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1. Introduction

Our setting for this paper is projective 3-space Pκ over an algebraically

closed field K. By a curve C <Ξ. Pκ is meant a 1-dimensional, equidimensional pro-

jective algebraic set, which is locally Cohen-Macaulay. Let M(C) = Θ w e Z i/ (PKf

3c(n)) be the Hartshorne-Rao module of finite length (cf. [R]). Here Z is the set of

integers and Jc the ideal sheaf of C. In [GMV] it is shown that M(C) = H^(R),

where R = R/KC) — K[x0,..., x3] // (C), I(C) is the homogeneous ideal of C,

rn=(xQ,...,x3)R and H^(M) is the first local cohomology module of the

i?-module M with respect to m. Thus there exists a smallest nonnegative integer k

e N such that m Hm(R) = 0, (see also the discussion on the 1-st local cohomolo-

gy module in [GW]). Also in [GMV] it is shown that k = 0 if and only if C is

arithmetically Cohen-Macaulay and C is arithmetically Buchsbaum if and only if k

< 1. We therefore have the following natural definition.

DEFINITION 1.1. For a curve C <Ξ p | , C is said to be strictly /c-Buchsbaum if

k is minimal in N such that m Hm(R) = 0. C is said to be /c-Buchsbaum if

mHliR) = 0.
If C is strictly /c-Buchsbaum, then we set k — k(C) and call k(C) the Buch-

sbaum number of C.

It is our purpose in this paper to investigate for the class of monomial curves

C(nly n2i n2) c Pκ the integer k{C(nv n2, %)) . These curves are defined by their

generic zero (s 3, s 3 1t"1, s^3 ^f"1, t"3), where nx < n2 < n3 are positive integers

and g.c.ά.(nly n2, n3) = 1. For some of these curves k(C(nv n2, n3)) was

obtained in [FH], [H] and [FV] and we will discuss some of these results as con-

sequences of out own investigations (see also [HV] and [MM]).

Our own main result is that k(C) = diam(M(Q) for all monomial curves in
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Pκ. Here diam(M), the diameter of a Z-graded module M of finite length, is

explained as follows. Let [M]n be the elements in M of degree n, let a(M) =

minίn [M]n Φ 0}, e(M) = maxte [M]H Φ 0}. Then diam(M) = e(M) - a(M)

+ 1, which, since M is of finite length, is an integer. For curves C <Ξ Pκ,

Hm(R) is a Z-graded module of finite length and therefore always k(C)

< diam(Hm(R)). Thus our result implies that for all monomial curves C(nlt n2,

n3) <Ξ Pκ, k{C(nv n2, n3)) is, in this sense, as large as possible. We prove this

result in Section 2. We will use there mainly the language of semigroups to de-

scribe Hm(R). For this let N be the set of nonnegative integers, nQ = 0 and t{ —

(n3 — nit n) ^ N , 0 < i < 3. Let S <Ξ N be the semigroup generated by / =

{ti 0 < i < 3} and H = {(a, β) e N2 a + β = 0 mod n3}. Let So = <n3 - n2,

n3 — nl9 n3) — {z;z= Σ 2

= 0 ^ ( ^ 3 ~" »f ), zf ^ N}, Sι= (nlf n2, n3). For i e {0, 1}

we define A^S^ n3) = {0, ω ^ l ) , . . . , 0)^(^3 — 1)}, α^O') — min{z 2: e Sf , 2: = j

mod ^3}, to be the Apery sequence of Sέ with respect to n3. We set S' = {e & H

e + moto ^ S, e + m1t3 G S, for some m0, mx e N}. By identifying R with the

graded ring K[S], we then have by [Bl], [TH] and [FH] the following lemma.

LEMMA 1.1.

( i ) H^(K[S]) = K[S'\S], where m is identified with K[S\(0)].

(11) SQS' = HΠ (So x Sx).

(iii) JKTS] 15 α k-Buchsbaum ring if and only if one of the following equivalent

conditions holds:

a) S' +A;(S\(O)) e S.

b) ForJ= H Π (4,(So > »3> x A ^ i , Λ3))\ S,J+kIQS.

(In both a) αnύί b) k times a set means the set added to itself k times.)

In Section 3 we relate our result in Section 2 to the algorithm in [BR], which

obtains a minimal generating set 3S(nlf n2, n3) of binomials for I(C(nlf n2, n3)).

This enables us to calculate k(C(nv n2, n3)) by considering a subset of $Knv n2, n3).

For this we need to relate a minimal generating set of Hm{R) to S(nv n2, n3) (see

Lemma 6 in [BSS]).

In Section 4 we show that the Castelnuovo-Mumford regularity for R —

R/I(C(nlf n2, w3)), reg(R) = e(H^(R)) + 1 if R is not Cohen-Macaulay.

Section 5 establishes that for the subset of non Cohen-Macaulay monomial

curves C( l = nlf n2, n3), k(C(nlf n2, n3)) = n2 ~ 2.

We conclude our paper with Section 6 which deals with liaison among

monomial curves in Pκ. It is shown that no two curves C(l , n2, n3), which are not

arithmetically Cohen-Macaulay, are in the same even linkage class. Our main re-
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suit in this section is that for a fixed nonnegative integer k there are only finitely

many linkage classes among strictly λ -Buchsbaum monomial curves in Pκ.

Acknowledgement. This paper was written during the stay of the fourth

named author at the Department of Mathematics, University of Ferrara, made

possible by a grant of CNR. He would like to thank both institutions for their

support.

2. The equality of k(C(nv n2, n3)) and diam(H^(R/I(C(nv n2, n3))

We need to state some more definitions and prove some preliminary lemmas

and propositions. We will use the notation and terminology introduced in 1.

DEFINITION 2.1. For j e Sλ let the Sx-degree of; be

δλ(j) = rninίt f ! + a2 + a3;j = axnx + a2n2 + a3n3, a{ ^ N } .

Analogously we define the S0-degree δo(ΐ) for i ̂ S o .

For (i, j) ^ H, we define its degree to be the number δ(i, j) = (i + j)/n3 > 0.

DEFINITION 2.2. For (iv jx) and (i2, j2) in S' we define the following partial

orders:

( l ) (iv Ί) < s (i2, j2) if (i2 - il9 j2 - jj e S,

(li) (iv Λ) < S , (i2, j2) if (i2 - ilf j2 - jj e S'.

(ί, j) ^ S" \ S is an S-maximal (minimal) element, if G', j) is maximal (minim-

al) in Sr\S with respect to the partial order < s . (z, j) G 5 ' \ 5 is an S^minimal

element, if (i, j) is minimal in S'\S with respect to the partial order <5r.

LEMMA 2.1 ([Bl], [K]). Let (i, j) ^ S\ The following are equivalent:

( i ) «, i) e S.

( n ) δ(ί,y) > δ^j).

(in) δ ( i , ; ) > <50(0.

Proof. (i)=>(ii). Assume (i,j) e S, ( i , » = Σ = o ^ Then δ(i,j) = Σ = o ^

> aγ + a2 + «3 > δ^j).

(ii) => (i). Assume δ{i, j) > δλ(j), let j = ^ ^ i + <22n2 + <23n3 with α : + a2 +

^3 = <5i(/) Let α0 = δ(z, j) — (aλ + a2 + β3) and (z\, Ί) = Σ^ = o a^. Then Ί =

h δ(iv Λ) = δ(i, j), thus ί\ = i and (z, ) e S.

(i) <=> (iii) follows by symmetry as in the preceding. (Symmetry here and
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throughout means switching from one of So or Sx to the other.)

Remark 2.1. The following elementary facts will be used in the sequel.

a) If δ^a^ + a2n2 + a3n3) = ax + a2 + a3 and b{ < ai9 1 < i < 3, then

5j(f t^ + b2n2 + b3n3) = bι + b2 + b3. Otherwise δι(aιnι + a2n2 + a3n3) Φ aλ +

a2 + a3.
b) If nx < n2 < n3 are positive integers, then the following are true for non-

negative integers a, b, c:

( i ) If a Φ 0 and anλ — bn2 + cn3 then a > b + c,

(ii) If c Φ 0 and cn3 = anx + bn2 then c < a + b.

LEMMA 2.2. Let (i, j) ^ S'\ (0). The following are equivalent:

( i ) (i, j) is an S-minimal element of 5 7 \ S.

(ii) i— a(n3 — n2), j = bnλ and δo(i) = a, δλ(j) = £.

Proof, (i) => (ii). Any element in S' can, by subtracting or adding multiples of

t0,..., t3, be changed into an element of the form (a(n3 — n2), bn^ or (a(n3 —

«!>, te2). For an element (a(n3 — n^), bn2), δ(a(n3 — nj, bn2) = a + (bn2 —

an^)/n3 > a if te2 — anι > 0. For bn2 — anι = cn3, c < 0, from δ^2 + (— c)n3

= β^i and Remark 2.1 b), # > δ + (— c) or a 4- c > δ. Thus in any case by

Lemma 2.1 (#(^ 3 — w^, bn2) ^ S. Now the S-minimality of (i, j) implies (ii).

(ii) => (i). δ(i, j) = δ(a(n3 — n2), bnj = a + {bnλ — an2)/n3, bnγ — an2 =

cn3 and c > 0 would imply by Remark 2.1 δλ(j) Φ b. Thus c < 0 and δ(i, j) <

a — <50({), from which (i, j) & S by Lemma 2.1. S-minimality now follows by

observing that if (V, / ) = (a'(nz — n2), brn^), af < a, V < b, then (ϊ, j') ^s

Remark 2.2. a) For another proof of Lemma 2.2 see Lemma 6 in [BSS]. From

that Lemma 6 we also obtain that if ί r " 1 - x"l0x2

ux3

ι\ x2

0 - x"oox?olx3

03} Q

SB(nlf n2, n3), then a < a0 and b < ah where a and b are as in Lemma 2.2.

b) Note that if (i, j) is 5r-minimal, then (i, j) is also S-minimal.

LEMMA 2.3. Let (i, j) = (a(n3 — n2), bnj be an S-minimal element of S'\S.

Let c — (b(n3 — n^ — a(n3 — n2) — n3)/n3. Then c is the largest nonnegative inte-

ger such that (i, j) + ct0 <έ S. Similarly, if d— (an2 — bnι — ns)/n3 , then d is the

largest nonnegative integer such that (i, j) + dt3 £ S.
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Proof (i, j) + ct0 — (b(n3 — nλ) — n3, bn^, thus δ((i, j) + (ct0) = b — 1 <

b = δ^bnj and therefore (i, j) + ct0 & S by Lemma 2.1. As (ί, ) + (c + l ) ί 0

= 6^, c is maximal. Proof of the second statement is obtained by symmetry.

