎+ 𝑝 and 𝑞′ = 𝑚𝑎−𝑞 form a digon containing v. Solid arrows represent arrows in Q, whereas
dashed arrows represent paths.

Now for each 𝑎 ∈ H𝑣 , choose a minimal path 𝑚𝑎 : 𝑡𝑎 → 𝑤. If any of these paths passes through v,
then we find our desired arrow as above, so we assume the contrary. Since v is mutable, each 𝑏 ∈ T𝑣

is involved in two fundamental cycles 𝑎+𝑝𝑏 and 𝑎−𝑞𝑏 with 𝑎± ∈ H𝑣 , and we can write 𝑝′ = 𝑚𝑎+ 𝑝 and
𝑞′ = 𝑚𝑎−𝑞. By our assumption on the 𝑚𝑎, neither 𝑝′ nor 𝑞′ passes through v.

Using again that v is mutable, the union of fundamental cycles containing v is a disc with v in the
interior, so there must be some b for which the paths 𝑝′ and 𝑞′ are two sides of a digon containing v
(compare to the argument in [3, Lem. 6.17]). From now on, we assume that we are in this situation,
shown in Figure 6.

Observe that 𝑝𝑤𝑣𝑎+ = 𝑡 𝛿 𝑝𝑤,𝑡𝑎+ for some 𝛿 ≥ 0 by Proposition 2.11. If 𝛿 = 0, then 𝑎+ was our
desired arrow, so assume 𝛿 > 0. In a similar way, we find 𝑚, 𝑛 ≥ 0 such that 𝑝𝑤,𝑡𝑎+ 𝑝 = 𝑡𝑚𝑝𝑤,ℎ𝑏 and
𝑝𝑤,ℎ𝑏𝑏 = 𝑡𝑛𝑝𝑤𝑣 . Since 𝑝𝑏𝑎+ is a fundamental cycle, we must have

𝑡 𝑝𝑤,𝑡𝑎+ = 𝑝𝑤,𝑡𝑎+ 𝑝𝑏𝑎+ = 𝑡
𝑚𝑝𝑤,ℎ𝑏𝑏𝑎+ = 𝑡

𝑚+𝑛𝑝𝑤𝑣𝑎+ = 𝑡
𝑚+𝑛+𝛿 𝑝𝑤,𝑡𝑎+ .

By Proposition 2.11 again, we must have 𝑚 + 𝑛 + 𝛿 = 1, so we conclude from positivity of 𝛿 that
𝑚 = 𝑛 = 0 (and 𝛿 = 1). In particular, this means 𝑝′ = 𝑚𝑎+ 𝑝 is a minimal path, representing 𝑝𝑤,ℎ𝑏 .
Repeating the argument with 𝑎− and q replacing 𝑎+ and p, we see that either 𝑎− is our desired arrow or
𝑞′ = 𝑚𝑎−𝑞 is also a minimal path representing 𝑝𝑤,ℎ𝑏 .

In the latter case, 𝑝′ and 𝑞′ are paths from ℎ𝑏 to w defining the same element of A, namely 𝑝𝑤,ℎ𝑏 , and
bounding a digon containing v. It is then a consequence of [3, Lem. 6.17] that there is a path 𝑟 : ℎ𝑏 → 𝑤
passing through v and also defining 𝑝𝑤,ℎ𝑏 in A. In particular, r is a minimal path passing through v, so
we may find our desired arrow as in the first paragraph of the proof. �

We now turn to the main part of the argument. In [43, §5], it is explained how an ice quiver with
potential (𝑄, 𝐹,𝑊) determines a complex of projective bimodules for the associated frozen Jacobian
algebra 𝐴 = J (𝑄, 𝐹,𝑊); we will denote this complex by P(𝐴), although strictly it depends on the
presentation of A determined by (𝑄, 𝐹,𝑊). For the convenience of the reader, we repeat its definition
here, following [42, §4].

Let 𝑆 = 𝐴/𝐽, where J is the the ideal generated by arrows. As a left A-module, S is the direct sum of
the vertex simple modules and has a basis consisting of the vertex idempotents 𝑒𝑣 . For the remainder of
this section, we write ⊗ = ⊗𝑆 .

Introduce formal symbols 𝜌𝑎 for each 𝑎 ∈ 𝑄1 and 𝜔𝑣 for each 𝑣 ∈ 𝑄0, and define S-bimodule
structures on the vector spaces

K𝑄0 =
⊕
𝑣 ∈𝑄0

K𝑒𝑣 , K𝑄1 =
⊕
𝑎∈𝑄1

K𝑎, K𝑄m
2 =

⊕
𝑎∈𝑄m

1

K𝜌𝑎, K𝑄m
3 =

⊕
𝑣 ∈𝑄m

0

K𝜔𝑣 ,
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via the formulae

𝑒𝑣 · 𝑒𝑣 · 𝑒𝑣 = 𝑒𝑣 , 𝑒ℎ𝑎 · 𝑎 · 𝑒𝑡𝑎 = 𝑎, 𝑒𝑡𝑎 · 𝜌𝑎 · 𝑒ℎ𝑎 = 𝜌𝑎, 𝑒𝑣 · 𝜔𝑣 · 𝑒𝑣 = 𝜔𝑣 .

We recall here that 𝑄m
0 = 𝑄0 \ 𝐹0 and 𝑄m

1 = 𝑄1 \ 𝐹1 are the sets of mutable vertices and unfrozen
arrows, respectively.

Since K𝑄0 is naturally isomorphic to S as a bimodule, there is a natural isomorphism

𝐴 ⊗ K𝑄0 ⊗ 𝐴
∼
→ 𝐴 ⊗ 𝐴,

which we can compose with the multiplication map for A to obtain a map 𝜇0 : 𝐴 ⊗ K𝑄0 ⊗ 𝐴 → 𝐴.
Define 𝜇1 : 𝐴 ⊗ K𝑄1 ⊗ 𝐴→ 𝐴 ⊗ K𝑄0 ⊗ 𝐴 by

𝜇1 (𝑥 ⊗ 𝑎 ⊗ 𝑦) = 𝑥 ⊗ 𝑒ℎ𝑎 ⊗ 𝑎𝑦 − 𝑥𝑎 ⊗ 𝑒𝑡𝑎 ⊗ 𝑦.

For any path 𝑝 = 𝑎𝑚 · · · 𝑎1 in Q, we may define

Δ𝑎 (𝑝) =
∑
𝑎𝑖=𝑎

𝑎𝑚 · · · 𝑎𝑖+1 ⊗ 𝑎𝑖 ⊗ 𝑎𝑖−1 · · · 𝑎1,

and extend by linearity and continuity to obtain a map Δ𝑎 : K〈〈𝑄〉〉 → 𝐴 ⊗ K𝑄1 ⊗ 𝐴. We then define
𝜇2 : 𝐴 ⊗ K𝑄m

2 ⊗ 𝐴→ 𝐴 ⊗ K𝑄1 ⊗ 𝐴 by

𝜇2 (𝑥 ⊗ 𝜌𝑎 ⊗ 𝑦) =
∑

𝑏∈𝑄1

𝑥Δ𝑏 (𝜕𝑎𝑊)𝑦.

Finally, define 𝜇3 : 𝐴 ⊗ K𝑄m
3 ⊗ 𝐴→ 𝐴 ⊗ K𝑄m

2 ⊗ 𝐴 by

𝜇3 (𝑥 ⊗ 𝜔𝑣 ⊗ 𝑦) =
∑
𝑎∈T𝑣

𝑥 ⊗ 𝜌𝑎 ⊗ 𝑎𝑦 −
∑

𝑏∈H𝑣

𝑥𝑏 ⊗ 𝜌𝑏 ⊗ 𝑦.

As T𝑣 ∪ H𝑣 ⊆ 𝑄
m
1 for any 𝑣 ∈ 𝑄m

0 , this map has the claimed codomain.

Definition 3.3. For an ice quiver with potential (𝑄, 𝐹,𝑊), with frozen Jacobian algebra 𝐴 =
J (𝑄, 𝐹,𝑊), let P(𝐴) be the complex of A-bimodules with nonzero terms

𝐴 ⊗ K𝑄m
3 ⊗ 𝐴 𝐴 ⊗ K𝑄m

2 ⊗ 𝐴 𝐴 ⊗ K𝑄1 ⊗ 𝐴 𝐴 ⊗ K𝑄0 ⊗ 𝐴
𝜇3 𝜇2 𝜇1

and 𝐴 ⊗ K𝑄0 ⊗ 𝐴 in degree 0.

Using this complex, we can give a sufficient condition for the frozen Jacobian algebra to be bimodule
internally 3-Calabi–Yau [43, Defn. 2.4] with respect to the idempotent determined by the vertices of F.
This condition will suffice as a definition for the purposes of the present paper.

Theorem 3.4 [43, Thm. 5.7]. If A is a frozen Jacobian algebra such that

0 P(𝐴) 𝐴 0𝜇0 (3.1)

is exact, then A is bimodule internally 3-Calabi–Yau with respect to the idempotent 𝑒 =
∑

𝑣 ∈𝐹0 𝑒𝑣 .

Remark 3.5. By standard results on presentations of algebras, as in Butler–King [9], we need only
check exactness at the two left-most nonzero terms of P(𝐴) (in degrees −3 and −2), since the rest of
the complex in equation (3.1) is the standard projective bimodule presentation of an algebra defined by
a quiver with relations.
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Proposition 3.6. For 𝐴 = 𝐴𝐷 the dimer algebra of a connected Postnikov diagram, the complex in
equation (3.1) is exact in degree d if and only if the complex

0 P(𝐴) ⊗𝐴 𝑆 𝑆 0𝜇0⊗𝑆 (3.2)

is exact in degree d, if and only if the complex

0 P(𝐴) ⊗𝐴 𝑆𝑣 𝑆𝑣 0𝜇0⊗𝑆𝑣 (3.3)

is exact in degree d for any 𝑣 ∈ 𝑄0, where 𝑆𝑣 denotes the simple left A-module at v.
Proof. Exactness of equation (3.1) and equation (3.2) are equivalent because of the existence of a
grading as in Proposition 3.1, by an argument that is essentially due to Broomhead [3, Prop. 7.5]. The
reader can find an explanation of how this argument extends to the case of frozen Jacobian algebras in
[42, §4]. The second equivalence is simply the observation that the complex in equation (3.2) is the
direct sum of the complexes in equation (3.3). �

It will be useful to introduce some notation for elements of terms of P(𝐴) ⊗𝐴 𝑆𝑣 , following [42, §4].
First note that we have isomorphisms

𝐴 ⊗ K𝑄1 ⊗ 𝐴 ⊗𝐴 𝑆𝑣 �
⊕
𝑏∈T𝑣

𝐴𝑒ℎ𝑏 ,

𝐴 ⊗ K𝑄m
2 ⊗ 𝐴 ⊗𝐴 𝑆𝑣 �

⊕
𝑎∈Hm

𝑣

𝐴𝑒𝑡𝑎,

𝐴 ⊗ K𝑄m
3 ⊗ 𝐴 ⊗𝐴 𝑆𝑣 �

{
𝐴𝑒𝑣 , 𝑣 ∈ 𝑄m

0 ,

0, 𝑣 ∈ 𝐹0.

