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In (3) Tutte showed that the order of a regular graph of degree d and even 
girth g > 4 is greater than or equal to 

0/2-1 

2L (d-iy. 
0 

Here the girth of a graph is the length of the shortest circuit. It was shown in 
(2) that this lower bound cannot be attained for regular graphs of degree > 2 
for g 9e 6, 8, or 12. When this lower bound is attained, the graph is called 
minimal. In a group-theoretic setting a similar situation arose and it was 
noticed by Gleason that minimal regular graphs of girth 12 could be constructed 
from certain groups. Here we construct these graphs making only incidental use 
of group theory. Also we give what is believed to be an easier construction of 
minimal regular graphs of girth 8 than is given in (2). These results are con­
tained in the following two theorems. 

THEOREM 1. Let Q* be a non-degenerate quadric surface in projective espace 
P(4, q). Define G& to be the graph whose nodes are the points and lines of Q±, two 
nodes being joined if and only if they correspond to an incident point-line pair 
in Q4. Then G g is a minimal regular graph of degree q + 1 and girth 8. 

THEOREM 2. Let Q& be the quadric surface in P(6, q) given by 

Xo2 + Xi X-i + %2 X-2 + Xz X-z — 0. 

For each point x in QQ, distinguish the lines in Q§ incident with x and points y 
satisfying 

x0 yt — xt y0 + x-j y-k — x-k y-j = 0 
where (i,jfk) is a cyclic even permutation of (1,2,3) or (—1, —2, —3) and 
where x = (xz), y — (y^, — 3 < i < 3. As in Theorem 1, define G12 to be the 
graph whose nodes are the points of Q6 and the lines of Q% distinguished above. 
Then Gnis a minimal regular graph of degree q + 1 and girth 12. 

To prove Theorem 1, we select the non-degenerate quadric surface Q4 given 
by 
(1) Xo2 + Xi X-i + X2 X-2 = 0 

where x in Q4 is given by (xt) — 2 < i < 2. Actually we could have chosen any 
non-degenerate quadric surface in P(4, q) since they are all essentially equiva­
lent; cf. (1). 

LEMMA 1. No set of points and lines in Q4 form a triangle. 
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It is well known that the automorphism group of QA is transitive on the 
lines of QA', cf. (1). Therefore it is sufficient to show that the line L consisting 
of points of the form (Â, /x, 0, 0, 0) does not occur on any triangle whose points 
and lines are in QA. But to show this, it is sufficient to show that for a point y in 
QA not on L, there is exactly one line in QA through y which meets L. Now the 
points x in QA that are on lines of QA through y will lie on the tangent hyperplane 
of QA through y; i.e. they will satisfy (1) and 

(2) 2yQ x0 + yi x_i + y_i xi + y2 X-2 + y~2 x2 = 0. 

If x is on L, (2) becomes 

(3) yifx + y2\ = 0 

for which there is exactly one solution in P(4, q) unless 3̂1 = 3̂2 = 0. But in 
this case ^0 = 0 since y is in QA and thus y lies on L. 

To complete the proof of Theorem 1, we notice that since G8 corresponds 
to alternate points and lines of QA, the girth of Gs is > 6 . Now the girth is not 6 
since a circuit of length 6 in G s would correspond to a triangle in QA. It is well 
known that there are q + 1 lines of QA through each point of QA and that all 
together there are 1 + q + q2 + qz points and 1 + q + q2 + qz lines in QA. 
Thus the lower bound for a regular graph of degree q + 1 and girth 8 is attained 
by Gs and its girth is therefore < 8 and the proof is complete. 

To prove Theorem 2, we first note that points y on lines of Q$ incident with a 
point x in QQ lie on the tangent hyperplane to Q$ through x and thus satisfy 

(4) 2x0 y0 + xi y-i + x-i yx + x2 y~2 + x_2 y2 + x_3 y-z = 0. 

Therefore, the distinguished lines through x satisfy (4) and the six bilinear 
equations given in Theorem 2. 

LEMMA 2. Every point in QG has q + 1 distinguished lines through it. Further­
more points in Q& that correspond to nodes of distance < 8 in G\2jrom x in QQ are 
precisely the points of Q$ that satisfy (4). 

It is known that the group which preserves (4) and the six bilinear 
equations of Theorem 2 is transitive on the points of QQ and the distinguished 
lines of Qe. Therefore it is sufficient to prove the lemma forx = (1,0,0, 0, 0, 0, 0). 
In this case (4) and the six bilinear equations become 

(5) y-2 = 0, 3̂ -1 = 0, y0 = 0, 3/3 = 0, 

which represent a plane lying in Q6. Therefore x has q + 1 distinguished lines 
through it. To complete the proof of Lemma 2 we compute the points z on 
distinguished lines through points (>6 satisfying (5). These points satisfy 

y1 2_i + y2 z-2 + y-z zz = 0, 
3>1 So + y-Z 2-2 = 0 , 

/fiv yi zo — y~z z-i = 0, 
w yi zz = 0 , 

y2zz = 0, 
3>_3 z0 — y 1 z2 + y2 zx = 0, 
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which implies that s3 = 0 unless yx = y2 = 0, in which case z = x and again 
Zz = 0. But Zz = 0 represents the tangent hyperplane to Q§ through x. Con­
versely, if z is a point of QQ satisfying zz = 0, it will correspond to a node of 
distance < 8 from x if (6) can be solved for y satisfying (5). The determinant 
of the second, third, and sixth equation of (6) is z0(zo2 + Z\ z_i + z2 £-2) = 0 
since z is in Q&. Thus a solution may be found to these equations and if Zo ^ 0 
it may be verified directly that the first equation of (6) is also satisfied. Now 
if So = 0, (6) becomes 

/ 7 N J\ 2-1 + J2 Z_2 = 0, 

—y\z2 + y2zi = 0 

and the determinant of this system is s_i zi + 2_2 s2 = 0, so again a solution 
for y may be found. Thus Lemma 2 is proved. 

To complete the proof of Theorem 2, we note by (5) that the line L given 
by points of the form (X, 0, 0, 0, /x, 0, 0) is a distinguished line. The points x in 
QQ which correspond to nodes of distance < 8 from points on L satisfy 

(8) xo2 + xi + x2 X-2 + x3 x-z = 0, Xx3 + M^-I = 0 

since the last equation in (8) represents the points in the tangent hyperplane 
through (X, 0, 0, 0, /x, 0, 0). But this equation can always be solved for X and /1. 
Thus every point in QQ corresponds to a node in Gu of distance < 8 from 
some point on L. We thus have the situation shown in Figure 1, which illus­
trates the case q = 2. 

FIGURE 1. 

All the points shown are different since there are (q + 1)(1 + g2 + q4) 
points in Q% and if any two points in Figure 1 were the same, there would be 
less than this number of points in Q&. Now it is clear that L could not correspond 
to a node of Gi2 contained in a circuit length <12 since this would make at 
least two of the points in Figure 1 equal. By transitivity, the same is true for 
any other distinguished line in G\2 and the girth of G\2 is >12. However, the 
lower bound for the order of a graph of degree q + 1 and girth 12 is attained 
by G12 so the girth actually is equal to 12. The proofs of Theorems 1 and 2 
could be carried out without using the transitivity of the groups involved, but 
the algebra would be more complicated. 
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