Remark 2.3. In the sequel integers ct and dι will be defined for (at(n3 — n2),

b^Πy) as were c and d for (a(n3 — n2), 6^).

LEMMA 2.4. L<?ί (z, j) = (#(#3 — w3), bnγ) be an S'-minimal element of S'\S

(see Remark 2.2 b), and let c and d be as in Lemma 2.3. Then (i, j) + ct0 + dt3 &

S. Moreover, δι(bn1 + dn3) = b + d, and δo(a(n3 — n2)+ cn3) = a + c.

Proof {i, j) + ct0 + dt3 — (b(n3 — n^ — n3, bnγ + dn3), thus by Lemma

2.1, it suffices to show δ1(bn1 + dn3) — b + d, since the corresponding δ-degree

is b — 1 + d. Suppose δι(bn1 + dn3) < b + d, and let bnx + dn3 = aγnγ + a2n2

+ Oί3n3 with

(*) aλ + a2 + a3 < b + d.

By Lemma 2.2 δ^bn^ — b, hence d > α3, since otherwise ( * ) is contradicted,

thus bnλ + (d — a3) = aγnγ + a2n2. aλ> b implies d — a3 < aγ — b + a2 by

Remark 2.1 b), which contradicts (*). Thus aγ < b and a2 > 0. As bnγ + dn3 =

an2 — n3 by definition of d, a2 < a. But then by a straightforward calculation

(i, j) + dt3 — a2t2 — a3t3 = ((a — a2) (n3 — n2), aγnλ) < s , (i, j), contrary to

S'-minimality of (/, j). The proof that δo(a(n3 — n2) + cn3) = a + c follows by

symmetry.

Let Gr = {(at(n3 — n2), btnj 1 < i < r} be the S'-minimal elements of 5 7 \S,

where aγ < a2 < < ar and bγ > b2 > > br. Let ar+1 be the smallest

positive integer satisfying δo(ar+1(n3 — n2)) < ar+1 and b0 the smallest positive

integer satisfying δ^b^n^ < b0. For each i, 1 < i < r, let c{ — (bt(n3 — nx) —

a{(n3 — n2) — n3)/n3 and dt = (a{n2 — b(nx — n3)/n3.

Remark 2.4. Let R = R/I(C(nv n2y w3)). By [BSS], H^R) = (R^ Π Rj)/R
-Ml -bt °

and the elements in Gf correspond to the elements _̂  = _̂  + 1 , obtained from

the elements xo

ι x 2

ι — Xιιx3

ι in S t e ^ 2̂»
 nz)- Furthermore ar+1 — α 0 and b0 —

alf a0 and aλ defined in Remark 2.2 a). Also the S-minimal elements of S ' \ S

correspond to products of elements ~ττ7
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LEMMA 2.5. For 1 < i < r, δ^b^ + (ai+ι — a{ — l)n2) = b{ + ai+ι — ai

— 1, and <50(^(w3 — n2) + (&ίHL — 6,.

Proof. Suppose we have

(*) btnx + (ai+1 — a{ — l)n2 — aγnγ + a2n2 + a3n3,

such that

ax + a2 + a3 < b{ + ai+ί — a{ — 1.

By Lemma 2.2 ai+ι — a{ — 1 > a2 (otherwise the minimality of b{ is contradicted).

Case 1. aλ ^ 6,-. Starting with ( ) a straightforward calculation gives (ai+1 —

β, — 1 — a2) (n3 — n2) — (b{ + ai+ι — a{ — \ — aγ — a2 — a3)n3 + (α x — δf) (n3 — nx).

By the definition of ar+ι, δQ((ai+ι — a{ — 1 — α:2)(n3 ~~ %*) = βί+i ~~ ̂ ί ~" 1 ~

α2, which contradicts Remark 2.1 b).

Case 2. α x < &,.. Then (a^^ — ̂ 2 ) , δ,.^) + (ai+1 — a{ — l)t2 — a2t2 — a3t3 =

((β, +i — 1 — α 2 )( n 3 ~" %*> ^i^i) would be an S-minimal element of S 7 \ S by

Lemma 2.2. But a{ < ai+ι — 1 — a2 < ai+ι and ax < bt thus such an element is

neither S'-minimal nor comparable to any S'-minimal element by definition of G\

a contradiction. Therefore δ^b^ + (at+1 — a{ — ί)n2) = b{ + ai+ί — at — 1.

Proof of the other statement follows by symmetry.

LEMMA 2.6. For 1 < i < r, assume 0 < e < ai+1 — aif 0 < f< bi_1 — bif

and that there is no equation β^ + β2n2 = β3n3 with β3 > 0, 0 < βx < bt + f, 0

< β2 < e. Then δ1((6 f + f)nx + en2) = b{ + f+ e and δo(f(n3 - «x) + (a( +

e)(n3 — n2)) = at + e + f.

Proof. Suppose (bi +f)n1 + en2 — axnx + a2n2 + a3n3 with aι + a2 + a3

<bt + e+f. If a2>e, then d^ty + f)n^ <b{+f< b^ would follow from the

inequality, a contradiction to the definition of bQ. Thus a2 < e. Similarly aγ < & , - + /

since 0 < e < ai+1 — a{ < ai+ι < ar+v Then (δ, + / — a^)nx + (e — a2)n2 = a3n3

contradicts the hypothesis. Hence δ^ibj + f)nλ + en2) — b{ + f+ e.

Suppose f(n3 — n^ + (a{ + e) (n3 — n2) — ax{n3 — nx) 4- a2(n3 — n2) + a3n3

with Oίγ + a2 + a3 < aι•,+ e + f. As before, we would have f > av lί e < a2, then

δo(f(n3 — nx) + at{n3 — n2)) < / + a{ would contradict Lemma 2.5. Thus

e > a2. Then S' contains (a{(n3 — n2), b{n^ + ftι + et2 — aιt1 — a2t2 = (a3n3,

(bt+f—<x])n1+ (e — a2)n2), which contradicts the hypothesis. Therefore
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δo(f(n3 - wx) + {a{ + e) (n3 — n2)) = af + e + f

LEMMA 2.7. For 1 < i < r,

( i ) δx(&,-«! + (ai+1 — a{ — ί)n2 + d{n3) — b{ + ai+ι — a{ — 1 + d{, and

( i i ) <50 ( 0 , ( ^ 3 — w 2 ) + (&,-_! — b{ — 1 ) ( w 3 — w x ) + c,w 3 ) = Λ , + £>,-_! — 6 , - 1

Proo/ Suppose that b-n^ + (ai+ι — a{ — l)n2 + dμ^ — a1n1 + a2n2 + a3n3

with ax + a2 + a3 < b{ + ai+ι — af — 1 + df. By Lemma 2.5 ^ > α3. Suppose

a2 < ai+1 — a{ — 1. Then (α / + 1 — a{ — 1 — α 2 )n 2 + (d{ — a3)n3 = {aλ — b)nγ

and Oίγ — bj < (ai+i — a{ — 1 — α2) + d{ — a3 by the initially assumed inequal-

ity, a contradiction to Remark 2.1b). Thus ai+ι — a{ — 1 < a2 and b^ + d{n3 =

a^ + (a2 — ai+ι + a{ -\- l)n2-\- a3n3, which is contrary to the second part of

Lemma 2.4. Therefore (i) holds and the proof of (ii) follows by symmetry.

LEMMA 2.8. For 1 < i < r, δo((ai+1 — l)(w3 — n2) + c{n3) — ai+1 — 1 + c{

and δ^ibi^ — l)nx + d{n^ — bi_ι — 1 + d{. Moreover each of {a{{n3 — n2), b n^)

+ (ai+ί — a{ — l)t2 + Cit0 + d{t3J {a{{n3 — n2), b-n^) + (bi_1 — b{ — l)tι + c^

+ dit3isinS'\S.

Proof. By substituting for d{n3 we obtain δda^^ — n2), bft^) + (bi_1 — b{

— l)tι + CJQ + df3) — (af(n3 — n2) + b{nx + (&,_! — b{ — 1 4- c)n3 + a-n2 —

b^ — n3)/n3 = a{ + b{_γ — b{ — 1 + c? — 1. It follows by Lemma 2.7 (ii) and

Lemma 2.1 that this element is not in S. But then, substituting for c{n3, δ((ai(n3

— n2), b^ + (&,_! - bf - l)t1 + Cjt0 + dtt3) = («f (w3 - n2) + ^ + (ft^! -

b{ — l+ d)n3 + ft^^ — nλ) — di(n3 — n2) — n3)/n3 — b{_γ — 2 + d{. Thus δι((bi_1

— l )n x + d-n3) > δ/ _1 — 2 + d,. by Lemma 2.1. Since 51((6 f _1 — l)nι + d ^ )

^ ft/ _1 — 1 + dj, equality holds.

Proof of the other two statements follows by symmetry.

PROPOSITION 2.1. Let 1 < i < r. Assume 0 < e < ai+1 — aiy 0 < / < &,-_! —

έ̂  and that there is no equation β^ + β2n2 = β3n3 with β3 > 0, 0 < βλ < b{ + / ,

0 < β2 < e. Then (tf,.(w3 - n2), b-n^ + ftλ + et2 + c{t0 + d{t3 is in S'\S.

Proof Suppose (^ + f)nx + en2 + d^ = a^ + a2n2 + a3n3 and ax + a2

+ a3<bi~
irf+e + d{. Lemma 2.6 implies d{ > a3 and thus e < a2 by Remark

2.1 b). But then (b{ + f)nλ + d{n3 = aγnγ + (a2 — e)n2 + a3n3, which contra-

dicts Lemma 2.8. Therefore ^((δ,- +f)n1 + en2 + d{n3) = ft, + / + e + rf,.. Then,
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substituting for c{n3, one obtains δ((# f(w3 — n2), btnx) 4- ftι + et2 + Cjt0

+ dtt3) — (β t (w3 — n2) + bfa + ( / + e + dt)n3 + 6f (w3 — n2) — a{{n3 — n2) —

n3)/n3 = bt + f + e + di — 1, from which the conclusion follows by Lemma 2.1.

LEMMA 2.9. Assume that (a(n3 — n2), bn ) is an S-minimal element of S'\S

which is not S'-minimal. Let c — (b(n3 — n2) — anι — n3)/n3 and d — (an2 — bnx

— n3)/n3. Then either δ^bn^ + dn3) < b + d or δo(a(n3 — n2) + cn3) < a + c.

Proof. By symmetry we can assume without loss of generality a ^ b. (This

will imply the first of the two stated inequalities, the other follows from a > b.)