(3.4)

In the first two cases, the right-hand sides are of the form
⊕

𝑎∈𝑆 𝐴𝑒𝛿𝑎, where S is a set of arrows and
𝛿 : 𝑆 → 𝑄0. The map 𝐴𝑒𝛿𝑎 →

⊕
𝑎∈𝑆 𝐴𝑒𝛿𝑎 including the domain as the summand indexed by a will

be denoted by 𝑥 ↦→ 𝑥 ⊗ [𝑎]; this helps us to distinguish these various inclusions when 𝛿 is not injective.
As a consequence, a general element of the direct sum is

𝑥 =
∑
𝑎∈𝑆

𝑥𝑎 ⊗ [𝑎] (3.5)

with 𝑥𝑎 ∈ 𝐴𝑒𝛿𝑎.
The most complicated map in the complex P(𝐴) is 𝜇2, so we will spell out 𝜇2 ⊗𝐴 𝑆𝑣 explicitly. Using

the isomorphisms from equation (3.4) and our notation for elements of the direct sums, we have

(𝜇2 ⊗𝐴 𝑆𝑣 ) (𝑥) =
∑
𝑏∈T𝑣

( ∑
𝑎∈Hm

𝑣

𝑥𝑎𝜕
𝑟
𝑏𝜕𝑎𝑊

)
⊗ [𝑏],

where 𝜕𝑟
𝑏 , called the right derivative with respect to b, is defined on paths by

𝜕𝑟
𝑏 (𝑎𝑘 · · · 𝑎1) =

{
𝑎𝑘 · · · 𝑎2, 𝑎1 = 𝑏,

0, 𝑎1 ≠ 𝑏
(3.6)

and extended linearly and continuously. Similarly, there is a left derivative, defined on paths by

𝜕𝑙
𝑏 (𝑎𝑘 · · · 𝑎1) =

{
𝑎𝑘−1 · · · 𝑎1, 𝑎𝑘 = 𝑏,

0, 𝑎𝑘 ≠ 𝑏.
(3.7)
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Given a Postnikov diagram D and two arrows a and b of 𝑄𝐷 , we may observe that

𝜕𝑟
𝑏𝜕𝑎𝑊 = 𝜕𝑙

𝑎𝜕𝑏𝑊. (3.8)

Indeed, there are at most two fundamental cycles in 𝑄𝐷 containing a, so the part of W consisting of
terms containing both a and b is of the form 𝑎𝑝𝑏 − 𝑎𝑞𝑏 for some p and q, which are either paths, not
containing the arrows a or b, or are zero. Thus one can directly calculate each side of equation (3.8),
which both result in 𝑝 − 𝑞.

We are now ready to prove our main theorem.

Theorem 3.7. For 𝐴 = 𝐴𝐷 the dimer algebra of a connected Postnikov diagram D, the complex in
equation (3.1) is exact, and hence A is bimodule internally 3-Calabi–Yau with respect to the idempotent
determined by the boundary vertices.

Proof. As already noted in Remark 3.5, the complex in equation (3.1) can only fail to be exact in degrees
−2 and −3, so, by Proposition 3.6, we need only check that the complex in equation (3.3) is exact at the
terms 𝐴 ⊗ K𝑄m

3 ⊗ 𝑆𝑣 and 𝐴 ⊗ K𝑄m
2 ⊗ 𝑆𝑣 for each 𝑣 ∈ 𝑄0.

We first deal with exactness at 𝐴⊗K𝑄m
3 ⊗𝑆𝑣 . This term is zero unless 𝑣 ∈ 𝑄m

0 , so we may additionally
assume this. By the third isomorphism in equation (3.4), we then have 𝐴 ⊗ K𝑄m

3 ⊗ 𝑆𝑣 � 𝐴𝑒𝑣 , so let
𝑥 ∈ 𝐴𝑒𝑣 . We calculate

(𝜇3 ⊗ 𝑆𝑣 ) (𝑥) =
∑

𝑎∈Hm
𝑣

𝑥𝑎 ⊗ [𝑎],

using the notation in (3.5) for elements of 𝐴 ⊗ K𝑄m
2 ⊗ 𝑆𝑣 �

⊕
𝑎∈Hm

𝑣
𝐴𝑒𝑡𝑎. Thus 𝑥 ∈ ker(𝜇3 ⊗ 𝑆𝑣 ) if

and only if 𝑥𝑎 = 0 for all 𝑎 ∈ Hm
𝑣 . Note that since v is mutable, Hm

𝑣 = H𝑣 ≠ ∅.
Let 𝑤 ∈ 𝑄0, so 𝑒𝑤𝑥 ∈ 𝑒𝑤 𝐴𝑒𝑣 . Since A is thin by Proposition 2.11, we have 𝑒𝑤 𝐴𝑒𝑣 = 𝑍𝑝𝑤𝑣 , so we

may write 𝑒𝑤𝑥 =
∑

𝑛∈N 𝑧𝑛𝑡
𝑛 · 𝑝𝑤𝑣 for some sequence of scalars 𝑧𝑛 ∈ K. Using thinness again, for any

𝑎 ∈ Hm
𝑣 , there is some 𝛿𝑎 ∈ N such that 𝑝𝑤𝑣𝑎 = 𝑡 𝛿𝑎 𝑝𝑤,𝑡𝑎. It then follows that

𝑒𝑤𝑥𝑎 =
∑
𝑛∈N

𝑧𝑛𝑡
𝑛 · 𝑝𝑤𝑣𝑎 =

∑
𝑛∈N

𝑧𝑛𝑡
𝑛+𝛿𝑎 · 𝑝𝑤,𝑡𝑎 .

Thus if 𝑥𝑎 = 0, we have 𝑧𝑛 = 0 for all n, and so 𝑒𝑤𝑥 = 0. Since w was chosen arbitrarily, we conclude
that 𝑥 = 0, and so the kernel of 𝜇3 ⊗ 𝑆𝑣 is trivial. This establishes exactness of equation (3.3) at the term
𝐴 ⊗ K𝑄m

3 ⊗ 𝑆𝑣 .
We now move to the term 𝐴 ⊗ K𝑄m

2 ⊗ 𝑆𝑣 . Using the relevant isomorphisms in equation (3.4) and
the notation of equation (3.5), a general element of this term is of the form 𝜙 =

∑
𝑎∈Hm

𝑣
𝑥𝑎 ⊗ [𝑎] for

𝑥 ∈ 𝐴𝑒𝑡𝑎, and its image under 𝜇2 ⊗ 𝑆𝑣 is

(𝜇2 ⊗ 𝑆𝑣 ) (𝜙) =
∑
𝑏∈T𝑣

( ∑
𝑎∈Hm

𝑣

𝑥𝑎𝜕
𝑟
𝑏𝜕𝑎𝑊

)
⊗ [𝑏] =

∑
𝑏∈T𝑣

( ∑
𝑎∈Hm

𝑣

𝑥𝑎𝜕
𝑙
𝑎𝜕𝑏𝑊

)
⊗ [𝑏],

where the second equality follows from equation (3.8). The reader is warned that since 𝑏 ∈ T𝑣 may be
frozen, the derivative 𝜕𝑏𝑊 is not necessarily zero in A.

Now assume that (𝜇2 ⊗ 𝑆𝑣 ) (𝜙) = 0 or, equivalently by the above calculation, that∑
𝑎∈Hm

𝑣

𝑥𝑎𝜕
𝑙
𝑎𝜕𝑏𝑊 = 0 (3.9)

for all 𝑏 ∈ T𝑣 . Picking 𝑤 ∈ 𝑄0 and multiplying by 𝑒𝑤 on the left, we obtain elements 𝑒𝑤𝑥𝑎 ∈ 𝑒𝑤 𝐴𝑒𝑡𝑎

for each 𝑎 ∈ Hm
𝑣 .

As in the first part of the proof, we will now use thinness of A to write the elements 𝑒𝑤𝑥𝑎 as the
product of a power series in t with 𝑝𝑤,𝑡𝑎, but in order to keep the notation clean in the subsequent
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argument, we will do this in a slightly unusual way. First, note that, having fixed the vertex w, any path
p determines 𝛿𝑝 ∈ N with the property that 𝑝𝑤,ℎ𝑝 𝑝 = 𝑡 𝛿𝑝 𝑝𝑤,𝑡 𝑝 . Since this equality is formulated in
the algebra A, the quantity 𝛿𝑝 depends only on the class of p in the algebra.

Using this notation, we can write

𝑒𝑤𝑥𝑎 = 𝑡 𝛿𝑎

∑
𝑛∈Z

𝑧𝑤,𝑎
𝑛 𝑡𝑛 · 𝑝𝑤,𝑡𝑎 (3.10)

for some scalars 𝑧𝑤,𝑎
𝑛 ∈ K. Since the right-hand side of this expression may only involve nonnegative

powers of t, we have 𝑧𝑤,𝑎
𝑛 = 0 whenever 𝑛 < −𝛿𝑎.

