Effect of selenium deficiency on hydroperoxide-stimulated release of glutathione from isolated perfused liver of rainbow trout
(Salmo gairdneri)

BY J. G. BELL, J. W. ADRON AND C. B. COWEY

NERC Institute of Marine Biochemistry, St Fittick's Road, Aberdeen AB1 3RA

(Received 2 December 1985 – Accepted 10 April 1986)

1. Duplicate groups of rainbow trout (Salmo gairdneri) were each given partially purified diets which were either adequate or depleted in selenium for 40 weeks.

2. Although there was no significant difference in weight gain, liver Se concentration was significantly lower in fish given the deficient diet.

3. Glutathione (GSH) peroxidase (EC 1.11.1.9) activity was significantly reduced in liver of Se-deficient fish but a differential assay did not indicate the presence of a non-Se-dependent GSH peroxidase activity, although liver GSH S-transferase (EC 2.5.1.18) was significantly increased.

4. Perfusion of livers from trout given Se-adequate diets with t-butyl hydroperoxide (BuOOH) or hydrogen peroxide caused an increase in the rate of release of glutathione disulphide (GSSG) into the perfusate.

5. Perfusion of livers from Se-deficient trout with BuOOH or H_2O_2 did not result in any change in rate of release of GSSG into the perfusate.

6. These findings confirm the absence of any compensatory non-Se-dependent peroxidase activity in Se-depleted trout.

Selenium deficiency in mammals is known to increase the activity of the glutathione S-transferase (EC 2.5.1.18) group of enzymes (Lawrence et al. 1978). A number of these enzymes also possess peroxidase activity (the so-called Se-independent glutathione peroxidase activity; Prohaska & Ganther, 1977) with organic hydroperoxides but not with hydrogen peroxide. This activity is maintained in Se deficiency. In mammals this system is thought to protect against oxidative damage when Se-dependent glutathione (GSH) peroxidase (EC 1.11.1.9) is depleted during Se deficiency.

In rainbow trout (Salmo gairdneri) which have been depleted of Se there is no detectable Se-independent GSH peroxidase activity, although liver GSH S-transferase activity showed a marked increase (Bell et al. 1986b). Semi-purified trout liver GSH S-transferase has also been shown to inhibit the production of malondialdehyde in an in vitro microsomal lipid peroxidation system (Bell et al. 1984).

The present investigation was performed in order to identify further the role of GSH S-transferase in preventing lipid peroxidation in rainbow trout liver.

Perfusion of livers from control and Se-deficient rats with media containing organic hydroperoxides or H_2O_2 have clarified and confirmed the function of the Se-dependent and Se-independent GSH peroxidases in hydroperoxide metabolism. In control animals glutathione disulphide (GSSG) efflux from the liver increased in response to administration of either t-butyl hydroperoxide (BuOOH) or H_2O_2 used independently; by contrast, in Se-deficient animals, GSSG efflux only increased when an organic hydroperoxide was perfused (Burk et al. 1979). However, in studies involving isolated perfused rat heart (Xia et al. 1985) from Se-deficient animals, no GSSG efflux was observed on perfusion with BuOOH indicating that GSH-dependent hydroperoxide metabolism does not occur in the Se-deficient rat heart.

In the present study with rainbow trout we have studied GSH-dependent hydroperoxide metabolism in control and Se-deficient isolated perfused livers in an attempt to characterize
the antioxidant processes occurring in rainbow trout and to assess impairment due to Se
deficiency. A preliminary account of this work has been given (Bell et al. 1986a).

MATERIALS AND METHODS

Animals and diets
Rainbow trout were obtained from Selcoth Fisheries, Moffat, Scotland; they had a mean
weight of approximately 27 g and they were randomly distributed (thirty fish/tank)
between four fibre glass tanks of diameter 1 m and depth 0·6 m, and containing 500 litres
of water. The water, from Aberdeen city domestic supply, passed through an activated
charcoal filter to the tanks with a total flow to each tank of 10 litres/min. The ambient
temperature in the aquarium room averaged 15° and the photoperiod was 12 h light–12 h
dark.

The fish were weaned from a commercial diet to the basal diet (Se-deficient) (Bell et al.
1986b) and about 1 week later initial weight measurements were made on individual fish
which had been anaesthetized with MS222 (ethyl m-aminobenzoate methane sulphonate;
Sigma Chemical Co. Ltd, Poole, Dorset; 0·2 g/l). Fish were fed at a rate of 20 g/kg biomass
per d (the diet being given four or five times per day), 6 d each week. Any food uneaten
from the daily ration was weighed and recorded. Fish were weighed at 28 d intervals and
the ration adjusted accordingly. The growth experiment lasted 30 weeks. Thereafter fish
continued to be fed at the same rate for a further 30 weeks when they had attained a size
suitable for liver perfusion, i.e. about 400 g.