By S-mίnimality assume (a{n3 — n2), bnj = Σ ; =i (ati])(n3 — n2), baj)n^), where

each summand is an S'-minimal element of S '\ S and t ^ 2. Σ ; = i aι{j) — a < b —

Σy=i btU) implies that there exists an h, 1 < h < t, such that aHh) < bt{h) (other-

wise a > b). W.l.o.g. let h—\. Then bnι + dn3 — bnx + an2 — bnλ — n3 —

an2 - n3 = Σ = 1 amn2 ~n3= Σ = 2 bi{j)nx + ( Σ = 1 ai(J)n2 - Σ j = 2 bt{J)nJ ~ n3 =

aiωn2 + Σ- = 2 biφnx + Σ = 2 (atφn2 - bl{j)nY - n3) + (t - l )w 3 - n3 = α ί ( 1 ) « 2 +

Σj.2 ^i(/)Λi + (^~ 2 + Σlj=2di{j))n3. The definition of 60 and bi(j), \ < j < t,

implies d > (t — 2) + Σ j = 2 ^o). From this and 6f (1) > α ί ( 1 ) (thus δ > ai{1) +

Σ ; = 2 ^ o ))> δiibtt! + rf^3) < δ + d is obtained.

LEMMA 2.10. Let (A, B) be an S-wiaxirnal element of S'\ S, where A = Ax{n3

— n^ + A2(n3 — n2) + A3n3y B — B1n1 + B2n2 + B3n3 with δo(A) = Σ ^ ^ ^ ,

δ^B) = Σ t i β<. T ^ n /or some i, 1< i< r,A2~ B2 = at, B1-Aί = bt, A3 =

cv and B3 = dt.

Proof By Lemma 2.1 dx(B) > δ(A, B). If δ^B) > δ(A, B) + 1, then

δ^B) > <5(C4, B) + ί0), and then (A, β) < s (A, B) + t0 e S7, contrary to

S-maximality. Thus ^ + 5 2 + 5 3 = ^CB) = δC4, 5) + 1. Then (B1 + B2 +

B3 — l)n3 = δ(Λ, jS)n3 = A^fy — nj + A2(n3 — n2) + A3n3 + B^ + B2n2 +

B3n3, which implies Ax(n3 — n^ + A2(n3 — n2) + A3n3 = B1(n3 — nj + B2(n3 —

n2) — n3. Thus A3 = ((B1 — Ax) (w3 - nx) — (A2 - B2) (w3 - n2) - n3)/n3. By

symmetry, B3 — {{A2 ~ B2)n2 — (Bx — A^riγ — n3)/n3. Next consider the follow-

ing element of S'\ S : (A, B) - A3t0 ~ B3t3 = (Aiifh — nj + A2(n3 - n2), B^

+ B2n2). Suppose Ax > Bv Then ((A1 — Bx)(n3 — nj + A2(n3 — n2), B2n2) <s

{Ay B). A2 > B2 immediately implies (A, B) €= S, contrary to hypothesis. If A2

< B2 then ((Aι ~" Bx) (n3 ~ nj, (B2 ~ A2)n2) e 5 by Remark 2.1 b) and Lemma

2.1 since δo(A) = A1 + A2 + A3. But then again (A, B) e S contrary to assump-

tion. Thus Ax < Bv By symmetry B2 < A2. Hence, by Remark 2.1 a), we must
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have (G42 - B2) (n3 - n2), (Bι - AJnJ e S' with δ((A2 - B2) (n3 - n2)) =

A2 - B2 and δ1((B1 - AJnJ = Bι - Av By Lemma 2.2 ((A2 - B2) (n3 - n2),

(Bι — Ax)nx) is an S-minimal element of S ' \ S But δo((A2 — B2) (n3 — n2) +

A3n3) = A2 - B2 + A3 and δ1((B1 - Ax)nx + B3n3) = Bx - Ax + B3, thus by

Lemma 2.9, (042 — B2)(n3 — n2), (Bx — Ax)nx) is an S'-minimal element of

S'\ S. Therefore for some i, 1 < i < r, A2 — B2 = af, and Bx — Aι = ^-. Λ3 = ^

and i?3 = rf^ now follow from the definition of c{ and d{ and the calculations for i43

and B3 above.

PROPOSITION 2.2. Let {A, B) be an S-maximal element of S'\S. Then (A, B)

= {a{{n3 — n2), b-n^ + ftt + et2 + CJQ + d{t3 where:

( i ) (di(n3 — n2), bjHi) is an Sf-minimal element of S'\ S.

(ii) Cj and d{ are as defined before, namely c{ = (^(n 3 — nλ) — ai(n3 — n2) — n3)/n3,

d{ = {a n2 — b-Yiγ — n3)/n3.

(iii) 0 < e < ai+ί — aiy 0 < / < bi_x — bt and there is no equation βxnx + β2n2 =

' β3n3, 0<β1<bi+f,0<β2<e.

Thus every S-maximal element is one of the elements in Proposition 2.1.

Proof We use the notation of Lemma 2.10. Thus for some i, I < i < r, (A, B)

= (#ί(^ 3 — n2), b^) + Axtx + B2t2 + c{t0 + d{t3. It suffices to show that Ax and

B2 satisfy the conditions for / and e in (iii) above. Suppose Ax ^ bf_x ~ b{. Con-

sider (ai(n3 — n2)y bβ^ + (b^x — b)(n3 — nx, nx) — (α, (w3 — n2) + (bi_x — bt)

(n3 - nx), b^n^ G S' \ S.

Case 1. i = 1. Then δ^bf^n^ — δγib^n^ < b0 and δx(Bxnx + B2n2 +

B3n3) < Bx+ B2 + B3 since Bλ = Bx - Ax + Ax = bx + Ax > 60, contrary to

assumption.

Case 2. 2 < i < r. Since {a^n^ — n2), b^^) e S'\S and a{_x < aif

(β -iίwg — n2), bi^Πj) <s (ai(n3 — n2) + (bf^ — b)(n3 — nλ), b{_γnx). Thus

a{(n3 — n2) + (bi_ι — bt) (n3 — nγ) — a{_x(n3 — n2) + gn3, g > 0. As a{_x < a{,

δo(β, (w3 ~" w2) + (6f_! — ft, )(w3 — n3)) < a{ + b^γ — b{ and δo(Aι(n3 — nx) +

A2(n3 — n2) + A3n3) < Ax + A2 + A3 since Λ2 > ab which is contrary to assump-

tion. Therefore Ax < δ^j ~ 6f and by symmetry B2 < α ί + 1 — a{. Finally if βxnx +

^ ^ = β3n3 with β3 > 0, 0 < βx < bx + Ax = Bx, 0 < β2 < B2, then S ^ ^ +

i?2n2 + B3n3) < Bx+ B2 + B3, a contradiction to the choice of B{, 1 < i < 3.

Hence there is no such equation.

PROPOSITION 2.3. L<?ί W, β) fr<? an S-maximal element in S'\S and C40,

BQ) an S/-minimal element of S'\ S. Then (Ao, BQ) ^S(A, B).
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Proof. By Proposition 2.2 let (A, B) = (aj(n3 — n2), b-n^) + ftλ + et2 + Cjt0

+ dit3 and let (AQ, Bo) = (aj(n3 — n2), bjΠ^. If i = j there is nothing to prove.

Assume i Φ j . By symmetry we can assume bj < b{ and cij > a{ (for bj > b{ we

use dj < at). Then (Ao, Bo) + (bt — bj)(n3 — nl9 nj = (<z;(n3 — n2) + (bt —

bj)(n3 — nx), b{n^) e S\ (a^ — n2), b^) e S' implies ( ^ — a)^ — n2) +

(b{ — bj) (n3 — nj = gn3, g > 0, thus <z;(/z3 — w2) + (bt — bj)(n3 — nj = a{{n3

~~ w2) + #W3 T n u s (^y(w3 "~ »2) + (b{ — bj) (n3 — nλ)f bitij) = (ύf̂ ίwa — n2) +

gn3, bjΐij for some g > 0. If ( ^ O ^ — w2) + gn3, b n^) e S, then # > ς by

Lemma 2.3. Then dj(n3 — n2) + (b{ — b){n3 — n^) > a{{n3 — n2) + (c{ + l)n3

= b{{n3 — n^ (by definition of ct). From this α ; (w3 — n2) > bj(n3 — nj, from

which (aj(n3 — n2), bjfij e 5 by Lemma 2.1 since then α ; + (— α ; n2 + bjYi^)/n3

> δy. But this is contrary to assumption. Hence {a^n3 — n2) + gn3, b^) <έ S and

g < c{. Therefore (Ao, Bo) <s (Ao, Bo) + (δ, - fty)(w3 — «x, nλ) <s (a{(n3 — n2),

binι) ~^~ ci^o ^s (A> -β)» which finishes the proof.

We can now state and prove the following.

THEOREM 2.1. For a monomial curve C(nlf n2, n3) in Pκ we have k(C(nv n2,

n3)) = diamCί/^G?)). Furthermore an element of minimal degree in Hm(R) must

occur amongst the Sr-minimal elements, thus by Remark 2.4, amongst the generators of

Hm(R) obtained from elements XQi+lχ2

i — xι

ix3

i+ι e 3Knίt n2, n3). An element of

maximal degree is obtained by considering all possible extensions of Sf-minimal

elements to S-maximal elements.

Proof. The first statement follows immediately from Proposition 2.3, since

(At B) and (Ao, Bo) are arbitrary in their respective sets. The second statement

is a consequence of the correspondence between S'-minimal elements of S r \ S and

generators of Hm(R) as specified by Remark 2.4. The third statement follows

immediately from Proposition 2.3.

3. An algorithm for computing* k(C(nv n2, n3))

This section requires a somewhat more detailed study of the minimal generat-

ing set % = $Knv n2, n3) of HO obtained in [BR] (see also [B2] and [BH]). For the

convenience of the reader not familiar with the algorithm of [BR], we also include

a brief description of it at the end of this section when we compute k(C(nlf n2,

n3)). Let

«2> « 3 ) . a n d ai > o, o < z < 3).
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X2 Xγ i -
From elements in S2, —— = —— e Hm(R) are obtained and these elements

γ,a3 γa0

x3 x0

correspond to the S'-minimal elements of S'\S, S and S' defined in Section 2.

(By abuse of notation we shall delete bars on variables.) Let
% = {& β3 = xl'xl" ~ xlιxb22 ^ %(nlt n2, n3), and b{ > 0, 0 < i < 3}.