The key step in the argument is to show, under our assumption that (𝜇2 ⊗ 𝑆𝑣 ) (𝜙) = 0, that the
coefficient 𝑧𝑤,𝑎

𝑛 depends only on n and w, and not on 𝑎 ∈ Hm
𝑣 . We consider the configuration

𝑣

• • •

𝑤

𝑏

𝑒𝑤 𝑥−

𝑎−

𝑞 𝑝

𝑎+

𝑒𝑤 𝑥+

(3.11)

Here solid arrows represent arrows in𝑄1, dashed arrows represent paths in Q and dotted arrows represent
linear combinations of paths. Our assumption is that 𝑎+ and 𝑎− are unfrozen arrows, with head at v
as depicted, which appear in the two fundamental cycles 𝑎+𝑝𝑏 and 𝑎−𝑞𝑏 containing the arrow b, also
unfrozen, with tail at v. As indicated by the notation in equation (3.11), we will usually omit the letter
a when 𝑎+ or 𝑎− appears in subscripts or superscripts in the following argument—for example, this
means 𝑥+ := 𝑥𝑎+ . Our aim is to show that 𝑧𝑤,+

𝑛 = 𝑧𝑤,−
𝑛 for all 𝑛 ∈ Z; it will then follow from the way the

quiver Q is embedded in the disc that 𝑧𝑤,𝑎
𝑛 is independent of 𝑎 ∈ Hm

𝑣 , since if 𝑎, 𝑎′ ∈ Hm
𝑣 , we can find

sequences 𝑎0, . . . , 𝑎𝑘 and 𝑏1 · · · 𝑏𝑘 such that 𝑎0 = 𝑎, 𝑎𝑘 = 𝑎′, and for all 1 ≤ 𝑖 ≤ 𝑘 the triple of arrows
(𝑎𝑖−1, 𝑏𝑖 , 𝑎𝑖) has the same configuration as (𝑎−, 𝑏, 𝑎+) in equation (3.11) (or its mirror image), so that
𝑧𝑤,𝑎𝑖−1
𝑛 = 𝑧𝑤,𝑎𝑖

𝑛 .
So consider the configuration shown in equation (3.11). We see from the figure that 𝜕𝑏𝑊 = 𝑎+𝑝−𝑎−𝑞.

While it can happen that 𝑎+ = 𝑎− (if and only if v is a bivalent vertex of Q), in this case there is nothing
to prove, so we may assume 𝑎+ ≠ 𝑎−. Then for 𝑎 ∈ Hm

𝑣 , we have

𝜕𝑙
𝑎𝜕𝑏𝑊 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑝, 𝑎 = 𝑎+,

−𝑞, 𝑎 = 𝑎−,

0, otherwise.

Thus ∑
𝑎∈Hm

𝑣

𝑥𝑎𝜕
𝑙
𝑎𝜕𝑏𝑊 = 𝑥+𝑝 − 𝑥−𝑞.

Since 𝜙 =
∑

𝑎∈Hm
𝑣
𝑥𝑎 ⊗ [𝑎] is in the kernel of 𝜇2 ⊗ 𝑆𝑣 , this quantity is zero by equation (3.9), so

𝑥+𝑝 = 𝑥−𝑞. It follows that

𝑒𝑤𝑥+𝑝 = 𝑡 𝛿+
∑
𝑛∈Z

𝑧𝑤,+
𝑛 𝑡𝑛 · 𝑝𝑤,𝑡𝑎+ 𝑝 = 𝑡 𝛿++𝛿𝑝

∑
𝑛∈Z

𝑧𝑤,+
𝑛 𝑡𝑛 · 𝑝𝑤,ℎ𝑏 ,

𝑒𝑤𝑥−𝑞 = 𝑡 𝛿−
∑
𝑛∈Z

𝑧𝑤,−
𝑛 𝑡𝑛 · 𝑝𝑤,𝑡𝑎−𝑞 = 𝑡 𝛿−+𝛿𝑞

∑
𝑛∈Z

𝑧𝑤,−
𝑛 𝑡𝑛 · 𝑝𝑤,ℎ𝑏 ,
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must also be equal. Since 𝑎+𝑝 = 𝑎−𝑞 in A (because of the relation 𝜕𝑏𝑊), we must have 𝛿+ +𝛿𝑝 = 𝛿−+𝛿𝑞 ,
so we can conclude, for any 𝑛 ∈ Z, that 𝑧𝑤,+

𝑛 = 𝑧𝑤,−
𝑛 , and further that 𝑧𝑤,𝑎

𝑛 is independent of 𝑎 ∈ Hm
𝑣 , as

required. From now on, we abbreviate 𝑧𝑤𝑛 := 𝑧𝑤,𝑎
𝑛 , and for any 𝑎 ∈ Hm

𝑣 , we have

𝑒𝑤𝑥𝑎 = 𝑡 𝛿𝑎

∑
𝑛∈Z

𝑧𝑤𝑛 𝑡
𝑛 · 𝑝𝑤,𝑡𝑎 . (3.12)

We now return to our main purpose, to show that the complex in equation (3.1) is exact. We recall
that we are assuming that 𝜙 =

∑
𝑎∈Hm

𝑣
𝑥𝑎 ⊗ [𝑎] satisfies (𝜇2 ⊗ 𝑆𝑣 ) (𝜙) = 0 and wish to show that 𝜙 is in

the image of 𝜇3 ⊗ 𝑆𝑣 .
First we deal with the case that v is a frozen vertex, in which case 𝜇3 ⊗ 𝑆𝑣 = 0, and we wish to

conclude that 𝑥𝑎 = 0 for all 𝑎 ∈ Hm
𝑣 . This is equivalent to showing that the complex numbers 𝑧𝑤𝑛

appearing in equation (3.12) are zero for all n and all w.
It follows from the construction of (𝑄𝐷 , 𝐹𝐷) that, since v is frozen, it is incident with a frozen arrow.

If Hm
𝑣 = ∅, then we have nothing to show, and otherwise there is an arrow 𝑎 ∈ Hm

𝑣 as in one of the
following configurations

• • •

� 𝑣 � 𝑣

𝑎 𝑞

𝑝

𝑎𝑝

𝑏 𝑐

𝑏 (3.13)

in which 𝑎𝑝𝑏 and 𝑐𝑞𝑏 are fundamental cycles. As earlier in the paper, the bold arrows are frozen, and
the dashed arrows represent paths. The vertices indicated by diamonds are frozen, like the vertex v,
whereas the others may be mutable or frozen.

In the two configurations in equation (3.13), we have 𝜕𝑏𝑊 = ±𝑎𝑝 and 𝜕𝑏𝑊 = ±(𝑎𝑝−𝑐𝑞), respectively.
Thus in either case we calculate for 𝑎′ ∈ Hm

𝑣 that

𝜕𝑙
𝑎′𝜕𝑏𝑊 =

{
±𝑝, 𝑎′ = 𝑎,

0, otherwise.

Since (𝜇2 ⊗ 𝑆𝑣 ) (𝜙) = 0, we deduce from equation (3.9) that

𝑥𝑎𝑝 = ±
∑

𝑎′ ∈Hm
𝑣

𝑥𝑎𝜕
𝑙
𝑎′𝜕𝑏𝑊 = 0.

Multiplying on the left by 𝑒𝑤 and using that A is thin, we see that

0 = 𝑒𝑤𝑥𝑎𝑝 = 𝑡 𝛿𝑎

∑
𝑛∈Z

𝑧𝑤𝑛 𝑡
𝑛 · 𝑝𝑤,𝑡𝑎𝑝 = 𝑡 𝛿𝑎+𝛿𝑝

∑
𝑛∈Z

𝑧𝑤𝑛 𝑡
𝑛 · 𝑝𝑤,ℎ𝑏 ,

so 𝑧𝑤𝑛 = 0 for all n and w, as required.
Now we treat the case that v is a mutable vertex; in this case, Hm

𝑣 = H𝑣 and we use the latter to keep
the notation simpler. In this case, we want to construct 𝑦 ∈ 𝐴𝑒𝑣 such that

(𝜇3 ⊗ 𝑆𝑣 ) (𝑦) =
∑

𝑎∈H𝑣

𝑦𝑎 ⊗ [𝑎] = 𝜙.

Using the sequence of complex numbers 𝑧𝑤𝑛 appearing in equation (3.12), we write

𝑦𝑤 =
∑
𝑛∈Z

𝑧𝑤𝑛 𝑡
𝑛 · 𝑝𝑤𝑣 .
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For this to be a well-defined element of 𝑒𝑤 𝐴𝑒𝑣 , we need 𝑧𝑤𝑛 = 0 for all 𝑛 < 0. Choosing any 𝑎 ∈ H𝑣 ,
we have that 𝑧𝑤𝑛 = 𝑧𝑤,𝑎

𝑛 is zero whenever 𝑛 < −𝛿𝑎, as in equation (3.10). But by Lemma 3.2, there is
some 𝑎 ∈ H𝑣 such that 𝛿𝑎 = 0, so 𝑦𝑤 ∈ 𝑒𝑤 𝐴𝑒𝑣 as required.

Now, letting 𝑦 =
∑

𝑤 ∈𝑄0 𝑦𝑤 ∈ 𝐴𝑒𝑣 � 𝐴 ⊗ K𝑄m
3 ⊗ 𝑆𝑣 , we can calculate

(𝜇3 ⊗ 𝑆𝑣 ) (𝑦) =
∑

𝑤 ∈𝑄0

∑
𝑎∈H𝑣

𝑦𝑤𝑎 ⊗ [𝑎] =
∑

𝑤 ∈𝑄0

∑
𝑎∈H𝑣

( ∑
𝑛∈N

𝑧𝑤𝑛 𝑡
𝑛 · 𝑝𝑤𝑣𝑎

)
⊗ [𝑎]

=
∑

𝑤 ∈𝑄0

∑
𝑎∈H𝑣

( ∑
𝑛∈N

𝑧𝑤𝑛 𝑡
𝑛+𝛿𝑎 · 𝑝𝑤,𝑡𝑎

)
⊗ [𝑎]

=
∑

𝑤 ∈𝑄0

∑
𝑎∈H𝑣

𝑒𝑤𝑥𝑎 ⊗ [𝑎] =
∑

𝑎∈H𝑣

𝑥𝑎 ⊗ [𝑎] = 𝜙,

so we conclude that 𝜙 ∈ im(𝜇3 ⊗ 𝑆𝑣 ), as required. �

4. Categorification

Given a suitable algebra A, which is bimodule internally 3-Calabi–Yau with respect to an idempotent e,
one can construct from A and e a Frobenius category having many desirable properties from the point
of view of categorifying cluster algebras. This is done via the main result of [43] (specialised to the
case that the Calabi–Yau dimension is 3), which we will recall after collecting the necessary algebraic
definitions. Applied to the dimer algebra 𝐴𝐷 of a connected Postnikov diagram D, this will allow us
to show (Theorem 4.5) that the category GP(𝐵𝐷) appearing in Theorem 1 has many of the properties
required of an additive categorification of the cluster algebra 𝒜𝐷 . Further such properties will be proved
in Section 6.

Definition 4.1. Let E be an exact K-linear category, as in [8]. We do not recall the full definition of this
structure here but simply note that any full extension-closed subcategory E of an abelian category A
has a natural structure of an exact category, by taking the class of short exact sequences to be the short
exact sequences of A with terms in E .