The basal diet (Se-deficient) contained Torula yeast and was designed to meet the
The basal diet formulation (Table 1) and preparation were as described previously (Bell
et al. 1986b). The control diet (Se-supplemented) had Se added as sodium selenite to
1 mg/kg. The basal diet contained 0·025 (SE 0·004) mg Se/kg and 0·63 (SE 0·06) g vitamin
E/kg. The aquarium water contained 0·035 pg Se/l. Each of the two diets was given to
duplicate groups (tanks) of fish. Feed : gain values were calculated at each weighing on a
per tank basis as total diet consumed : total increase in biomass.

Liver perfusion
Rainbow trout were anaesthetized with MS222 and injected with 100 units lithium heparin
(in isotonic saline (9 g sodium chloride/l)) via the caudal vein. After 15 min the fish were
killed by a blow to the head. The liver was cannulated via the hepatic portal vein (Portex
green luer 2FG; Portex Ltd, Hythe) then rapidly excised and mounted on a recirculating
perfusion apparatus similar to that described by Hayashi & Ooshiro (1975). The average
liver weight was 7·43 (SE 0·83) g. The perfusion medium, which was a glucose-free Hanks
medium, pH 7·4, contained: 112 mM-NaCl, 4·2 mM-potassium chloride, 0·1 mM-ammonium
sulphate, 26·2 mM-sodium bicarbonate, 1·0 mM-disodium hydrogenphosphate, 1·3 mM-
calcium chloride, 1·2 mM-magnesium sulphate, 2·1 mM-lactic acid, 0·3 mM-pyruvic acid,
5 mM-HEPES, 0·17 mM-histidine, 0·07 mM-aspartic acid, 0·12 mM-glutamic acid. It was
perfused at a rate of 1·3 ml/g per min and at a temperature of 20 ± 2°. The medium was
continuously oxygenated with oxygen–carbon dioxide (95:5, v/v). After an initial 15 min
perfusion where effluent was allowed to run to waste, recirculation was started and the
volume of perfusion medium adjusted to 50 ml. After a further 10 min perfusion the zero
time sample (0·6 ml) was taken and after 10 min the medium was made either 1 mM in
BuOOH or 2 mM in H2O2 by addition to the media reservoir. Samples (0·6 ml) were
collected post aerator every 10 min up to 90 min and were assayed for total glutathione
(GSH+GSSG), hydroperoxide content and lactate dehydrogenase (EC 1.1.1.27)
activity.
Glutathione efflux from perfused trout liver

Table 1. Composition of basal diet (g/kg dry diet)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>g/kg dry diet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torula yeast</td>
<td>350</td>
</tr>
<tr>
<td>Cod liver oil*</td>
<td>100</td>
</tr>
<tr>
<td>Vitamin mix†</td>
<td>28</td>
</tr>
<tr>
<td>Mineral mix‡</td>
<td>40</td>
</tr>
<tr>
<td>Starch</td>
<td>157.1</td>
</tr>
<tr>
<td>Antioxidant mix§</td>
<td>0.4</td>
</tr>
<tr>
<td>Amino acid mixture†</td>
<td>324.5</td>
</tr>
</tbody>
</table>

* Super Solvitax; British Cod Liver Oils Ltd, Hull.
† Supplied (g/kg diet): thiamin hydrochloride 50 mg, riboflavin 200 mg, pyridoxine hydrochloride 50 mg, nicotinic acid 750 mg, calcium pantothenate 500 mg, myo-inositol 2 g, biotin 5 mg, folic acid 15 mg, choline bitartrate 9 g, ascorbic acid 1 g, menaphthone 40 mg, cyanocobalamin 0.09 mg, dl-a-tocopheryl acetate 400 mg.
‡ Supplied (g/kg diet): Ca(H,PO,)₂. H₂O 27-6, MgCO₃ 3-6, FeSO₄, 3H₂O 0·5-2, KCl 2·0, NaCl 3·2, Al₂(SO₄)₃. 16H₂O 0·008, ZnSO₄. 7H₂O 0·16, CuSO₄. 5H₂O 0·04, MnSO₄. 4H₂O 0·14, KI 0·008, CoSO₄ 0·04.
§ Contained (g/l): 200 butylated hydroxyanisole, 60 propyl gallate and 40 citric acid dissolved in propylene glycol.
†† Supplied (g/kg diet): lysine 32, histidine 12·2, arginine 21·6, threonine 14·6, valine 15·8, methionine 6, isoleucine 13·6, leucine 28·3, phenylalanine 13·2, tryptophan 4·3, aspartic acid 32·1, serine 15·9, glutamic acid 50, proline 12·2, glycine 14·9, alanine 21·7, tyrosine 11·3, cystine 4·8.