/-TΛI J<T\ / \ /ΐ7\ I i /ςi\ i I f γ~\ (XΛ C^ΛCί Oίio Ct-to r\ dn Oί(\(\ OLM OCfioΛ
[ UΛΠ OU I ΛΛ ΛΛ - M l UU OU I 1 1-4 /γ\ ί *γ% !W/y» lώ,y» l o £γ ^« U ^ — /y> UU/y» " 1 ,y, uo I

1 l l c l l eΛ?\Λ^y '^2> Z' ^ 2 3 ^ 1 1 0 2 3 > 2 2 0 1 3

and every binomial β ^ S(wx, ^ 2, n3), except for the first two binomials in the

algorithm of [BR], is obtained from binomials β' and β" by cross-multiplying the

monomial terms of βf with the monomial terms of β" and deleting common factors

of the resulting two monomials. We will write for this β"(βf) = β and say β" acts

on βr to produce β.

DEFINITION 3.1. Let {i, j} = {2, 3}, βj e % The set

B(βj) = {β, ββ) = βi9 {βi9 β) c S.} u {ft ft(ft) = βi9 {βi9 ft} <Ξ SB,},

will be called a block in SB,-.

Ordering the elements in 3B,-, i = 1,2 by decreasing x0 and xx exponents (and

therefore increasing x2 and x3 exponents) establishes by [BR] a linear order on

each block and on SB,-.

DEFINITION 3.2. ft e i?(ft) of largest or smallest x0 and ^ exponent are cal-

led end polynomials. All other ft ^ 5(ft) are called middle polynomials.

DEFINITION 3.3. Let x^x? — x"ιx3

s ^ $2, X a monomial term in R, 0 Φ

χ

a2 _ (Xa2\
X~\ e H^iR). Then rf(-^-j = dOO + a2 + #3, where rfOO is the ordinary

x3 x3

total degree of a monomial term.

Remark 3.1. Note that d(~^~) = δ(a2(n3 — n2), aγn^ and if tt and ^
\ γl 3 /

correspond, 0 ̂  ί ̂ 3, then d and 5 agree.

DEFINITION 3.4. For XQ°X2

2 — x^x^3 e ®2

 a n ^ X a monomial term in 7?, 0
^2 _ χ"2 i x<*2s

^ e //^(i?) is a maximal multiple of -^- if ^ ( A " - ^ - ) = 0 in i^(i?), 0
3 /y1 3 \ sγ% 3 /
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Remark 3.2. Note that if β2 = XQ°X2

2 ~ x[ιxlz is a middle polynomial in <82>

then there exists a uniquely determined polynomial ^ Q 0 ^ 3 -~ X\lx2

2 e ®3> which

acts on β2 to produce the successor of β2 in 582. If β 2 is an end polymomial in 582,

but neither the first nor the last polynomial in S2, then B(β2) Φ 0 and if

B(β2) — ί/i — J^o0^3 ~ x\lχ22y''*> Λ = ^ o 0 ^ 3 ~~ -^i1^2^ with fγ the first and ft

the last polynomial in B(β2), then /j acts on the predecessor of β2 to produce β2

and /j acts on β2 to produce the successor of β2 in S2. If β2 is the first or last

polynomial in 382, then ,B(iδ2) may be empty. If for this case B(β2) is empty, then

let xo°x3

3 ~~ Xχlx2

2 — x^x i* ~~ X\lX22 be the first or the last polynomial in S§3, re-

spectively.

a2 a2

Now let m — xl°xl3 x[ιxl2 be an arbitrary maximal multiple. Assume -^—

corresponds to a middle polynomial. If yγ > bl9 bλ defined in Remark 3.2, then,

since by the algorithm of [BR] a2 > b2i

Js3 <Λs3

a2~^2 a2

where 2

a _b corresponds to the predecessor of —^-. Note that the x2-exponent

is unchanged. If j 2 > b2, then by the exactly analogous procedure, with

represented by —^-, we obtain a reduction of y2 by σ2 and a shift to the successor
xo

X X

of —^-. Now let —y- correspond to an end polynomial. If yγ > δx, again bγ defined
3 3

in Remark 3.2, then as above a2 > b2, and we have a reduction in m of the
a9

X

^-exponent by bx and a shift to the predecessor. Note that if —^- cprresponds to
3

the first element in 9B2, then γx > bx is not possible, since this would imply m — 0.

If γ2 > c2f c2 defined in Remark 3.2 then as before we obtain a reduction of γ2 in
a2

m by c2 and a shift to the successor. Note again that if corresponds to the last
X33

polynomial in S2, then this is not possible.

Since this procedure leaves one of the two exponents γit i— 1,2, invariant,

while reducing the other we get a reduction of maximal multiples to maximal mul-

tiples to one of two possible cases:
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a2 a2

I. M = xo°x3

3—^-^l1^2*—<Γ corresponds to a middle polynomial and
x3 x3

σx < bi — I, σ2 < b2 — 1, blf b2 defined in Remark 3.2.

II. m — XQ°X3

3~^—x^x2

2

f —^— corresponds to an end polynomial and
x3

3 x3

3

Gλ < bλ — 1, σ2 < c2 — 1, bv c2 defined in Remark 3.2.

We will deal with the two cases separately.

LEMMA 3.1. Let m be as in I. above. Then σ0 = a0 — 1, σ3 = a3 — 1, oλ — bx

— 1, σ2 = b2 - 1.

Proof. Clearly σ0 < a0 — 1 and σ3 < <23 — 1. Suppose σ3 < ̂ 3 — 1 or 0 < a3

r

( 7 0 r

ύ ! 2 + σ 2 r

σ l

~ (Jo — 1. Then — = 0, thus there must exist a monomial of a binomial
,rα3~ίj3

in %2 dividing XQ°X2

2+(T2 or a monomial of a binomial in £83 dividing X2

a2+°2x°ι. In

the first case since σ0 ̂  a0 — 1, this would produce an x3-exponent > a3 (since

the .^-exponents are monotonically increasing with decreasing x0-exponents), thus

m — 0, which it is not. Hence this is not possible. In the second case, since σλ

< bγ — 1, by the algorithm in [BR], again the .^-exponent produced is > a3, thus
aι

m — 0, a contradiction. Hence σ3 = a3 — 1. Changing to the representation ——,
XQ

χ

a2

we obtain σ0 — a0 — 1 by an analogous argument. We consider next x*0 ~~r
x3

x^xζ2, σ1 < bλ — 1, σ2 < b2 — 1. Then by the algorithm of [BR] and the middle

polynomial assumption, there does not exist a binomial in ®3 with monomial term

dividing x^xζ2 *2 , from which σ2 — b2 — 1. By an analogous argument with the

representation ——, σι = bx — 1.
XXQ

a9

X

For the next three lemmata —^- will correspond to an end polynomial.
x3

3

LEMMA 3.2. L ί̂ β 2 = x^xl1 — x[xxa

3

3 ^ S82 ^^ α w ^ ^ polynomial. If B(β2) Φ

0 /̂ ί /i = xo°x3

3 — XγX2 Φ fi = XQ°X3

3 — x[xxc

2 as defined in Remark 3.2. //

B{β2) — 0 {i.e. if β2 is the first or last polynomial in %2 and the algorithm in [BR]

proceeds such that B(β2) = 0 ), then let fλ = fx be either the first or last polynomial in

$)3 (depending upon if β2 is the first or last polynomial in 9B2). Then m1 = xo° x3

3
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r " 3

Z 2

I b9-l . β f t - l Λ o - 1 X2 c , - l C o - 1 . t t , , t /• ^ 2

^2 αwd m7 = .r0

 X 3 ~~7 xι X2 are maximal multiples of .

Proof. Since there does not exist β{ ^ SB,-, z = 1,2, with one of its monomial

terms dividing xo° x2

2 2 or xx

ι x2

2 2 , xo° ~zr xγ x2 = ^ 3 " Z " '

xχ

Cl~ x2

C2~ Φ 0 in Hm(R). Clearly x0 and x3 annihilate this multiple. That this is

also the case for xγ and x2 follows from x^x^3 ~ χ[lχl2 G ®3 The proof for the

other multiple is analogous.

χ χ

x^x^ XlX2 De a s in H i e
χ χ

LEMMA 3.3. Let m — x^x^ X\lX22 De a s i n H > i-e ~~^~ corresponds to an
γ 3 γ 3

polynomial, σλ < b1 — lf σ2 < c2 — 1, bv c2 as in Remark 3.2. T/ι̂ n σ0 = a0 —

3 = a3 — 1.

o/. As always σ0 < ^ 0 — 1 and σ3 < a3 — 1. Suppose σ3 < a3 — 1 or

0 < Λ3 - σs - 1. Then xo

g° \-c,-ι x°' = ° S i n c e ^ < 6X - 1, if ^2+<T2x1

<Tl is to
X 3

be divisible by a monomial term of a binomial in S3, its x3-exponent is > a3. But

then m = 0, a contradiction. If XQ°X2

2+(T2 is to be divisible by a monomial term of

a binomial in $t2, then since σ0 < # 0 — 1, its x3-exponent again is > a3. Thus

again m = 0, a contradiction. Hence o3 — a3 — 1. By replacing the representation
a9 a

X2 by —— and an analogous argument, we obtain σ0 = a0 — 1.
a by

3 x0

X2

LEMMA 3.4. Let correspond to an end polynomial β2 — xo°x2

2 ~ xι

1x3

3. Let

x3

3

χ

a2

m — xQ ° x3

 3 —— xx

 ιx2

 2 he a maximal multiple of largest possihle degree. (Note that
x3 ^

the degree of m here need not necessarily be e{Hm(R)). If ax > a2, then Gx — bλ — 1,
σ2 ~ 2̂ ~ 1' if a\ ^ a2> then σi ~ Cl ~ 1> σ2 = C2 ~~

of the preceding two choices is possible.

χProof. Let m — x"0 -^~—x*1. We first determine the possibilities for σ1x3

and σ2. We consider two cases:

a) No monomial term of a binomial in ίS3 divides x2

2+<72+ x*1. Since a0 — 1

< <20 and a2 + σ2 + 1 > # 2 , there must exist XQ°~C°X2

2+C2 — xlv~Cλx<

3

H"rC% e ® 2,
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Xo°x3

3 — x[ιχc

2 ^ 583, and a2 + σ2 + 1 = a2 + c2, where cit 0 < i < 3 are as de-

fined in Remark 3.2. Hence σ2 = c2 — 1. By Lemma 3.2 σx = cx — 1 now follows

immediately.

b) There are monomial terms of binomials in S3, which divide x2

2 2 Xχι.