We say E is a Frobenius category if it has enough projective objects and enough injective objects,
and these two classes of objects coincide. The stable category E is obtained from E by factoring out
the ideal of morphisms that factor over a projective (equivalently injective) object and has a natural
triangulated structure [22, §I.2]. We say that E is 2-Calabi–Yau, and E is stably 2-Calabi–Yau, if E is
Hom-finite and there is a functorial isomorphism

HomE (𝑋,𝑌 ) = D HomE (𝑌, Σ
2𝑋)

for any two objects X and Y of E , where Σ is the shift functor in the triangulated structure of E (computed
by taking the cokernel of an injective envelope) and D is duality over the ground field K.

A full subcategory T ⊆ E is called cluster-tilting if it is functorially finite and

T = {𝑋 ∈ E : Ext1E (𝑋,𝑇) = 0 ∀ 𝑇 ∈ T } = {𝑋 ∈ E : Ext1E (𝑇, 𝑋) = 0 ∀ 𝑇 ∈ T }.

Note that cluster-tilting subcategories are necessarily additively closed: that is, closed under direct
sums and summands. We can make the same definition in E , using the usual definition Ext1E (𝑀, 𝑁) =
HomE (𝑀, Σ𝑁) for triangulated categories, and observe that a subcategory T ⊆ E containing all
projective objects is cluster-tilting if and only if its image in the stable category E (i.e., the full
subcategory of E on the same set of objects as T ) is cluster-tilting. When E is stably 2-Calabi–Yau,
the second equality in the definition of a cluster-tilting subcategory is automatic. An object 𝑇 ∈ E is a
cluster-tilting object if its additive closure add𝑇 is a cluster-tilting subcategory.
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An algebra B is called Iwanaga–Gorenstein if it is Noetherian and has finite injective dimension both
as a left and as a right module over itself. In this case these two injective dimensions coincide [25], and
we call this number the Gorenstein dimension of B. For an Iwanaga–Gorenstein algebra B, we define
the category of Gorenstein projective B-modules to be the full subcategory

GP(𝐵) =
{
𝑋 ∈ mod 𝐵 : Ext𝑖𝐵 (𝑋, 𝐵) = 0 for all 𝑖 > 0

}
of the abelian category of finitely generated B-modules. This is a Frobenius category; see for example
[7, §4], where this category is denoted by MCM(𝐵) and its objects called maximal Cohen–Macaulay
modules.
Remark 4.2. The reader is warned that when B is free and finitely generated over 𝑍 = K[[𝑡]], as will
be the case in our examples, one can define the (maximal) Cohen–Macaulay B-modules to be those
B-modules that are free and finitely generated over Z, as in [28, §3]. While a module for the algebra
C defining the Grassmannian cluster category is Gorenstein projective if and only if it is Cohen–
Macaulay [28, Cor. 3.7], this will not be the case for B in general (see Example 4.8). To avoid having
two nonequivalent definitions of Cohen–Macaulay B-modules, we prefer the terminology ‘Gorenstein
projective’ for the homological condition. The reader is, however, further warned that Gorenstein
projective modules are defined over an arbitrary ring (as in [23, Defn. 2.1] for example), but in a way
that need not be equivalent to Definition 4.1 if the ring is not Iwanaga–Gorenstein.
Theorem 4.3 [43, Thm. 4.1, Thm. 4.10]. Let A be an algebra and 𝑒 ∈ 𝐴 an idempotent. If A is Noetherian,
𝐴 = 𝐴/〈𝑒〉 is finite-dimensional and A is bimodule internally 3-Calabi–Yau with respect to e, then
(1) 𝐵 = 𝑒𝐴𝑒 is Iwanaga–Gorenstein with Gorenstein dimension at most 3,
(2) 𝑒𝐴 is a cluster-tilting object in the Frobenius category GP(𝐵),
(3) the stable category GP(𝐵) is a 2-Calabi–Yau triangulated category, and
(4) the natural maps 𝐴→ End𝐵 (𝑒𝐴)

op and 𝐴→ End𝐵 (𝑒𝐴)
op are isomorphisms.

We already saw in Theorem 3.7 that the dimer algebra 𝐴𝐷 of a connected Postnikov diagram
D is bimodule internally 3-Calabi–Yau with respect to its boundary idempotent. Checking the other
conditions needed to apply Theorem 4.3 to 𝐴𝐷 is comparatively straightforward, although we note that
we once again rely heavily on Proposition 2.11.
Proposition 4.4. Let D be a connected Postnikov diagram with dimer algebra 𝐴𝐷 , and let e be the
boundary idempotent of this algebra. Then 𝐴𝐷 is Noetherian and 𝐴𝐷/〈𝑒〉 is finite-dimensional.
Proof. Since 𝐴𝐷 is thin, as in Proposition 2.11, it is finitely generated as a module over the commutative
Noetherian ring K[[𝑡]] and so is Noetherian.

By thinness again, 𝐴𝐷 has a basis {𝑡𝑛𝑝𝑤𝑣 : 𝑣, 𝑤 ∈ 𝑄0, 𝑛 ∈ N}. To see that 𝐴𝐷/〈𝑒〉 is finite-
dimensional, we show that all but finitely many of these basis vectors are zero in the quotient. Picking
any 𝑣, 𝑤 ∈ 𝑄0, let c be any cycle at w passing through a boundary vertex, which exists since 𝑄𝐷 is
strongly connected as in Proposition 2.6. Then since 𝐴𝐷 is thin, we have 𝑐𝑝𝑤𝑣 = 𝑡𝑁 𝑝𝑤𝑣 for some
𝑁 ∈ N. By construction, this element is zero in the quotient 𝐴𝐷/〈𝑒〉, and thus 𝑡𝑛𝑝𝑤𝑣 = 0 in this quotient
algebra for all 𝑛 ≥ 𝑁 . Running over all pairs 𝑣, 𝑤 ∈ 𝑄0 completes the proof. �

Recall that we write 𝒜𝐷 for the cluster algebra with frozen variables determined by the ice quiver
(𝑄𝐷 , 𝐹𝐷) of a Postnikov diagram D. Note that arrows between frozen vertices play no role in the con-
struction of this cluster algebra. Since 𝑄𝐷 may contain 2-cycles, we are committing a small abuse of
notation here; really, 𝒜𝐷 is the cluster algebra determined by the quiver 𝑄 ′ of the unique reduced Post-
nikov diagram obtained from D by untwisting moves, as in Figure 4. Equivalently, 𝑄 ′ is obtained from
𝑄𝐷 by removing a maximal collection of 2-cycles incident with unfrozen vertices. Using the description
via untwisting and Proposition 2.9, we see that 𝑄 ′ has a potential𝑊 ′ such that J (𝑄 ′, 𝐹𝐷 ,𝑊

′) � 𝐴𝐷 is
the dimer algebra of the original diagram D.

By Theorem 3.7 and Proposition 4.4, we may apply Theorem 4.3 to the dimer algebra 𝐴𝐷 of a
connected Postnikov diagram, to obtain the following.
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𝑣0

𝑣1𝑣2

𝑣3 𝑣4

𝑣0

𝑣1𝑣2

𝑣3 𝑣4

Figure 7. A geometric exchange of a Postnikov diagram transforms the local configuration of a quadri-
lateral alternating region, shown on the left, to that shown on the right. The effect on the quiver with
potential is a mutation [15, §5] at the vertex corresponding to the quadrilateral alternating region
(compare to [49]).

Theorem 4.5. Let D be a connected Postnikov diagram with dimer algebra 𝐴𝐷 . Let e be the boundary
idempotent of this algebra, and write 𝐵𝐷 = 𝑒𝐴𝐷𝑒. Then

(1) 𝐵𝐷 is Iwanaga–Gorenstein of Gorenstein dimension at most 3,
(2) GP(𝐵𝐷) is a stably 2-Calabi–Yau Frobenius category,
(3) 𝑇𝐷 = 𝑒𝐴𝐷 ∈ GP(𝐵𝐷) is cluster-tilting, and
(4) End𝐵𝐷 (𝑇𝐷)

op � 𝐴𝐷 .

In particular, it follows from (4) that the Gabriel quiver of End𝐵𝐷 (𝑇𝐷)
op is, up to arrows between frozen

vertices, the quiver of a seed in the cluster algebra 𝒜𝐷 .

We note that if the full subquiver of𝑄𝐷 on the mutable vertices is, after removing 2-cycles, mutation-
equivalent to an acyclic quiver 𝑄, it follows from a result of Keller and Reiten [30, Thm. 2.1] that
the stable category GP(𝐵𝐷) of our categorification is equivalent to the cluster category C𝑄 [5]. This
mutation-acyclicity assumption does not hold for most Postnikov diagrams, however. We conjecture that
GP(𝐵𝐷) is always equivalent to Amiot’s cluster category [1] for the quiver with potential obtained from
(𝑄𝐷 , 𝐹𝐷 ,𝑊𝐷) by deleting the frozen vertices and all incident arrows from 𝑄𝐷 and removing terms
passing through these vertices from𝑊𝐷 .

If D is a (𝑘, 𝑛)-diagram, as in Definition 2.1, it follows from [2, Cor. 10.4] that the boundary algebra
𝐵𝐷 = 𝑒𝐴𝐷𝑒 does not depend on the choice of D within this class, up to isomorphism, and the category
GP(𝐵𝐷) is equivalent to Jensen–King–Su’s categorification of the cluster algebra structure on the whole
Grassmannian [28].

In general, we can consider two Postnikov diagrams D and𝐷 ′ related by geometric exchange as shown
in Figure 7. Combining [41, Thm. 13.4] and [41, Thm. 17.1], we see that these diagrams determine the
same positroid and hence the same positroid varieties. Moreover, the quivers 𝑄𝐷 and 𝑄𝐷′ are related
by a mutation, so the cluster algebras 𝒜𝐷 and 𝒜𝑄𝐷′

are isomorphic. Thus we would like both D and 𝐷 ′
to give rise to the same category of Gorenstein projective modules in Theorem 4.5. This is indeed the
case, as follows.

Proposition 4.6. Let D and𝐷 ′ be Postnikov diagrams related by geometric exchange. Then the boundary
algebras 𝐵𝐷 and 𝐵𝐷′ are isomorphic, and hence the categories GP(𝐵𝐷) and GP(𝐵𝐷′ ) are equivalent.