Analytical methods

Total glutathione (GSH + GSSG) in the perfusate was determined by the glutathione reductase-DTNB (5,5′-dithiobis-(2-nitrobenzoic acid)) recirculating assay described by Oshino & Chance (1977). GSSG was determined by measuring NADPH oxidation in the presence of glutathione reductase (NAD(P)H) (EC 1.6.4.2) as described by Sies & Summer (1975). Se in tissues and aquarium water was measured by the method of Hasunuma et al. (1982). GSH peroxidase was measured by following the rate of oxidation of NADPH at 340 nm in the coupled reaction with GSH reductase as described by Bell et al. (1986b) and GSH S-transferase activity was assayed by following the conjugation of 1-chloro-2,4-dinitro-benzene with GSH at 340 nm (Habig et al. 1974). Lactate dehydrogenase in the perfusate was measured by following the oxidation of NADH at 340 nm as described by Lush et al. (1969). The assay contained (final concentrations): 87 mM-potassium phosphate buffer, pH 7-4, 0·09 mM-sodium pyruvate and 0·15 mM-NADH. The reaction was started by addition of up to 0·2 ml of enzyme source. Per fusate hydroperoxide was measured by the method described by Cathcart et al. (1983).

Statistical analysis

The initial and final weight measurements on the trout in all four tanks were examined by analysis of variance as described by Bell et al. (1980b).

RESULTS

Initial and final weights of trout given the two diets are shown in Table 1 and there were no significant differences in weight gain in any of the tanks.

Se concentrations in liver were very markedly reduced in trout fed on the Se-deficient diet (Table 2) and reflecting this liver GSH peroxidase activity was similarly reduced (Table 2). The differential assay performed with either H₂O₂ or organic hydroperoxide did not provide convincing evidence for the appearance of a non-Se-dependent GSH peroxidase as a result of Se deficiency, although there was a significant increase in liver GSH S-transferase activity (Table 2).
Table 2 Weight gain values, liver selenium and some liver enzyme activities in rainbow trout (Salmo gairdneri) fed on diets either supplemented or deficient in Se

(Mean values with their standard errors)

<table>
<thead>
<tr>
<th>Diet...</th>
<th>−Se</th>
<th>+Se</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean</td>
<td>SE</td>
</tr>
<tr>
<td>Initial wt (g)</td>
<td>25.70</td>
<td>1.24</td>
</tr>
<tr>
<td>Final wt (g)</td>
<td>144.46</td>
<td>8.47</td>
</tr>
<tr>
<td>Feed gain</td>
<td>1.71</td>
<td>1.61</td>
</tr>
<tr>
<td>Liver Se (µg/g wet tissue)</td>
<td>26.57</td>
<td>2.01</td>
</tr>
<tr>
<td>Liver GSH peroxidase (EC 1.11.1.9) Hydrogen peroxide substrate*</td>
<td>0.122</td>
<td>0.019</td>
</tr>
<tr>
<td>Cumene hydroperoxide substrate†</td>
<td>2.50</td>
<td>0.68</td>
</tr>
<tr>
<td>Liver GSH S-transferase (EC 2.5.1.13)$</td>
<td>5.05</td>
<td>0.85</td>
</tr>
</tbody>
</table>

A and B are duplicate tanks, C and D are duplicate tanks.
* nmol NADPH oxidized/min per mg protein, 0.25 mM- H₂O₂ substrate.
† nmol NADPH oxidized/min per mg protein, 1.5 mM-cumene hydroperoxide substrate.
$ pmol thioester bond formed/min per mg protein.

Fig. 1. Glutathione disulphide release (glutathione (GSH) equivalents) from isolated perfused liver of rainbow trout (Salmo gairdneri) fed on a control diet in the presence (●) or absence (○) of 1 mM-t-butyl hydroperoxide (BuOOH). Points are mean values, with their standard errors represented by vertical bars, from three livers.
Glutathione efflux from perfused trout liver

Fig. 2. Uptake of t-butyl hydroperoxide (BuOOH) by isolated perfused liver of rainbow trout (*Salmo gairdneri*) fed on a control diet. Points are mean values, with their standard errors represented by vertical bars, from three livers.

Fig. 3. Glutathione disulphide release (glutathione (GSH) equivalents) from isolated perfused liver of rainbow trout (*Salmo gairdneri*) fed on a selenium-deficient diet: effect of addition of t-butyl hydroperoxide (BuOOH) to the perfusion medium. Points are mean values, with their standard errors represented by vertical bars, from three livers.