Since m is a maximal multiple and since the x0 and xλ variables do not appear in

any monomial of $Knlf n2i n3), we also must have that x2

2+<T2x°1+ is divisible by a

monomial term of a binomial in %3. For JB(J82) = 0 , we revert back to case a). Let
(λ Φ R(R ) — I T ^ T * 3 — -vA-Λ c o + β o c3-<z3 _ c1+a1 c2-a2 c0 c3 _ cγ C2Λ χ

order for x2

2+σ2x^ to be as required, ^ has to be by one less than the

^-exponent of an element in S 3 and a2 + σ2 by one less than the x2-exponent of

its successor. From this we get a2 + σ2 <C c2 (otherwise m — 0), and by symmetry

ax + σx < δi. Thus the maximal multiples to consider are

β o - l « 3 - l ^ 2 b^-l b2-l
Wlγ XQ X3 a X\ X2 f

a2 a2

ao-l a3-l %2 (fti-Ό-βi (b2-D+a2 ao-l a-,-1 %2 (Ci-D+βi (c2-l)-a2
/ Λ 2 ^ 0 ^ 3 α 1 2 > 'f/nl-l ^ 0 ^ 3 β 1 2

x 3

3 x3

3

The statement about the degree now is immediate.

COROLLARY 3.1. There exists an element of maximal degree amongst the maximal

multiples of Lemma 3.1 and Lemma 3.2.

Proof This follows from the preceding, the fact that the initial maximal
a2X

multiple m — XQ°X3

3~^~xy\Xr

2 was arbitrary and only homogeneous polynomials
xlz

were used in all of the above (thus no change in degree), and by the structure

theorem (Theorem 2.1) in Section 2.

LEMMA 3.5. Assume that m1 and m2 are maximal multiples as in Lemma 3.1

and Lemma 3.2 which correspond to succesive binomials bλ = XQ°X2

2 ~

x^x"3 and bib,) = b29 b = x*°x3

3 - x{λχd

2\ Then d{m2) - dim,) = Δ = d2 ~ d0.

X

Proof. The degree difference between mι — x"°~1χ3

3~1 —— x^ι~ιχ2

2~ι and m2

x3

3

a2+d2

«3 + ώ 3

2 V I ^2-1 Λ _ A
<Z3+d3 1 2 l b U2 UV
3
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THEOREM 3.1. For a maximal multiple of maximal degree only the maximal

multiples in Lemma 3.2 need be considered. If corresponds to the end polynomial

XQ°X2

2 ~ xlιxζ* and aγ > a2 then mι of Lemma 3.2 needs to be considered, if aι < a2

then mι of Lemma 3.2 will do and if ax — a2, then dim-) — d{m^).

Proof This follows from Corollary 3.1, Lemma 3.5 and Lemma 3.4.

Remark 3.3. (i) It follows readily that an element of minimal degree in
χ

a 2

Hm(R) is also obtained from an element —y-, which corresponds to an end
x3*

polynomial in ί82.

(ii) We note that our algorithmic procedure in this section calculates also the

socle of Hι

m{R).

We conclude this section with an algorithmic computation of k(C(nlr n2i n3)).

1. Let a{ be minimal positive integers such that aini = a^Πj + aiknk e

(njf nk), {i,j, k) = {1,2,3}. These equations define polynomials

f — r"1 — rai2rau f = r*1 — r

anra23 f — raz — r

a31ra32

J\ 1 2 3 t J2 2 1 3 i J3 3 1 2 *

Assume that 0 < a2 < a2l + α2 3, α 2 1 > 0, and 0 < a3 < a3l + a32, with a31 > 0.

(If one of these conditions is not satisfied, then C(nv n2, n3) is Cohen-Macaulay.)

Let {i, j} = {2, 3} and an < ajv Then from f2 and f3 one obtains either /2(/3) or

Jl2 ^j x l ^i

We repeat the process as in the Euclidean algorithm for α 2 1 and α 3 1 until we

obtain a polynomial x^2 — x±2lx3

23 with Ŝ2 > β21 + iS23.

Assume /2 Φ — fλ and f3Φ~ fv Then we obtain:

Λ,/fc "~ ^Λ+l » ϊ Λ-l,l» » Jr-Ur-x ~ ^r > /rl> » Λ//»

where Axί/π) = / 1 2 , . . . , Ai(/ U l _i) = A2» ^ ( A i ) = / 2 1 , . . .

If f2 — ~ fι or f3 — — fx we delete /2 or /3 and obtain:

/" — h - f f \
Jr-l,er-ι rιr * JrV > ^re r

J >
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where hx{- f,) = f n , . . . , Kif^^) = h2> A2(A1) = / 2 1 , . . .

In both cases, with the homogenized binomials of % denoted by capital letters

and with corresponding subscripts, we have:

l f n2, n3) = {Fl9 Hlf Fn,..., Flflι = H2 . . . Fkl9..., FΛ>Λjk = Hk+1 . . .

iV_u,..., Fr_hnr^ — Hr F r l , . . . , Frn).

n , . . . , FXnι\Fzι\ . . . , F 3 W 3 ; . . . ; F r l , . . . , F ^ . J if r is odd,

!, F 2 1 , . . . , F2n2 F 4 1 , . . . , F4nA . . . FrV..., F ^ . J if r is even.

and

2. Let d0 = deg(Fn), dγ — degiHJ,..., dr = άeg(Hr), and

d r + 1 = I d

e g

 i f ̂ ^ j 1 Uγ

Let if = max W, + di+ι z = 0 , . . . , r}, and m — min{α2 — a3 x£

Then k(C(nί9 n2, n3)) = M — m — 3.

4. Castelnuovo-Mumford regularity for monomial curves in Pκ

Let A — ®i>0Ai be a Noetherian graded standard K-algebra, i.e. A = R/I,

where / is a homogeneous ideal of a polynomial ring R = K[xQ,..., xw] in w + 1

indeterminates. Let m = Θ ί > 0 i 4 ί be the homogeneous maximal ideal of A. Recall

that the Castelnuovo-Mumford regularity of A is defined as follows:

regA = maχ{e(H^(A) + i i < dim A),

where eiH^A)) — max{/ [i?^C4)];- ^ 0}. This is an important invariant of A If

A has the following minimal graded free resolution:

0 - Θ£χ R(- epi) > Θti R(- eu) ^R-A-*0,

it is well-known that (see [M], [EG])

r e g A = max{e y ί ~ j \j — I,..., p and 1 < t < wy}.

In this section we will prove:

THEOREM 4.1. Assume that C = C(nl9 n2, n3) is not Cohen-Macaulay (C-Λf).

Then
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regtfΠS]) = e{Hλ

Λ(K[S\)) + 1.

As an immediate consequence of this theorem and Theorem 2.1 we have

COROLLARY 4.1. If C(nv n2, n3) is not C-M, then

k(C(nv n2, n3)) = τeg(K[S]) - a(H^(K[S])),

where a(H&(K[S])) is defined in Section 1.

The proof of Theorem 4.1 is divided into several lemmata. First, as in Section

1, for i = 0,1, the set Aj(Sh n3) = {0, α^-CL),..., a)i(n3 — 1)}, where

ω f 0") ~ minία e St; a = j mod w3}, j — 1 , . . . , n3 — 1,

H Π 040(S0, »g) x AX{SV n3)) = {(ωo(ι), ω > 3 - 0) t = 0 , . . . , n3 - 1} = /,

and

/=/\S.

It is clear that if ωx(ϊ) = anx + bn2 then ωQ(n3 — i) < a(n3 — wx) + 6(w3 —

w2) and the equality holds if and only if a(n3 — wx) + b(n3 — n2) &n3 + So. Note

that / generates i ί t S A S ] as K[S] -module (see [FH], Lemma 2.4). C(nv n2J n3) is

not C-M if and only if / Φ 0 .

Next we define aλ (resp. βj to be the least number such that δ^a-ji^) < aλ

(resp. βι?ι2 ^ n3 + SJ. Analogously we define the corresponding numbers α0, yS0

for the generators n3 — n2 < n3 — nγ < ^ 3 of So.

Remark 4.1. From the definition of aif βit i = 0,1, we get β 0 < α x and βλ

< a0. These relations are also immediate consequences of the algorithm in [BR].

In the next lemma we use the following partial order ^ on the set N : (a, b)

< (a', b') \ίa<ar and b < b\

LEMMA 4.1. / / the set {{a, b) 0 < a < av 0 < b < βx and anγ + bn2 =

mn3 for some m > 0} Φ 0 then it has a unique minimal element.

Proof. Assume that there are two equations: m^ + m2n2 = nΐn3 and m1^1

+ m2n2 = mn3 with m[ > mί and m2 < m2 or m[ < mι and m2 > m2. Subtracting

one equation from the other we get anγ — bn2 + cn3 or bn2 = an1 + cn3, where

0 < a < av 0 < b < βv By the minimality of α x and βv this can happen only if
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b = βv i.e. one of the two numbers m2 and m2 is 0. But this contradicts the mini-

mality of av

If the set defined in Lemma 4.1 is not empty, we denote its minimal element

by (mlf m2). Otherwise we set mί = aγ and m2 — βv Let us introduce the follow-

ing set:

B, = {(a, b) 0 < a < mlt 0 < b < βj U {(a, b) mι < a < av 0 < b < m2}.

Then we have:

LEMMA 4.2. The set B[ = {anι + bn2 (a, b) ^ Bj consists of distinct

elements and coincides with the Apery sequence A1(S1, n3) of Sλ {up to permutations).

Moreover, for each element anx + bn2 G B[ we have δ1(an1 + bn2) = a + b.

Proof Since A1(SV n3) Q (Nn1 + N^ 2 )\(^ 3 + 5^, we must have A^S^ n3)

^ B[. Let {a, b) e Bv Choose an element afnx + Vn2 e Aλ(Sl9 n3) such that

(a', b') e Bλ and α^! + &n2 = cn3 + α ^ ! + Vn2. From the minimality of aγ and

j8x it follows that a > a\ b > V. Then we have {a — a/)nι + (b — b')n2 — c %

By Lemma 4.1, {a — a', b — br) > (mv m2) unless a — cΐ — b — br — c = 0.

Since a < mι or b < m2, we must have a — a\b — V and c = 0. This proves

that the element anx + bn2 & (n3 + SJ, i.e. B[ = i41(S1, w3) and the elements in

B[ are distinct. From this it also follows that if anx + bn2 = cn3 + afnγ + Vn2

for some c> a', V e N, then c = 0 and a + b<* a' + b'. (Note that a + b < a' +

V is possible.) Hence δγiartγ + Zm2) = α + δ, as required.

Remark 4.2. An equivalent formula to the one in Lemma 4.2 was given by

Rόdseth (see [Ro], pp. 175).

LEMMA 4.3. Assume that (a, b) ^ Bλ and a < β0. Then a(n3 — n^ + b(n3 —

n2) e A0(S0, n3).