Proof. This can be proved exactly as in [2, Prop. 12.2]; while this proposition is stated only for (𝑘, 𝑛)-
diagrams, the proof does not use the extra assumption on the strand permutation. �

Corollary 4.7. Given a Postnikov diagram D, the algebra 𝐵𝐷 is determined up to isomorphism by the
positroid P𝐷 .
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Figure 8. A Postnikov diagram D of type (2, 4) giving rise to a boundary algebra 𝐵𝐷 for which not all
Cohen–Macaulay modules are Gorenstein projective. The right-hand figure shows the quiver 𝑄𝐷 , with
frozen arrows marked in bold as usual, which is the Gabriel quiver of 𝐴𝐷 = 𝐵𝐷 .

Proof. Again combining [41, Thm. 13.4] and [41, Thm. 17.1], any two diagrams determining the
same positroid are connected by a sequence of geometric exchanges, so the result follows from
Proposition 4.6. �

One consequence of the general results in Theorem 4.3 on bimodule internally 3-Calabi–Yau algebras
is that the Gorenstein dimension of 𝐵𝐷 is at most 3 for any connected Postnikov diagram D. In fact,
this Gorenstein dimension never exceeds 2 by [11, Cor. 10.5]. When D is a (𝑘, 𝑛)-diagram, 𝐵𝐷 even
has Gorenstein dimension 1, as in the proof of [28, Cor. 3.7]. Since 1 is also the Krull dimension
of 𝑍 = K[[𝑡]], in this case the category GP(𝐵𝐷) coincides with the category of Cohen–Macaulay
𝐵𝐷-modules, meaning those 𝐵𝐷-modules free and finitely generated over Z. However, the Gorenstein
dimension of 𝐵𝐷 can be equal to 2, and the inclusion GP(𝐵𝐷) → CM(𝐵𝐷) can be proper, as the
following example shows.

Example 4.8. Consider the Postnikov diagram D shown in Figure 8 and its dimer algebra 𝐴𝐷 , the
quiver of which is shown in the same figure. Since every alternating region of D is on the boundary
(equivalently, every vertex of the quiver is frozen), we have 𝐵𝐷 = 𝐴𝐷 , which has finite global dimension
by Theorem 3.7. In fact, since the left-most term of P(𝐴𝐷) is zero in this case, again because all vertices
are frozen, the global dimension of 𝐵𝐷 is 2.

As is the case for any algebra of finite global dimension, 𝐵𝐷 is Iwanaga–Gorenstein (of Gorenstein
dimension equal to the global dimension, so in this case 2), and a 𝐵𝐷-module is Gorenstein projective
if and only if it is projective. However, one can observe that the radical of the projective 𝐵𝐷-module at
the lowest vertex (the head of the unfrozen arrow) is not projective, but it is free and finitely generated
over Z: that is, Cohen–Macaulay, since it is a submodule of a projective 𝐵𝐷-module, which is Cohen–
Macaulay by Proposition 2.11. Hence in this case the category of Gorenstein projective modules for 𝐵𝐷

is a proper subcategory of the category of Cohen–Macaulay modules.

5. Loops and 2-cycles

Let 𝐵 = 𝐵𝐷 be the boundary algebra of a connected Postnikov diagram D, and let 𝑇𝐷 = 𝑒𝐴𝐷 ∈ GP(𝐵)
be the cluster-tilting object from Theorem 4.5. In this section, we show that the quiver of End𝐵 (𝑇)

op has
no loops or 2-cycles for any cluster-tilting object𝑇 ∈ GP(𝐵)mutation equivalent to𝑇𝐷—so far, we know
this only for the relatively small number of such objects arising from the Postnikov diagrams related to D
by sequences of geometric exchanges. This will allow us to complete the proof of Theorem 1 in the next
section by giving us access to results of Fu and Keller [17]. The statement requires our nondegeneracy
assumption that D has at least 3 strands (compare to [44, Prop. 5.17]).
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For the remainder of the section, we fix a cluster-tilting object 𝑇0 ∈ GP(𝐵) and write 𝐴0 =
End𝐵 (𝑇0)

op. We assume that

(1) 𝐴0 is isomorphic to the frozen Jacobian algebra of an ice quiver with potential (𝑄, 𝐹,𝑊) in such a
way that the vertices of F correspond to projection onto indecomposable projective summands of𝑇0,

(2) the quiver Q has no loops or 2-cycles, and
(3) 𝐴0/〈𝑒𝑖〉 is finite-dimensional whenever 𝑖 ∈ 𝐹0.

All of these assumptions hold if 𝑇0 = 𝑒𝐴𝐷 is the initial cluster-tilting object from Theorem 4.5—the
absence of loops and 2-cycles in 𝑄𝐷 (after replacing D by a reduced diagram if necessary) follows
from Proposition 2.10, and finite-dimensionality in (3) follows from Proposition 2.11 via an exactly
analogous argument to that in the proof of Proposition 4.4. Our goal is to show that these properties are
preserved by mutations and so hold in the entire mutation class of those cluster-tilting objects coming
from Postnikov diagrams.

With this in mind, we additionally fix for the rest of the section a cluster-tilting object T obtained from
𝑇0 by mutation at a nonprojective indecomposable summand and write 𝐴 = End𝐵 (𝑇)

op. By [44, Thm.
5.14], the algebra A again satisfies (1), with the required ice quiver with potential being the mutation
𝜇𝑘 (𝑄, 𝐹,𝑊) = (𝑄 ′, 𝐹 ′,𝑊 ′) at an appropriate vertex k. Thus 𝑄 ′ has no loops and no 2-cycles incident
with k, but a priori it may have other 2-cycles. The algebra A satisfies (3), as the following lemma shows.

Lemma 5.1. Let 𝐴0 be the frozen Jacobian algebra of an ice quiver with potential (𝑄, 𝐹,𝑊), and
assume i is a frozen vertex such that 𝐴0/〈𝑒𝑖〉 is finite-dimensional. If A is the frozen Jacobian algebra
of 𝜇𝑘 (𝑄, 𝐹,𝑊) for some mutable vertex k, then 𝐴/〈𝑒𝑖〉 is again finite-dimensional.

Proof. Note that the quivers Q and 𝜇𝑘𝑄 have the same set of frozen vertices, so the statement makes
sense. It is straightforward to check that 𝐴0/〈𝑒𝑖〉 and 𝐴/〈𝑒𝑖〉 are, like 𝐴0 and A, frozen Jacobian algebras
of ice quivers with potential related by mutation at k. (The required ice quivers with potential are obtained
from those of 𝐴0 and A by removing the vertex i and all incident arrows from the quiver, and removing
from the potential all terms given by cycles through i.) That mutations preserve finite dimensionality
of frozen Jacobian algebras follows via a straightforward adaptation of the proof of [15, Cor. 6.6] for
ordinary Jacobian algebras. �

Thus it remains to show that the quiver𝑄 ′ has no 2-cycles. We start by showing that 𝐴/〈𝑒𝑖〉 has finite
global dimension for any frozen vertex i.

Proposition 5.2. Let i be a frozen vertex. Then 𝑒𝑖𝐴𝑒𝑖 � 𝑍 .

Proof. Since 𝑒𝑖 corresponds to projection onto an indecomposable projective summand 𝑃𝑖 of T, we have
𝑒𝑖𝐴𝑒𝑖 = End𝐵 (𝑃𝑖)

op. Since 𝑃𝑖 is an indecomposable summand of every cluster-tilting object of GP(𝐵),
including 𝑇𝐷 , this endomorphism algebra is isomorphic to Z by Proposition 2.11 and Theorem 4.5. �

In the setting of Proposition 5.2, we thus have a recollement

mod 𝐴/(𝑒𝑖) mod 𝐴 mod 𝑍𝜄 𝑒𝑖

ℓ

(5.1)

of abelian categories, in which 𝜄 is the natural inclusion, 𝑒𝑖 : 𝑋 ↦→ 𝑒𝑖𝑋 and ℓ = 𝐴𝑒𝑖 ⊗𝑍 − is left adjoint
to 𝑒𝑖 .

Lemma 5.3. In the recollement in equation (5.1), the functor 𝜄 is a homological embedding, meaning it
induces isomorphisms on all extension groups. As a consequence, gldim 𝐴/〈𝑒𝑖〉 ≤ gldim 𝐴 ≤ 3.

Proof. We use a result of Psaroudakis [45, Prop. 4.15], implying that it is enough to check that the
image, denoted by F(𝑃) in [45], of the counit

𝜀 : ℓ(𝑒𝑖𝑃) = 𝐴𝑒𝑖 ⊗𝑍 𝑒𝑖𝑃→ 𝑃
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is projective for all projective 𝑃 ∈ mod 𝐴. We may write 𝑃 = Hom𝐵 (𝑇, 𝑇
′) for 𝑇 ′ ∈ add𝑇 ⊆ GP(𝐵) ⊆

CM(𝐵) so that 𝑒𝑖𝑃 = Hom𝐵 (𝑃𝑖 , 𝑇
′) is a free Z-module. Thus 𝐴𝑒𝑖 ⊗𝑍 𝑒𝑖𝑃 � (𝐴𝑒𝑖)

𝑛, where n is the rank
of the Z-module 𝑒𝑖𝑃, is projective. We claim that the counit 𝜀 is injective so that its image is isomorphic
to the projective module (𝐴𝑒𝑖)

𝑛.
To see this, observe that 𝐴𝑒𝑖 ⊗𝑍 𝑒𝑖𝑃 � (𝐴𝑒𝑖)

𝑛 and P are Cohen–Macaulay A-modules—that is, they
are free and finitely generated over Z—so this property is inherited by the kernel K of 𝜀. On the other
hand, 𝑒𝑖𝜀 : 𝑒𝑖𝐴𝑒𝑖 ⊗𝑍 𝑒𝑖𝑃→ 𝑒𝑖𝑃 is an isomorphism by Proposition 5.2, so 𝑒𝑖𝐾 = 0. Thus K is a finitely
generated 𝐴/〈𝑒𝑖〉-module and hence finite-dimensional by Lemma 5.1. Since the only finite-dimensional
Cohen–Macaulay A-module is 0, we have the result.

Having established that 𝜄 is a homological embedding, it is then immediate that gldim 𝐴/〈𝑒𝑖〉 ≤

gldim 𝐴. That gldim 𝐴 ≤ 3 is a consequence of [43, Prop. 3.7], since A is the endomorphism algebra of
the (2-)cluster-tilting object 𝑇 ∈ GP(𝐵), and GP(𝐵) ⊆ mod(𝐵) is the category of third syzygy modules
since B has Gorenstein dimension at most 3 by Theorem 4.5(1). �

Proposition 5.4. Let 𝐽 = J (𝑄, 𝐹,𝑊) be the frozen Jacobian algebra of a reduced ice quiver with
potential (𝑄, 𝐹,𝑊). If J is finite-dimensional and gldim 𝐽 < ∞, then Q has no loops or 2-cycles.