Fig. 1 shows the effect of infusing BuOOH into a control liver. Although the assay employed measured 'GSH equivalents' (i.e. total GSH) the nature of GSH released on perfusion of hydroperoxide was found to be entirely as the disulphide. After a short lag-period release of GSSG into the perfusate proceeded at a steady rate for 50 min, thereafter there was some reduction in rate of GSSG release. The slowing down of GSSG release occurred when approximately 95% of the BuOOH had been removed from the perfusion medium (see Fig. 2). No major cell damage occurred over this period since lactate dehydrogenase measurements indicated only a small rise in this activity over the 90 min
Glutathione disulphide release (glutathione (GSH) equivalents) from isolated perfused liver of rainbow trout (*Salmo gairdneri*) fed on a control diet (▲—▲) or a selenium-deficient diet (△—△) when hydrogen peroxide was added to the perfusion medium. In the control fish, points are mean values, with their standard errors represented by vertical bars, from three livers. In Se-deficient fish points are mean values from two livers. The third Se-deficient liver showed high initial lactate dehydrogenase (*EC 1.1.1.27*) release which increased fourfold over 90 min. The values from this experiment were not used here.

period (results not shown). Release of GSSG from a control liver perfused in the absence of BuOOH was very low (Fig. 1).

When livers from Se-deficient trout were perfused with BuOOH no increase in GSSG release was observed (Fig. 3), although the initial levels of GSSG in the perfusion medium appeared greater than in control fish (Fig. 1). BuOOH was taken up by Se-deficient liver (results not shown) with a profile similar to that seen in control fish (Fig. 2) but this was not followed by a GSH-dependent metabolism of BuOOH as occurred in the control liver.

When H$_2$O$_2$ was added to the medium perfusing control livers there was an increased release of GSSG into the perfusate (Fig. 4) but this efflux levelled off after about 30 min. Infusion of H$_2$O$_2$, as with BuOOH, failed to cause a release of GSSG when Se-deficient livers were used.

Discussion

The presence of non-Se-dependent GSH peroxidase activity has been confirmed in the tissues of a number of different species (Lawrence & Burk, 1978). This activity has been attributed to one or more of the GSH S-transferase enzymes identified in rat liver (Meyer *et al.* 1985). In the present study Se-deficient rainbow trout showed an increased hepatic GSH S-transferase activity similar to that in Se-deficient rats (Lawrence *et al.* 1978), although this was not reflected in an increased GSH peroxidase activity as measured by differential assay. The ability of Se-deficient rat liver to undergo GSH-dependent metabolism of organic hydroperoxides has been confirmed in studies with isolated perfused preparations (Sies & Summer, 1975; Burk *et al.* 1978). In perfused liver of Se-deficient rainbow trout, however, no release of GSSG into the perfusing medium occurred when either H$_2$O$_2$ or BuOOH were added to the system. This result, which contrasts with that in normal control trout, confirms the enzyme findings in that no compensatory increase of non-Se-dependent...
GSH peroxidase activity is present when GSH peroxidase activity is reduced due to Se deficiency.

Although the infusion of H₂O₂ into control livers produced an increased GSSG release into the perfusate the duration of release was shorter and the maximum concentration reached was lower than that with BuOOH (Fig. 4). A similar effect was noted by Sies & Summer (1975) and was thought to be due to the intervention of catalase (EC 1.11.1.6) acting to remove H₂O₂, so preventing its reduction by GSH peroxidase.

In some Se-deficient livers, particularly those perfused with BuOOH, a relatively high resting state release of GSSG was observed. This effect had been described previously in rat liver (Burk et al. 1978) and had been suggested as an indication of a higher incipient rate of lipid peroxidation occurring in Se-deficient liver (Nishiki et al. 1976).

The differences between trout and mammalian GSH S-transferases that affect their ability to act as a GSH-peroxidase are not clear. Possibly the Se-deficiency in trout is not severe enough to induce an increased production of the relevant GSH S-transferase. This may be due to the ability of fish to remove small amounts of Se from the water thus alleviating dietary Se deficiency. The GSH S-transferases of rainbow trout liver have not been as clearly characterized as those from rat but a number of differences have been shown to exist (Nimmo & Clapp, 1979; Nimmo et al. 1981) which could infer differing abilities to metabolize hydroperoxides. Indeed of the three GSH S-transferases shown to be induced by Se deficiency in rat liver (Mehlert & Diplock, 1985) only one has been found in trout liver (Nimmo et al. 1981).

If GSH S-transferase(s) are able to conjugate hydroperoxides (or intermediates involved in their formation) as they do other xenobiotics (Spearman et al. 1985) this would explain the capacity of these enzymes to inhibit malondialdehyde formation in the in vitro microsomal peroxidation system. Further investigations involving the GSH S-transferases and Se-deficiency may help to elucidate the role of GSH-metabolizing enzymes in the antioxidant protective mechanisms present in salmonid fishes.

These experiments help to verify previous observations with Se-deficient rainbow trout, namely that although hepatic GSH S-transferase activity increases in Se deficiency and although this will inhibit lipid peroxidation (as for example in in vitro systems) it does not do so by conventional peroxidase activity.

REFERENCES

Printed in Great Britain