Proof Assume that a{n3 — nj + b(n3 — n2) — a!(n3 — nj + b'(n3 — n2)

+ c%, where c' > 0 and a\ V e N. By Remark 2.1 (or [BR]), b < βγ< a0, and

by assumption a < β0. From the minimality of a0 and β0 it follows that (a, b) ^

(a', 6'). We then get: (a - af)nγ + (b - b')n2 = (a - af + b - V - cf)n3. By

Lemma 4.1 we must have (a — a', b — br) > (mlf m2) which implies that

{a, b) > (ml9 rn2), a contradiction.
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LEMMA 4.4. If C(nl9 n2, n3) is not C-M,

maxίδ^β) a e A1(S1, n3)} < maχ{<50(£0), δ^ej (e0, ej ^ /}.

Proof. First assume that β0 = av Let e = (ωo(n3 — 0, ω^O) be an arbit-

rary element of 7. We write ω^i) = #wx + ftw2 with (β> W G ^?i By Lemma 4.3,

a(n3 — nj + b(n3 — n2) e i40(S0, w3). Hence ωo(n3 — 0 = #(n3 — nι)+ b(n3 — n2),

which implies that e ^ S. This shows that I c S, i.e. Cίw^ 2̂» ^3) ^s C-M, a

contradiction. So, from Remark 4.1, we must have β0 < α l t and, by symmetry,

βι < Ct,.

Now we consider two cases separately, noting that δ(i, j) equals the number

of steps between — i and j in the congruence class n3.

Case 1: (mly m2) = (αx, βx).

By Lemma 4.2 there exists; such that ωx(j) = (αx — 1 ) ^ + ( ^ — l )n 2 ^ ^ ( S ^

w3). Since ax — 1 > i80,

(αx - 1) (»3 - »!> + (jSi - 1) (w3 - w2) ^ n3 + So.

By the definition of Apery sequence, we then get O)Q{n3 — j) < {aι — l)(n3 — n^)

+ (ft - l)(w3 - n2). Therefore δ((ωo(n3 - ), ω ^ ' ) ) ) < δ((«i ~ D ( Λ 3 ~ »i)

+ (A - 1) (n3 - n2), (a, - \)nx + (ft - l)n2) = (a, - 1) + (ft - 1) = δ^ωβ)).
Thus by Lemma 2.1, (ωo(w3 — ), ωx(j)) £ S. Hence

^ w3)} < α 2 - 1 + ^ - 1 =

2: mL < αL and m2 < βv

Similarly as in Case 1, (ax — 1 ) ^ + (m2 — l)n2 is the second component of an

element of /. Hence

(1) m a x t o ^ ) (e0, eγ) e /} > (αx - 1) + (m2 - 1).

If mx > β0 then considering (mx — 1 ) ^ + (ft — l ) n 2 we get similarly as above

that

(2) m a x ί δ ^ ^ ) (e0, ex) e /} > ( W l - 1) + (ft - 1).

(1), (2) and the construction of Bx imply the claim.

Finally let mι < β0. By Remark 2.1, m2 < ft < aQ. Note that mγnγ + m2n2 —

mn3 (m > 0) if and only if m2(n3 — nx) + m2(n3 — n2) = nΐn3 {wΐ = mι + m2 —

m > 0). This implies that in our case (m2, mx) is just the unique minimal element

defined by Lemma 4.1 for n3 — n2 < n3 — nι < n3. Applying Lemma 4.2 for the
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Apery sequence i40(S0, n3) we get that i40(S0, n3) is in one-to-one correspondence

with the set

Bo = {(a, b);0<a<m2,0<b<β0} U {(a, b) m2 < a < α0, 0 < b < roj.

Since ft < α0, similarly as in Case 1 we can show that (α0 — 1) (n3 — n2) +

{mγ — 1) (n3 — n^ is the first component of an element of /. Hence

(3) max{<5000) (e0, ej e /} > a0 — 1 + m1 — 1 > ft + m1 — 2.

Combining (1) and (3) we get

maχ{<50(£0), δ^ej (e0, eλ) ^ /} > maxία! + m2 — 2, mι + ft — 2}

z) ^ e £(} = maxίδ^α) α ^ A^S^ n3)}, as required.

Now we are able to prove Theorem 4.1.

Proof of Theorem 4.1. It suffices to prove that e(H^(K[S])) < e(H^(K[S])

- 1. By [TH], Corollary 3.8, H^(K[S\) = K[Z(S)\S0 U SJ, where Z(S) is the

additive subgroup generated by 5. Hence

e(H^(K[S])) = maχ{δ(ωo(n3 — i) — n3, ω^ί) — n3)) 0 < i < n3} = max δ(e) — 2.
~ eeΓ

(See also Proposition 1 and Corollary 5 in [BSS].) Let ωλ(ι) = anx + bn2, where

(a, b) ^ Bλ. Since ωo(n3 — i) < a(n3 — n^ + b(n3 — n2), it follows that δ(ωo(n3 —

0, co-JS)) < δ(a(n3 — nλ) + b{n3 — n2), coi(i)) = a + b = δ^ω^i)). Therefore

(4) e{H2

m(K[S\)) = max δ(e) - 2 < max δ(a) - 2.

On the other hand, since H^(K[S]) = K[S'\ S], e(H^(K[S]) = max e e S, χ s

δ(^). Let e = (^0, ^) ^ S' \ S be an arbitrary element. By Lemma 2.1 we get that

δo(eo) > δ(e), δM) > δ(e) and e + (δo(eo) - δ(e) - l)ί 0 e S r\S, and ^ +

(δiί^) — δ(^) — l)t3 ^ Sf\S. As a consequence, max / e 5,\ s <5(/) ^

δ ^ ) } - 1. Hence

(5) e(H^(K[SD) > maxβ e / {δo(^o), 51(^1)} - 1.

Combining (4) (5) and Lemma 4.4 completes the proof of the theorem.

Analyzing the proof of Lemma 4.4 we get the following criterion for the

Cohen-Macaulay property of C(nly n2, n3).
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COROLLARY 4.1. The following are equivalent:

( i ) C(nv n2, n3) is C-M,

(11) ax = βQ,

(iii) α 0 = βv

Proof. We can use [B2] in order to give another proof as follows. By [B2]

C(nv n2, n3) is C-M precisely when μ(I(C(nlf n2, n3))) < 3, where μ denotes

the minimum number of generators. Now from the algorithm in [BR] the equiva-

lence of (i), (ii), and (iii) follows immediately.

In the next section we need the following.

EXAMPLE 4.1. Let us consider the curve C(l , a, d), i.e. nλ — 1, n2 — a and

n3 = d. Let d = pa + q, where 0 < q < a. Then ft = p + 1 if q > 0 and ft = p

if q = 0. From the equation ao(d — a) — y(d — 1) + zd, y, z e N , one can easi-

ly check that α 0 = β1 if and only ifa<p + q+lorq = 0. Hence C(l , a, d) is

C-M if and only i f<2</)H-^ + l o r ^ : = 0 .

5. Monomial curves with at most one singular point

In this section for notational convenience we denote n2 by a and n3 by d. We

will consider the class of curves C = C( l , a, d) and we compute k(C(l, a, d))

explicitly. From this it will become apparent, that to calculate k(C) for a class of

curves still is a formidable task. We always assume that C is not C-M. Let

d = pa + q, where 0 < q < a. By Example 4.1 our assumption on C says that

a > p + q + 1 and q > 0.

LEMMA 5.1. Assume that C( l , a, d) is not C-M. Then

( i ) Every S-minimal element e of S'\S has the form e — ((α + βp) (d — a),

aa — βq) for some positive integers a < β such that 1 < aa — βq < a.

Moreover. δ(e) — a + β(p — 1).

(ii) ((p + 1) (d — a), a — q) is an S-minimal element of Sf \ S.

(in) ([FH], Lemma 5.3) a(H^(K[S])) = p.

Proof (i) From Lemma 2.2 we know that e — (m(d — a), n) for some posi-

tive rn, n with n < a and n — ma = — Id, where / > 0. Hence n = ma — Kpa +

q) = (m — lp)a — Iq. Setting a—m—lp and β = I we can easily get the asser-

tions.
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(ii) is immediate from Lemma 2.1 and the fact that/) + q + 1 < a.

(iii) Since S-minimal elements of S ' \ S generate i f [ S ' \ S ] as K[S] -module,

a(Hm(K[S])) = min δ(e), where e runs over the set of S-minimal elements of

S '\ S. Hence (iii) follows from (i) and (ii).

The main result of this section is the following:

THEOREM 5.1. Assume that C( l , a, d) is not C-M. Then k(C(l, a, d)) =

diam(M(O) = a ~ 2.

The proof of this theorem is based on estimating degrees of elements in the

numerical semigroup S1 = ( 1 , a, d} — N with respect to the generators 1, a, d.

Namely we need the following technical lemma.

LEMMA 5.2. Assume thatp, q > 1 and p + q + 1 < a. Then

δ.da - q) + l + nά) <a + p~2,

for any nonnegative integers /, n such that I + n < a — 2.

Having this lemma we can prove the main Theorem 5.1 as follows: By Lemma

5.1, e = ((p + l)(d — a), a — q) is an S'-minimal element of S ' \ S and δ(e) =

p. Letf= kt0 + lt1 + nt2 + mt3 be an arbitrary element of S with δ(f) = a — 2.

We have e + t3 = (p + ΐ)t2 e S. Hence, if m > 0, e + / e S. If m = 0, then the

second component of e + f is [e + / l i — a — q + / + na. By Lemma 5.2,

δΛle + / ] i ) <a+p-2 = δ(e) + δ(f) = δ(e+f). By Lemma 2.1 it follows

that e+ftΞS too. Therefore e + f e S for any / G S with δ(f) > a - 2. Let g

be now an element of S 7 \ S having the maximal degree, g is, of course, an

S-maximal element of S '\ S. By Proposition 2.3, g — e + h for some element h G

S. Since g £ S, it follows from the above consideration that δ(h) < a — 2. Hence

δ(g) < a +p - 3, and so e(H^(K[S])) < a + p - 3. By Lemma 5.1 (iii) we

then get Λ(C(1, a, d)) < diam(Af(O) < a - 2. On the other hand, by [FH], Lem-

ma 5.2, A(C(1, a, d)) > a- 2. Hence k(C(l, a, d)) = diam(M(C)) = a ~ 2,

as required.

From Theorem 5.1 and Theorem 4.1 we get

COROLLARY 5.1. reg(K[S]) = a+p-2.
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The rest of this section is devoted to the proof of Lemma 5.2. The main idea

is the following: Let E = a — q + I + na. We consider various representations of

E and try to locate one with a small sum of coefficients. Here, under a representa-

tion of E we mean a sum E — xΊ + y a + Z' d with nonnegative integral coeffi-

cients x, y, z.