Proof. Since (𝑄, 𝐹,𝑊) is reduced, Q is the Gabriel quiver of J [44, Rem. 3.4]. That Q has no loops then
follows from the no-loops theorem [24, 35], without using that J is a frozen Jacobian algebra. However,
this latter assumption means that for each 𝑖 ∈ 𝑄0, there is an exact sequence⊕

𝑏∈Hm
𝑖

𝐽𝑒𝑡𝑏 →
⊕
𝑎∈T𝑖

𝐽𝑒ℎ𝑎 → 𝐽𝑒𝑖 → 𝑆𝑖 → 0

for 𝑆𝑖 = 𝐽𝑒𝑖/rad(𝐽)𝑒𝑖 , the simple J-module supported at vertex i, and this sequence is the start of a
projective resolution of 𝑆𝑖 [6, Prop. 3.3(b)]. Since Q has no loops, 𝑡𝑏 ≠ 𝑖 for all 𝑏 ∈ Hm

𝑖 , so

Hom𝐽

( ⊕
𝑏∈Hm

𝑖

𝐽𝑒𝑡𝑏 , 𝑆𝑖

)
= 0.

It follows that Ext2𝐽 (𝑆𝑖 , 𝑆𝑖), which is a subquotient of this space, is also zero. That Q has no 2-cycles
then follows from [20, Prop. 3.11]. �

We now return to 𝐴 = End𝐵 (𝑇)
op for T obtained from 𝑇0 by a mutation at a nonprojective indecom-

posable summand. Recall that 𝐴 � J (𝑄 ′, 𝐹 ′,𝑊 ′), where (𝑄 ′, 𝐹 ′,𝑊 ′) is obtained by mutation from
(𝑄, 𝐹,𝑊) and is thus reduced by definition.

Proposition 5.5. The quiver 𝑄 ′ has no 2-cycles.

Proof. Let i be a frozen vertex and 𝑒𝑖 ∈ 𝐴 the corresponding idempotent. As in the proof of Lemma 5.1,
the algebra 𝐴/〈𝑒𝑖〉 is again a frozen Jacobian algebra. It is finite-dimensional by the same lemma and
has finite global dimension by Lemma 5.3. Thus by Proposition 5.4, its quiver has no 2-cycles. Since
this quiver is obtained from 𝑄 ′ by deleting the vertex i and all incident arrows, there are no 2-cycles in
𝑄 ′ incident with i. Since D has at least 3 boundary regions, 𝑄 ′ has at least three frozen vertices, and by
repeating this process we rule out 2-cycles in 𝑄 ′ altogether. �

Remark 5.6. Our standing assumption that Postnikov diagrams have at least 3 strands is only used here
to rule out loops and 2-cycles incident only with frozen vertices. It is not needed to rule out loops and
2-cycles incident with mutable vertices—indeed, if there are fewer than 3 strands, there are no mutable
vertices anyway.

We sum up our arguments in the following theorem.
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Theorem 5.7. Let D be a reduced and connected Postnikov diagram. Let B be the boundary algebra
of D, and let𝑇𝐷 ∈ GP(𝐵) be the initial cluster-tilting object from Theorem 4.5. If𝑇 ∈ GP(𝐵) is a cluster-
tilting object obtained from 𝑇𝐷 by a sequence of mutations, then End𝐵 (𝑇)

op is isomorphic to the frozen
Jacobian algebra of an ice quiver with potential (𝑄, 𝐹,𝑊) such that Q has no loops and no 2-cycles.

Proof. The results of this section show that the desired properties of T are preserved by mutations.
Since they hold in the case 𝑇 = 𝑇𝐷 by Theorem 4.5—reducedness of D implying that 𝑄𝐷 has no loops
or 2-cycles—we obtain the result by induction. �

6. Cluster structures and cluster characters

In this section, we recall definitions and results of Buan–Iyama–Reiten–Scott [5] and Fu–Keller [17] on
cluster structures and cluster characters. For our applications here, we need to weaken some definitions
slightly, since the conclusions of Theorem 5.7 hold only for one mutation class of cluster-tilting objects
in the category GP(𝐵𝐷) for a suitable Postnikov diagram D, whereas the original definition of a cluster
structure requires these properties for all cluster-tilting objects. However, we will see in this section that
(unsurprisingly) Fu–Keller’s cluster character [17] still provides a bijection between the cluster-tilting
objects in this mutation class and the clusters of 𝒜𝐷 , and between their indecomposable summands and
the cluster variables of 𝒜𝐷 .

All categories in this section are assumed to be K-linear for a field K, which is of characteristic zero
(as above) and now additionally algebraically closed. Note that the category GP(𝐵𝐷) constructed above
from a Postnikov diagram has this property for K the field over which the dimer algebra is defined.

Definition 6.1. Let E be a Krull–Schmidt category, and let T ⊆ E be a full and additively closed subcat-
egory. The quiver𝑄(T ) has vertices given by the set indec T of isomorphism classes of indecomposable
objects in T , and dim(RadT (𝑇,𝑈)/Rad2

T (𝑇,𝑈)) arrows from U to T for each 𝑇,𝑈 ∈ indec T . Here
RadT (𝑇,𝑈) consists of nonisomorphisms 𝑇 → 𝑈, and Rad2

T (𝑇,𝑈) is the subspace consisting of those

expressible as a composition 𝑇
𝑓
−→ 𝑉

𝑔
−→ 𝑈, where f is not a split monomorphism, g is not a split epi-

morphism and 𝑉 ∈ T . We treat 𝑄(T ) as an ice quiver whose frozen vertices are those corresponding
to indecomposable projective objects of E , which lie in T .

If 𝑇 ∈ E is an object, we write 𝑄(𝑇) := 𝑄(add𝑇), noting that this is the ordinary quiver of the
semi-perfect algebra EndE (𝑇)

op.

Definition 6.2 (compare to [5, §II.1], [17, Def. 2.4]). Let E be a Krull–Schmidt stably 2-Calabi–Yau
Frobenius category, and let T0 ⊆ E be a cluster-tilting subcategory. We say that (E , T0) has a cluster
structure if

(1) for each cluster-tilting subcategory T of E and each nonprojective indecomposable 𝑋 ∈ T , there is a
nonprojective indecomposable object 𝑋∗, unique up to isomorphism, such that the full and additively
closed subcategory T ′ = 𝜇𝑋T , called the mutation of T at X and having indecomposable objects

indec T ′ = indec T \ {𝑋} ∪ {𝑋∗},

is cluster-tilting;
(2) in the situation of (1), there are short exact sequences

0 𝑋∗ 𝑈+ 𝑋 0

0 𝑋 𝑈− 𝑋∗ 0

in which the nonzero maps are minimal (T ∩ T ′)-approximations (on the left or the right as
appropriate);

(3) for any cluster-tilting subcategory T in the mutation class of T0 (i.e., related to T0 by a sequence of
mutations as in (1)), the quiver 𝑄(T ) has no loops or 2-cycles; and
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(4) for T as in (3) and 𝑋 ∈ T nonprojective, the quiver 𝑄(𝜇𝑋T ) agrees, up to arrows between frozen
vertices, with the Fomin–Zelevinsky mutation 𝜇𝑋𝑄(T ).

If 𝑇0 is a cluster-tilting object, then the additive closure add𝑇0 is a cluster-tilting subcategory, and we
say that (E , 𝑇0) has a cluster structure if (E , add𝑇0) does. Cluster-tilting subcategories T in the mutation
class of T0, and their objects, are said to be reachable from T0.

Under our assumptions on E , conditions (1) and (2) of this definition are automatic by [5, Thm.
II.1.10(a)] (see also [26, Thms. 5.1, 5.3]), but we include them in the definition anyway to aid comparison
with [5].

Remark 6.3. In making Definition 6.2, we follow [17], weakening conditions (3) and (4) to restrict to a
single mutation class of cluster-tilting subcategories. Thus E has a cluster structure, in the sense of [17,
Def. 2.4], if and only if E has a cluster-tilting subcategory and (E , T ) has a cluster structure for all such
subcategories T . In principle, one could weaken conditions (1) and (2) in a similar way, but this seems
to be less useful since these conditions are known to hold as stated in wide generality. The original
definition from [5] applies to a larger class of categories, but we will not need this generality here.

Lemma 6.4. Assume that (E , T0) has a cluster structure. IfT is reachable, and 𝑋 ∈ T is indecomposable
and nonprojective, then the object 𝑋∗ as in Definition 6.2(1) satisfies

dim Ext1E (𝑋, 𝑋
∗) = dim Ext1E (𝑋

∗, 𝑋) = 1,

and the exact sequences in Definition 6.2(2) are not split. Moreover, if we write 𝐵(𝑋,𝑌 ) for the number
of arrows 𝑋 → 𝑌 in 𝑄(T ), the middle terms of the exact sequences in Definition 6.2(2) are

𝑈+ �
⊕

𝑌 ∈indecT
𝑁𝐵 (𝑋,𝑌 ) , 𝑈− �

⊕
𝑌 ∈indecT

𝑁𝐵 (𝑌 ,𝑋 )

Proof. This is proved in exactly the same way as [17, Lem. 2.2] (in particular, using the assumption
that K is algebraically closed), noting that 𝑄(T ) has no loops by Definition 6.2(3) and the assumption
that T is reachable. �

Definition 6.5 (compare to [17, Def. 3.1]). Let E be a Krull–Schmidt stably 2-Calabi–Yau Frobenius
category, and let R be a commutative ring. A cluster character is a map Φ : Ob(E) → 𝑅 such that

(1) if 𝑋 � 𝑋 ′, then Φ(𝑋) = Φ(𝑋 ′),
(2) we have Φ(𝑋 ⊕ 𝑌 ) = Φ(𝑋)Φ(𝑌 ) for all 𝑋,𝑌 ∈ Ob(E), and
(3) if 𝑋,𝑌 ∈ Ob(E) satisfy dim Ext1E (𝑋,𝑌 ) = 1 (and hence dim Ext1E (𝑌, 𝑋) = 1 by the Calabi–Yau

property) and

0 𝑋 𝐸+ 𝑌 0

0 𝑌 𝐸− 𝑋 0

are nonsplit sequences, then

Φ(𝑋)Φ(𝑌 ) = Φ(𝐸+) +Φ(𝐸−).

Below, we will often employ a standard abuse of notation and write Φ : E → 𝑅.

The next definition is due to Fu and Keller [17], following Palu [40] and Caldero–Chapoton [10] for
triangulated categories, and describes a standard cluster character on a suitable Frobenius category with
a cluster-tilting object.

Definition 6.6 (compare to [17, Rem. 3.5]). Let E be a Krull–Schmidt stably 2-Calabi–Yau Frobenius
category. Assume 𝑇 ∈ E is a cluster-tilting object such that 𝐴 = EndE (𝑇)

op is a Noetherian algebra of
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finite global dimension. The stable endomorphism algebra 𝐴 = EndE (𝑇)
op is finite-dimensional since

E is stably 2-Calabi–Yau, and we view mod 𝐴 as a subcategory of mod 𝐴 via the quotient map. Writing

𝐹 = HomE (𝑇,−) : E → mod 𝐴,
𝐺 = Ext1E (𝑇,−) : E → mod 𝐴,

we define, for each 𝑋 ∈ E ,

𝜑𝑇 (𝑋) = 𝑥 [𝐹𝑋 ]
∑
𝑑

𝜒(Gr𝑑 (𝐺𝑋))𝑥
−[𝑑 ] ∈ C[K0 (per 𝐴)] . (6.1)

Here the sum is taken over possible dimension vectors d of 𝐴-modules, Gr𝑒 (𝐺𝑋) denotes the Grass-
mannian of submodules of𝐺𝑋 of dimension vector d, and 𝜒 denotes the Euler characteristic. Moreover,
[𝑀] denotes the class of an A-module M in the Grothendieck group K0 (per 𝐴) = K0(mod 𝐴), and
[𝑑] = [𝑁] ∈ K0(per 𝐴) for any module N of dimension vector d, this class being independent of the
choice of N as in the proof of [17, Prop. 3.2].

Remark 6.7. We may assume T is basic and choose a decomposition 𝑇 =
⊕𝑛

𝑖=1 𝑇𝑖 of T into indecom-
posable direct summands. This yields a basis (strictly speaking, a free generating set) [𝑃𝑖] = [𝐹𝑇𝑖]

of K0 (per 𝐴) consisting of the classes of indecomposable projective A-modules and allows us to write
𝜑𝑇 (𝑋) as a Laurent polynomial in the variables 𝑥𝑖 = 𝑥 [𝑃𝑖 ] . Since 𝐺𝑇𝑖 = 0, it follows immediately
that 𝜑𝑇 (𝑇𝑖) = 𝑥𝑖 . This preference for the basis of indecomposable projectives is why we usually write
K0 (per 𝐴) instead of K0 (mod 𝐴) for the lattice of exponents.

However, thinking instead in terms of K0 (mod 𝐴), we may use the nondegenerate Euler pairing

K0(mod 𝐴) × K0 (fd 𝐴) → Z : ([𝑀], [𝑁]) ↦→ 〈𝑀, 𝑁〉 :=
∑
𝑗≥0

dim Ext 𝑗
𝐴(𝑀, 𝑁)

between the Grothendieck groups of finitely generated and finite-dimensional A-modules, well-
defined since A has finite global dimension. This pairing exhibits the classes of simple modules
𝑆𝑖 = 𝐹𝑇𝑖/RadE (𝑇, 𝑇𝑖) as a basis of K0 (fd 𝐴) dual to the basis of K0(mod 𝐴) = K0 (per 𝐴) given by the
classes of indecomposable projectives 𝑃𝑖 = 𝐹𝑇𝑖 . Thus we may write

𝜑𝑇 (𝑋) =
𝑛∏

𝑖=1
𝑥 〈𝐹𝑋,𝑆𝑖 〉

𝑖

∑
𝑑

𝜒(Gr𝑑 (𝐺𝑋))
𝑛∏

𝑖=1
𝑥−〈𝑑,𝑆𝑖 〉

𝑖 .

Since d is a dimension vector for 𝐴, we have −〈𝑑, 𝑆𝑖〉 = 〈𝑆𝑖 , 𝑑〉 by the relative (or internal) Calabi–Yau
property of A [31]. In this way, we recover the formula as stated in [17, Rem. 3.5].

Theorem 6.8 (compare to [17, Thm. 3.3]). For E and T as in Definition 6.6, the function 𝜑𝑇 : E →
C[K0 (per 𝐴)] is a cluster character on E in the sense of Definition 6.5.

Proof. The argument given for [17, Thm. 3.3] applies equally well here; while Fu and Keller assume
that E is Hom-finite, our assumption that 𝐴 = EndE (𝑇)

op is Noetherian is sufficient for their proof
to go through. (For example, it is still the case that any finitely generated A-module, such as a finite-
dimensional 𝐴-module, is finitely presented.) Indeed, our additional assumption that gldim 𝐴 < ∞ even
allows some parts of the proof in [17] to be simplified. �

Definition 6.9 (compare to [17, Def. 5.1]). Let E be a Krull–Schmidt stably 2-Calabi–Yau Frobenius
category with cluster-tilting object T, and let 𝒜𝑄 be the cluster algebra determined by an ice quiver Q.
We say (E , 𝑇) is a Frobenius 2-Calabi–Yau realisation of 𝒜𝑄 if (E , 𝑇) has a cluster structure in the
sense of Definition 6.2 and the quiver 𝑄(𝑇) is isomorphic to Q as an ice quiver, up to arrows between
frozen vertices.
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Note that Definition 6.9 is slightly weaker than [17, Def. 5.1] since we have weakened the definition
of a cluster structure. For example, we do not require that 𝑄(𝑇 ′) has no loops or 2-cycles if 𝑇 ′ is a
nonreachable cluster-tilting object. However, we still have the following important result.
Theorem 6.10 (compare to [17, Thm. 5.4]). Let 𝒜𝑄 be a cluster algebra with Frobenius 2-Calabi–Yau
realisation (E , 𝑇), and write 𝐴 = EndE (𝑇)

op. The Grothendieck group K0 (per 𝐴) has a basis given by
the classes [𝑃𝑖], for 𝑖 ∈ 𝑄0, of indecomposable projective A-modules, and so we may view 𝒜𝑄 as a
subalgebra of the Laurent polynomial ringC[K0 (per 𝐴)] by identifying 𝑥𝑖 = 𝑥 [𝑃𝑖 ] with the initial cluster
variables. Then the cluster character 𝜑𝑇 induces bijections

(1) from the set of isomorphism classes of indecomposable projective objects in E to the set of frozen
variables of 𝒜𝑄,

(2) from the set of isomorphism classes of reachable rigid indecomposable nonprojective objects of
(E , 𝑇0) to the set of nonfrozen cluster variables of 𝒜𝑄, and

(3) from the set of isomorphism classes of reachable cluster-tilting objects of (E , 𝑇0) to the set of clusters
of 𝒜𝑄.

Proof. This is proved exactly as [17, Thm. 5.4], despite our weakening of the definition of a cluster
structure. Indeed, the relevant maps are shown to be injective in [17, Lem. 4.2, Prop. 4.3] without
assuming that E has a cluster structure in either sense. The proof of surjectivity (and that the maps
are well-defined: that is, that they take values in the appropriate sets) uses an inductive argument.
We have already seen in Remark 6.7 that 𝜑𝑇 takes the indecomposable summands of T to the initial
cluster variables 𝑥𝑖 of 𝒜𝑄 (and the indecomposable projective summands to the frozen variables, by the
definition of the ice quiver structure on 𝑄(𝑇) = 𝑄). The conclusion then follows by using compatibility
between mutations of reachable cluster-tilting objects and mutations of clusters in 𝒜𝑄. For example,
the quivers of endomorphism algebras transform correctly by parts (3) and (4) of Definition 6.2, and in
the notation of Definition 6.2(2), we have

𝜑𝑇 (𝑋)𝜑𝑇 (𝑋∗) = 𝜑𝑇 (𝑈+) + 𝜑𝑇 (𝑈−)

by Lemma 6.4 and Theorem 6.8, corresponding to an exchange relation in 𝒜𝑄 by Lemma 6.4 again. The
inductive nature of the argument means we do not require any properties of nonreachable cluster-tilting
objects, since these do not appear. �

We close this section by applying our results to the category GP(𝐵𝐷) obtained from a suitable
connected Postnikov diagram D. The resulting theorem justifies our description of GP(𝐵𝐷), with its
distinguished mutation class of cluster-tilting objects reachable from 𝑇𝐷 , as a categorification of the
cluster algebra 𝒜𝐷 .
Theorem 6.11. Let D be a connected Postnikov diagram, let 𝐵𝐷 be its boundary algebra (defined over
an algebraically closed field K of characteristic zero), and let 𝑇𝐷 ∈ GP(𝐵𝐷) be the cluster-tilting
object from Theorem 4.5. Then (GP(𝐵𝐷), 𝑇𝐷) is a Frobenius 2-Calabi–Yau realisation of the cluster
algebra 𝒜𝐷 .

In particular, the Fu–Keller cluster character 𝜑𝑇𝐷 provides a bijection between rigid indecomposable
objects reachable from 𝑇𝐷 and cluster variables of 𝒜𝐷 (including a bijection between indecomposable
projectives and frozen variables) and between cluster-tilting objects reachable from 𝑇𝐷 and clusters
of 𝒜𝐷 .

Proof. The category GP(𝐵𝐷) is a stably 2-Calabi–Yau Frobenius category, and𝑇𝐷 ∈ GP(𝐵𝐷) a cluster-
tilting object, by Theorem 4.5. It is idempotent complete and admits a fully faithful embedding to a
Krull–Schmidt category by [11, Prop. 3.6] (see Proposition 7.1 below), so it is Krull–Schmidt. Moreover,
(GP(𝐵𝐷), 𝑇𝐷) has a cluster structure as follows. Conditions (1) and (2) are automatic, as discussed in
Definition 6.2. Condition (3) holds by Theorem 5.7, and as a consequence, condition (4) holds by [44,
Thm. 5.15]. Since 𝑄(𝑇𝐷) is isomorphic to 𝑄𝐷 by Theorem 4.5 again, (GP(𝐵𝐷), 𝑇𝐷) is a Frobenius
2-Calabi–Yau realisation of 𝒜𝐷 , and the required bijections then follow from Theorem 6.10. �
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7. Relationship to the Grassmannian cluster category

Fix a connected Postnikov diagram D of type (𝑘, 𝑛), and abbreviate 𝐴 = 𝐴𝐷 , 𝐵 = 𝐵𝐷 and 𝑇 = 𝑇𝐷 . To be
able to use the results of Section 6, we take the ground field for these algebras to be algebraically closed.