We first define some nonnegative integers as follows:

a = aq + qv 0 < qγ < q, and

TQi = q + ?2> 0 < q2 < qx (if qx > 0).

Note that γ > 2 if qγ > 0. We need to prove that

δ^E) <a+p-2.

CLAIM 1. One can assume that

i) l < q - l ,

ii) n > (a — Dp, and

in) qx > 0.

Proof, ί) If I > q, then δλ(E) <n + l<a~2, since E = (/ - q) + (n + \)a

and all the coefficients in this equation are nonnegative.

ii) If n < (a — Dp, let n = xp + y, where 0 < x < a — 1 and 0 < y < p.

Then E = xd + [(a — 1 - x)q + qx + /] + ya. Hence

δ^E) < x + (a - 1 - x)q + qx + / + y

<x+(a-l-χ)q + qι + q - l + p - l (by(i))

<a- 1+p- 1.

iii) Assume that qλ = 0, i.e., a = aq. By ii) above we have ή' — n— (α — 1)^

> 0. Then E = (a - l)q + I + (a - I)pa + rίa = (a~Dd+ 1 + n'a. Hence

δ^E) < I + nr + a — 1 < I + n < a — 2. Note that this case also follows easily

from Section 3.

We now divide into cases.

Case 1. n < ap + (γ - 1) (1 + ap) - 1.

Case la: a > 2 and qι2:2p + l

Looking at the representation
(1) E = (a - Dd + (/ + qγ) + [n - (a - l)p]a,
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we get

(2) δ^E) <q, + l+n- (a-l)(p-l)
< ft + q - 1 + cφ + (γ - 1) (1 + ap) - 1 - (α - 1) (p - 1)
= a + p - 2 - a[q - (γ - Dp - 1] + (γ - 1) + q - 1.

Since a > 2 it follows easily that it suffices to show that 2q > (2p + 1) (γ — 1)

+ q + 1. But this is immediate from the following inequalities: q — 1 = 7ft — q2

— 1 > (γ — ϊ)qι > (γ — 1) (2p + 1) (here we use our hypothesis).

Case lb: a = 1, i.e. tf = ϊ + ft.

Let z be the smallest integer such that

n ~ tip + 1) + 1 < 0.

By the assumption of this case and by Claim l(ii), 0 < i < γ. Then the coefficient

of a in the following equation is nonnegative:

E= (i- ΐ)d + [/ + tft - a] + [n - (i -l)(p + ϊ) + ϊ\a.

As in the proof of Claim l(i) from this equation we obtain δ^E) < a + p — 2 if

/ + iqι — a > 0. Let I + iq1 — a < 0. Using the representation (l)(with a = 1)

and the bounds on n and / we get dx(E) < I + n + ft < a — iqι — 1 + i(p + 1)

- 2 + ft = 0 + /> - 2 + (i - 1) (/> + 1 - ft) < ^ + ^ - 2 (since a = q + qλ

Case lc: α > 2 and ft < 2/>.

Looking again at (2) it suffices to consider the case ft > (a — 1) (/> — 1) + />

+ 1 > 2̂ ). Hence by combining with Case la we have still to consider the case

a = 2 and ft = 2̂ ?. We have

(3) E = 2id + [l + 2ip- q] + [n + 1- t ( l + 2/0]α,

for arbitrary i. Similarly to Case lb, we choose i to be the smallest integer such

that

w + 1 — (i + l ) ( l + 2/>) < 0 .

By Claim l(ii) and the assumption of our Case 1, 0 < i < γ < q. After using the

above equation for E in (3), we have still to consider the following case, namely

/ + 2ip - q < 0.

Using the representation E = 1 d + (/ + 2p) + (n — p)a and the above bounds
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for n, /, i we get δ^E) < n + / + p + 1 < (i + 1) (1 + 2p) - 2 + q - 2ip -

\ + p + \ = a+ p — 2 — q + i+l<a+p + 2 (since i < q). This completes

the proof of Case 1.

Case 2. n > ap + (γ - 1) (1 + ctp).

We have

E = (α - \)d + (/ + ft) + [n - (α - l)/>]<*

= (α - ϊ)d + / + qγ + α? + ^ + [n - (a - Dp - l]a

= [a - 1 + a]d + (/ + 2ft) + [w - (α - l)/> - (1 + ap)]a

= [(α - 1) + (r ~ 2)α]d + [/ + (γ - 1)?1] +

In - (a - Dp - (r ~ 2) (1 + ap)]a

= [a + (r - 2)α]d + [/ - (ft - ft)] + [w - ap - (γ - 2) (1 + ap)]a.

Looking at the last expression of E, similarly as in the proof of Claim l(i), we get

CLAIM 2. One can assume that I < ft — q2.

Next we define a new sequence of representations of E. Continuing the above

procedure, we get the following expression of E :

E= [a+ (γ- Da]d + (I + ft) + [n - ap - (γ - 1)(1 + ap)]a.

We set Ax = a + (γ - Da, Bγ = q2 and Cx = n - ap ~ (γ - 1 ) (1 + ap ).

Assume that we have found an i-th expression:

E = A{d + I + Bt + Cta.

We use again the above procedure in order to find a new one.

If / + Bi — (ft — ft) > 0 then the (i + l )-st expression of E, obtained by

iterating

E = A<d+l + B{ + Cfl = A4 + l + Bi + aq + q1+ (Q - Da

= (At + a)d + (/ + Bi + ft) + (C, - 1 - ap)a

is

(γ - Daid +l + B{+(r- D ί i + [C, - (r - 1)(1 + ap)]a

1 + (γ-Da]d+ [l + Bt - (ft - ft)] + [C, -/> - ( r~

That means, in this case we set Ai+ι = At -\- 1 -\- (γ — l ) α , Bi+ι = B{ — (qλ —

ft) and Ci+1 = Ci - p ~ (γ - 1) (1 + op).
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If / + B{ < ft — q2 then we consider the following (i + l ) - s t expression of

E:

E = [A{ + γa]d + / + Bt + γqx + [C{ - γ(l + ap)]a

= [Aj + 1 + γa] d + [/ + Bt + q2] + [C, — p — γ(l + ap)]a.

So, in this case we set Ai+1 = A{ + 1 + γa, Bi+1 = B{ + q2 and Ct+ι — C{— p —

7(1 + ap).

From the above procedure and by Claim 2 we immediately get:

CLAIM 3. For all i>\ we have E = A{d + / + Bt + Cta with Ait Bif C{

being defined as follows:

i)

A{ = a - 1 + i + (ft + + ft)α, and
C{ = n - (a - 1 + i)p - (ft + + ft)(l + ap),

where ft = 7 — 1, and for i > 1

n = \ϊ if 1 + Bi<qι- q2y

ί + 1 [7- — 1 otherwise.

ii) Bλ = q2 and

t+1 [Bi - (qx - q2) ifBi+1 = γ - I.

iii) 0 < / + Bt < ft.

Let 5 be the smallest integer such that Cs+1 < 0. By the hypothesis of Case 2,

s >: 1. Then all above expressions of E with i < s are indeed representations of E.

Hence for 1 < i < s we get from Claim 3 (i) that

= Bx; + I + n — (a — 1 + i) (p — 1) — (ft + + ft) (1 + ap — a).

Since / + n <̂  a ~ 2, we conclude (otherwise there is nothing left to prove):

CLAIM 4. One can assume that for 1 < / < 5,

B{ > (a - 1 + i) (p - 1) + (ft + + ft) (1 + ap - a) + p + 1.

We now consider two subcases.
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Case 2a: (p, γ, ft+1) Φ (1,2,1).

For short, let β = ft + + βs. The condition C s + 1 < 0 means that

(5) n < (a + s)p + (β + βs+1) (1 + oφ) - 1.

Hence, from (4) with i = s and Claim 3 (iii) we get

δ^E) < (I + Bs) + n - (a - 1 + s) (p - 1) - 0(1 + oφ - a)
< qγ - 1 + (a + s)p + (β + βs+1) (1 + oφ) - 1

- (a - 1 + s) (p - 1) - j8(l + cφ - a)
= q1+p-2 + a + s + βs+1(l + ap) + βa - 1
= a+p-2-aq + a + s + &+1(l + cφ) + βa - 1.

We need to show that aq ̂  a + s + β s + i ( l + ap) + βa — 1, or, equivalently,

(6) α(f - 1 - />iS,+1 - β) > βs+1 + 5 - 1 .

If βs+ι = γ then, by Claim 3 (i), Bs < qx — q2. Hence, by Claim 4, we have

> 7-[(α - 1 + s) (p - 1) + β(l + ap - a) + p + 2]
> r(iδ/> + j + 2)

> r(/> + 1) + 1 + 2β (because y > 2).

Since β = ft + + ft ̂  s, we then get

a(q - 1 ~pβs+ί -β)=a(q-l-pγ-β)>q-l-rp-β
>T + β = ft+1 + β > β s + 1 + s > ft+1 + 5 - 1 ,

which gives (6).

If βs+i ~ T ~ 1> t n e n by Claim 3 (iii) and Claim 4 we have

- l = TQI ~ 12 ~ i ^ (r - Oft ^ (r - D(β, + D
> (r - 1) [(α - 1 + s) (/) - 1) + 0(1 + cφ - a) + /> + 2]

> β+ (p + l)(γ-l) + s(p-l + γ-2) (because β > s).

From this it follows, since p > 1 or γ > 2, that (6) holds.

2b: /> = 1, 7 = 2 and i8 s+1 = 1.

If ft = = j8s+1 = 1, then by Claim 3 (ii) Bs = B, - (s - 1) (q, - q2) =

q2— (s — 1) (qγ — q2) < q1 — s. Hence, by Claim 4, we get q > qλ > s + Bs > s

+ β + 2, where β is defined as in Case 2a. This shows the inequality (6) for
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p — 1, βs+1 = 1 and we are done.

Finally, assume that not all ft are equal to 1. Let j be the largest integer such

that ft+1 = 2. Thus 1 < < s - 1 and ft+2 = = βs+ί = 1. By Claim 3 (i),

/ + Bj < qι — q2. By Claim 4 it then implies that qλ~ q2 > 2. Using (4) with

i — j and (5) we get:

δ^E) < qγ - q2 - 1 + (5 + a) + (a + 1) (ft + + ft + + Bs+1) - 1 -
(ft + + ft)
= qι-q2-l + (a + s) + α(ft + + ft) - 1 + (α + 1) (s + 2 - / )
= a - 1 - aq- q2+ α(ft + + ft) + a(s + 3 - ) + 2s + 1 - .