Recall that D determines an ice quiver 𝑄 = 𝑄𝐷 with cluster algebra 𝒜 = 𝒜𝐷 , a positroid P = P𝐷

with necklace I = I𝐷 and an open positroid variety Π◦ = Π◦(P𝐷) with cone Π̂◦. In this final section,
we explain the relationship between GP(𝐵) and the cluster category CM(𝐶) for the Grassmannian Gr𝑛𝑘
introduced by Jensen, King and Su [28]. As a result, we will see that the composition of the Fu–Keller
cluster character 𝜑𝑇 on GP(𝐵) with Galashin–Lam’s isomorphism 𝒜

∼
→ C[Π̂◦] (modified as in Remark

2.7) is a representation-theoretically natural map.

Proposition 7.1 [11, Prop. 3.6]. Let CM(𝐶) be the Grassmannian cluster category for the (𝑘, 𝑛)-
Grassmannian. Then there is a fully faithful functor 𝜌 : GP(𝐵) → CM(𝐶) arising from an injective
map 𝐶 → 𝐵 of Z-orders that becomes an isomorphism under tensor product with 𝑍 [𝑡−1].

Recall from Remark 2.7 that we can label each alternating region of D (or equivalently, each vertex
𝑗 ∈ 𝑄0) by 𝐼 𝑗 ∈

( [𝑛]
𝑘

)
. Precisely, the alternating region corresponding to j lies to the left of k strands, and

𝐼 𝑗 consists of the labels of the start-points of these strands. This leads to the specialisation map C[𝑥±1
𝑗 :

𝑗 ∈ 𝑄0] → C(Π̂◦), taking each 𝑥 𝑗 to Δ 𝐼 𝑗 |Π̂◦ , which restricts to an isomorphism 𝒜𝐷 → C[Π̂◦] [18].
We write Φ : GP(𝐵) → C[Π̂◦] for the composition of the Fu–Keller cluster character 𝜑𝑇 : GP(𝐵) →
C[K0 (per 𝐴)] = C[𝑥±1

𝑗 : 𝑗 ∈ 𝑄0] with this specialisation map. Since the indecomposable summand
𝑇𝑗 = 𝑒𝐴𝑒 𝑗 of T satisfies 𝜑𝑇 (𝑇𝑗 ) = 𝑥 𝑗 for each 𝑗 ∈ 𝑄0, we have Φ(𝑇𝑗 ) = Δ 𝐼 𝑗 |Π̂◦ .

For each 𝐼 ∈
( [𝑛]

𝑘

)
, Jensen, King and Su explicitly describe an indecomposable rigid module 𝑀𝐼 ∈

CM(𝐶). These objects categorify the Plücker coordinates Δ 𝐼 ∈ C[Ĝr𝑛𝑘 ], all of which are cluster
variables. Over the course of this section, we will show that our cluster character Φ is compatible with
the embedding 𝜌. The next proposition is crucial for this.

Proposition 7.2 [27]. The natural map

Ext1𝐵 (𝑋,𝑌 ) → Ext1𝐶 (𝜌𝑋, 𝜌𝑌 )

is an isomorphism whenever 𝑋 ∈ CM(𝐵) and 𝑌 ∈ GP(𝐵). In particular, the essential image of 𝜌 is
extension-closed.

Proof. The map is well-defined since 𝜌 is exact and injective since 𝜌 is fully faithful; these conclusions
hold even under the weaker assumption 𝑌 ∈ CM(𝐵). For surjectivity, let 𝑃 → 𝑋 be a projective cover
of X, and consider the commutative diagram

0 𝜌𝑌 𝐸 ′ 𝜌𝑃 0

0 𝜌𝑌 𝐸 𝜌𝑋 0

(7.1)

in which the lower row is an extension in CM(𝐶) and the right-hand square is a pull-back. Since 𝜌 is
fully faithful, to show that the the lower row comes from an extension of B-modules, it suffices to show
that E is in the essential image of 𝜌.

Note that 𝜌𝐵 is rigid, as follows. By [11, Prop. 8.2], we have 𝜌𝐵 �
⊕

𝐼 ∈I 𝑀𝐼 . Since the elements
of I are weakly separated [39, Lem. 4.5], the required rigidity follows from [28, Prop. 5.6]. As a
consequence, if𝑌 = 𝐵, then the upper row of equation (7.1) splits, since 𝑃 ∈ add(𝐵). It follows that E is
a factor of 𝜌𝐵 ⊕ 𝜌𝑃, so it lies in the essential image of 𝜌 by [12, §37, Ex. 10]; here we use the additional
properties of 𝜌 from Proposition 7.1 to see that 𝜌𝐵 ⊆ 𝐶 and 𝜌𝐵[𝑡−1] = 𝐶 [𝑡−1]. Thus

Ext1𝐵 (𝑋, 𝐵)
∼
→ Ext1𝐶 (𝜌𝑋, 𝜌𝐵). (7.2)
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Now, for general 𝑌 ∈ GP(𝐵), the upper row of equation (7.1) is an element of

Ext1𝐶 (𝜌𝑃, 𝜌𝑌 ) = D Ext1𝐶 (𝜌𝑌, 𝜌𝑃) = D Ext1𝐵 (𝑌, 𝑃) = 0,

where the first equality is the 2-Calabi–Yau property of CM(𝐶), the second follows from equation (7.2)
since 𝑃 ∈ add 𝐵, and the last uses that 𝑃 ∈ add(𝐵) and 𝑌 ∈ GP(𝐵). Thus this upper row once again
splits, and we conclude as before that E is in the essential image of 𝜌. �

Proposition 7.3 [11, Prop. 8.2]. Let 𝑗 ∈ 𝑄0, and let 𝑇𝑗 = 𝑒𝐴𝑒 𝑗 ∈ GP(𝐵) be the corresponding
indecomposable summand of the initial cluster tilting object 𝑇 = 𝑒𝐴. Then 𝜌𝑇𝑗 � 𝑀𝐼 𝑗 .

Over the course of the next several results, we will show that Φ(𝑀) = Δ 𝐼 |Π̂◦ whenever 𝜌(𝑀) � 𝑀𝐼 .
We begin by recalling Jensen–King–Su’s cluster character on CM(𝐶) and relating it to our cluster
character on GP(𝐵).

Proposition 7.4 [28, Eq. 9.4]. There is a cluster character Ψ : CM(𝐶) → C[Ĝr𝑛𝑘 ] such that Ψ(𝑀𝐼 ) =
Δ 𝐼 for every k-subset I.

Proposition 7.5. For any reachable rigid object 𝑋 ∈ GP(𝐵), we have

Φ(𝑋) = Ψ(𝜌𝑋) |Π̂◦ .

Proof. First, observe that 𝑋 ↦→ Ψ(𝜌𝑋) |Π̂◦ defines a cluster character GP(𝐵) → C[Π̂◦] since Ψ is
a cluster character on CM(𝐶); this uses both Proposition 7.1 and, to see that the restricted map still
satisfies the multiplication formula from Definition 6.5(3), Proposition 7.2.

Thus it suffices to check the required equality on the indecomposable summands of a single reachable
cluster-tilting object, which we may take to be the initial object T. For each 𝑗 ∈ 𝑄0, the summand
𝑇𝑗 = 𝑒𝐴𝑒 𝑗 satisfies

Ψ(𝜌𝑇𝑗 ) |Π̂◦ = Ψ(𝑀𝐼 𝑗 ) |Π̂◦ = Δ 𝐼 𝑗 |Π̂◦ = Φ(𝑇𝑗 )

by Propositions 7.3 and 7.4. �

Theorem 7.6. If 𝑀 ∈ GP(𝐵) satisfies 𝜌𝑀 � 𝑀𝐼 for some 𝐼 ∈
( [𝑛]

𝑘

)
, then Φ(𝑀) = Δ 𝐼 |Π̂◦ .

Proof. By Proposition 7.4, we have Δ 𝐼 = Ψ(𝑀𝐼 ) = Ψ(𝜌𝑀). Thus by Proposition 7.5, it suffices to
check that M is reachable—it is rigid by Proposition 7.2 (see also the proof of [11, Lem. 10.4]).

Consider a geometric exchange at an alternating region j of D (corresponding to a mutation at the
vertex j of Q), producing a new diagram 𝐷 ′. By considering the exchange sequences as in Definition
6.2(2), we may see that the mutation 𝑇 ′𝑗 of the direct summand 𝑇𝑘 of T satisfies 𝜌(𝑇 ′𝑗 ) = 𝑀𝐼 ′𝑗

. Since 𝜌
is fully faithful, 𝑇 ′𝑗 is also the unique such object in GP(𝐵) up to isomorphism. Inductively, it follows
that 𝑀 ∈ GP(𝐵) with 𝜌(𝑀) � 𝑀𝐼 is reachable as long as I appears as a label in a Postnikov diagram
related to D by a sequence of geometric exchanges. By [39, Thm. 6.6], such subsets I are precisely
those appearing in some maximal weakly separated collection C with I ⊆ C ⊆ P: that is, they are those
𝐼 ∈ P , which are weakly separated from every element of I.

So assume 𝑀 ∈ GP(𝐵) has 𝜌(𝑀) � 𝑀𝐼 . Since 𝑀 ∈ CM(𝐵), it follows from [11, Prop. 8.6] that
𝐼 ∈ P𝐷 . Since M is even Gorenstein projective, it follows from Proposition 7.2 that

0 = Ext1𝐵 (𝑀,𝑇𝑗 ) = Ext1𝐶 (𝑀𝐼 , 𝑀𝐼 𝑗 )

for 𝑇𝑗 = 𝑒𝐴𝐷𝑒 𝑗 with j a frozen vertex, these being precisely the indecomposable summands of B. By
[28, Prop. 5.6], this means precisely that I and 𝐼 𝑗 are weakly separated. Since I is the set of labels 𝐼 𝑗 of
frozen vertices j, we have the result. �

Remark 7.7. We do not yet know whether Φ(𝑋) = Ψ(𝜌𝑋) |Π̂◦ for all 𝑋 ∈ GP(𝐵). However, we expect
that this equality does hold, even for all 𝑋 ∈ CM(𝐵); note that the Fu–Keller cluster character 𝜑𝑇 , and
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hence Φ, may be defined on this larger category via the same formula in equation (6.1), although it is
only a cluster character on the stably 2-Calabi–Yau Frobenius category GP(𝐵). If this were the case, the
conclusion of Theorem 7.6 would hold under the weaker assumption that 𝑀 ∈ CM(𝐵). The k-subsets
I appearing in the resulting statement would then be all of the elements of the positroid P , including
those not weakly separated from the necklace, by [11, Prop. 8.6].
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