We need to show that

(7) a[q-(β1+ + ft) ~ (s + 3 - /)] + q2 > 2s + 1 - .

Since ft+2 = = βs+1 = 1 ( = 7 — 1), Claim 3 (ii) and Claim 4 give us that

Bs = Bi+1 - (s -j - 1 ) ( ? 1 - ? 2 ) > iSx + + βs + 2.

Hence, by Claim 3 (iii),

(8) ? 1 > Bi+1 + l>(s-j-l)(g1-q2)+β1+---+βs + 3

> 2(s - j - 1) + 5 + 3 = 3s - 2/ + 1.

So,

(9) 2 q ι 2 . 3 s - 2 j + l + β 1 + ••• + β i + 3 = β 1 + ••• + β j + 3 s - 2 j + 4.

Since q > q1 + 1 and ^ — tf2 > 1, from (8) it follows that q ^ (ft + + βs)

+ s + 3 - j > (β, + • • + β,) + (s + 3 - j). That means q ~ (β1 + + ft)

- (s + 3 - j) > 0. Hence

a[q - (ft + + ft) - (s + 3 - ;)] + q2 > q - (ft + + ft) -
(s + 3 - ) + q2

= 2qι - (ft + + ft) - (s + 3 - j) (since γ = 2)
>2s + l - ; (by (9)),

which shows (7). This completes the proof of Case 2b and therefore the proof of

Lemma 5.2.

6. Liaison among* monomial curves in Pκ

In [BH] liaison amongst monomial curves in Pκ is investigated. There it is

shown that some linkage classes contain only few monomial curves, while in other
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linkage classes there are infinitely many monomial curves. Recall that two curves

C, C of P are said to be linked if there is an i?-regular sequence {/, g) e

/(C) Π /(CO such that /(C) = (/, g) : /(CO and /(CO = (/, g) : /(C). In this

case one writes C ~ C. C and C are in the same linkage class (the same even

linkage class) if there exists a sequence of links C = Co ~ Cx ~ * * * ~ Cm — Cf

(with m even, resp.).

Using the notion of λ -Buchsbaum curves we can get some new insight on

liaison among monomial curves. An easy consequence of [R] is that two curves in

the same linkage class have the same Buchsbaum nunber (see [FH], Section 5b).

For k < 2, one can define all linkage classes of strictly λ -Buchsbaum monomial

curves (see [BSV] and [H]). It is natural to ask whether for a given k there are

only finitely many linkage classes among strictly λ -Buchsbaum monomial curves.

Using Theorem 2.1 we answer it in the affirmative.

PROPOSITION 6.1. Assume C(nv n2, n3) is k-Buchsbaum for a nonnegative inte-

ger k. Then

( i ) The number of S'-minimal elements in Sf\S is k.

Proof By Theorem 2.1 we have H^(K[S]) = Ma+1(& Θ Ma+k, where

a(Hm(K[S])) — a + 1. Assume k > 1 (the case k = 0 being true vacuously for

ΎΎ

i)). Let, in the notation of Section 3, €= Hm(R) correspond to the first element

in ®2 (recall that R = K[S]). Then d{^j > a + 1. As in Section 3, 0 Φ
x3 , «2v

Hence α0 — 1 + α + 1 < rf(xo° ) < a + k,
\ γi 3/

a n 1 α o 1 2 bλ 1 b91 ^_ r r l /
^ 0 ^ 3 x\ X2 ^Hm(

yt 3

^ 3 3

from which α0 < /c. From this we have immediately | SB21 ^ A:, since the

X0-exponent decreases by at least one in every step of the algorithm in [BR], which

proves (i). If k = 0, then (ii) follows from [B2]. Assume k > 1. Then %3Φ Q with

xo°x3

3 — xι

ιx2

2 as its first element. As before we have bι — l + a+l<a + k

or bλ ^ k, from which | 3B31 ^ k, since the ^-exponent decreases by at least one

in every step of the algorithm in [BR]. Thus μ(I(C(nv n2, n3))) < 2k + 2, which

proves (ii).

Remark 6.1. The upper bound in (i) and (ii) is sharp, it is attained already
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for k = 0,1,2 (see [B2], [BSV] and [H]).

THEOREM 6.1. Let k be a fixed nonnegative integer. Then there are only finitely

many linkage classes for strictly k-Buchsbaum monomial curves in Pκ.

Proof Since k — diam M(C), by Theorem 2.1 M(C) has the following form:

M{C) =H^(K[S]) =k[S'\S] =Ma+ι®'"®Ma+k

We may consider modules over K[xQ, xly x2i x3] = R or K[S] via the ring homo-

morphism: x0 ^ sn\ xλ •-• sn3~Hltn\ x2 *-+ s

n3~n2tn\ x3 *-+ Γ3. Since the Hartshorne-

Rao module M{C) is invariant under linkage (up to K-duality and a shift in

grading), we have M(C) = M(C')(w) or M(C) = Ex4(Af(C), R)(~ n). Thus it

is enough to show that there are only finitely many different possible

7?-modules of the above form. This is equivalent to showing that the dimension

I M{ I of K-vector space Mit is finite for all a + 1 < i < a + k. But an element of

S'\ S of degree i is of the form fλ+ + fg (with possible repetition), where fj

is an S'-minimal element of S ' \ S or fj ^ {/0, tlf t2, t3), and 1 < g < i — a.

Hence, by Proposition 6.1, | M{ \ < (k + A)ι~a < (k + 4) , as required.

In [BH] we have an algorithm for determining whether two monomial curves

are in the same even linkage class. Here we give a particular result in the "oppo-

site" direction.

PROPOSITION 6.2. No two non C-M curves of the type C( l , a, d) are in the same

even linkage class.

Proof Assume that C = C( l , a, d) and C = C(l , a , d ) are in the same

even linkage class. Then k(C) = k(C ) = k > 0. By Theorem 5.1 we get a = a

= k + 2. One needs to show that d = d*. Let d = pa + q and d* = p*a + q*,

where p, q, p , q are positive integers such that p + q ^ a — 1 and p + q

< a — 1 (by Example 4.1 and our assumption that C and C are not C-M).

Consider the element e = ((p + 1) (d — a), a — q). By Lemma 5.1 it follows that

e has the minimal degree (which equals to p) among the elements of S' \ S.

Moreover it is unique with this property if p > 1. If p = 1 there are maybe some

elements of S7 \ S having the minimal degree. But e is still the unique element in

S'\S which satisfies the following two properties:

i ) δ(e) is minimal among δ(e'), e' e S'\S,

n ) e+t3tΞS.

The last property is true for any p. For the i?-module M(C) these properties
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mean that:

i ') e has the minimal degree among homogeneous generators of M(Q (we

identify e with the corresponding element in M(C) = Hm(K[S\) = uCtS'XS]),

ii') x3-e = 0.

Hence, for any curve C there is unique generator e defined by the above two prop-

erties (up to a scalar). For C*, let e* =((/>* + 1) (d*~a), a~ q*) e ( S * ) ' \ S*

From the above observation and by [R], M(C) = M(C )(«), we deduce that

By Lemma 2.1 it follows that e + qtλ e S, but e + (<? - 1 ) ^ e S'\S (and

an analogous statement for e and q ). This means that q (resp. q ) is the smallest

integer such that x\e — 0 in M(C) (xl e = 0 in M(C ), resp.). Hence q — q .

Analogously, m — a ~ p ~ q (resp. m — a — p — q) is the smallest integer

such that .ro

m£ = 0 in M(C) (resp. x™ e = 0 in M(C*), resp.). Therefore a — p

— q — a — p — q, so p = p , as required.

The following corollary examines even linkage between curves C — C(l, α, d)

and C * = C M * - / , / - 1, rf*).

COROLLARY 6.1. Let C ( l , α, 6) be α not C-M curve such that d> a + 1. // C

and C — C(d — a , d — 1, d ) are in the same even linkage class, then a =

a — p -\- q -\- 1 — p + q + 1 , where d = pa + qy 0 < q < a, and d —pa

+ q*, 0 < q* < a*.

Proof. By Theorem 5.1, a~ 2 = HO = HC*) = α* - 2, thus a = a*.

To prove pΛ-q+l^a — a — p + q + 1 let S denote the associated

semigroup of C . As in the proof of Proposition 6.2, there is a uniquely defined

element/^ (S )'\S such t h a t / has the minimal degree and xof
= 0. (Note that

for I(C ) one needs to permute the variables x0 <-* x3, xλ ^ x2.) Let e ^ S '\ S be

the image of / in the isomorphism M(C) = M(C*)(n). Then ^ e [SΛS]^, the

^-degree component, and xoe = 0. If [S'XS]^ has only one element, then by the

proof of Proposition 6.2, the smallest integer m such that x™e — 0 ^ M(C) is

a — p — q. Thus 1 = α — /> — q. By symmetry α = /> + q + 1 — a. We will

show next, that the above is the only possible case. Suppose therefore that

[S'VS]^ and [(S )'\{S )]p* have at least two elements. Then, by Lemma 5.1 (or

by the algorithm [BR]), p — p = 1. Since xQe = 0, i.e. t0 + e ^ S, from Lemma

5.1 and Lemma 2.1 we get that e = ((1 + β) (d — α), a — βq) and a — βq = 2.

Note that C( l , a, d ) and CW — tf, d — 1, d) are also in the same even linkage

class. Hence, as before, a — β q —2. Again by Lemma 5.1, /3 and β equal the
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number of elements in [ S ' \ S ] i and [(S )'\(S ) ] υ respectively. Therefore β =

β* > 2, which implies q = q*. By the proof of Proposition 6.2, xζ~p ~q ~ι f' Φ 0,

hence xζ~q~ e Φ 0, i.e. {a — q — 2)t3 + e £ S. By Lemma 2.1 this implies β + 1

> a — q — 1, or equivalently 0 > (β — \){q — 1) (since a = βq + 2). But this is

impossible since β > 2 and # > 1 by our initial assumption d > a + 1. This

contradiction finishes the proof.

Remark 6.2. (i) An easy example shows that it is possible to have d—d or

d Φ d and C( l , #, rf) and C(rf — a , d — 1, d ) be in the same even linkage

class.

(ii) It is shown in [BSV] and [H] that for k < 2 each linkage class of strictly

λ -Buchsbaum monomial curves contains a curve C(l , a, d). That this is not true

for all nonnegative integers k was shown by M. Morales in [Mo]. We therefore

conclude our paper with the following open problem: Determine all linkage classes

of monomial curves in Pκ which contain a representative C(l , a, d) or C(d — a,

d — 1, d) and determine the integer a for these linkage classes.
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