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SOME THEOREMS ON STRONG NÔRLUND 
SUMMABILITY 

BY 

FRANK P. CASS 

1. Preliminaries. Throughout this paper H, Hl9 etc. will denote positive con­
stants which will not necessarily be the same at different occurrences. 

If 2^=o #n is a series, we shall use the notation ^n = 2?=o #r- For a real, define 

« _ i « _ ( « + l ) ( t t + 2 ) . . . ( « + yi) ( _ - - . 

Let {/?n} be a sequence with p0 > 0 and /?n > 0 for n > 0. Define 

r = 0 

The following identities are immediate: 

n 

r=0 

n 
P a = na+1 = y na-rn — Fn Z* Pr > 

r = 0 
where 

r = 0 

DEFINITION 1. Nôrlund summability (N,p%). 
For a> - 1 and a series 2£=o n̂> let 

(1.1) tf» = (1/^) 2 /« -A. 
r = 0 

If 4a) ->• «y as « -> oo, we write 
00 

\24an = s(N,pl) or sn-+s(N,p£). 
n = 0 

DEFINITION 2. Strong Nôrlund summability [N,p%+1]\-
For « > - l and A>0, we say that the series 2"-o«n is strongly summable 

(N9Pn+1) with index X to sit 

(1.2) 2 P?+1Wa)-s\x = o(P%+1) as «^oo ; 
r = 0 
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and we write 

ffin-WPi*1]* or sn->s[N9p°+1]h. 
n = 0 

This definition of strong Nôrlund summability was first given by Borwein and 
Cass [2], where it is investigated in some detail. 

If we take p0 = l and pn = 0 for n>0, then Definition 1 yields the standard 
definition of Cesàro summability of order a; while Definition 2 yields a definition 
of strong Cesàro summability of order a + 1 and index A. That this definition is 
equivalent to the standard definition of strong Cesàro summability of order a + 1 
is proved in Borwein and Cass [2, p. 99]. We denote strong Cesàro summability 
of order a +1 and index À by [C, a+ 1]A. 

2. Known results and statement of new theorems. The following three theorems 
concerning strong Cesàro summability have been established by Flett [5, see 
Theorems 2 and 3]. See also Borwein [1, Theorems 10, 11, and Corollary (V)]. 

(I) Ifa> — 1, A> 1 and S> 1/A, then 2£=o dn = s[C, a+ 1]A implies that 

f an = s(C,a + 8). 
n=0 

(II) Ifa> — 1, ii> A> 1 and 8> 1/A- l//x, then 2®«o «n=^[C, «+ 1]A implies that 

f an = ^[C,a+8 + l],. 
n = 0 

(III) If a > - l , / x>A>l and S = 1/A - 1 / ^ , ffe« 2£= o ûfn= [̂C, a +1 ]A implies that 

2 an = s[C,a+S + l]„. 
n = 0 

The purpose of this paper is to extend these theorems to include certain other 
families of Norlund summability methods. We establish three theorems which 
include as special cases the above theorems concerning Cesàro summability. 

The technique employed in the proofs of our theorems requires some restriction 
on the sequence {P£}. We shall impose the following condition: 

For each I > — 1 there are positive constants Hx and H2 (which may depend on 
£ but not on n) such that 

(2.1) Hxtf < PilPn < Hjfi, 

for n sufficiently large. In case of (2.1) we see that for £> — 1 and 8>0 

(2.2) Hxn
ô < Pi+Ô/Pi < H2n\ 

for n sufficiently large. We make frequent but tacit use of inequality (2.2) in the 
proofs of our theorems. 
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That (2.1) does not hold in general can be seen by taking Pn—e"Jn\ for in this 
case Pl~2Vn e^, so Pi/Pn~2Vn. It is satisfied, however, by a reasonably large 
class of sequences; in fact if the sequence {Pn} satisfies P2n=

zO(Pn) and pJPn 

= 0(l/«), it also satisfies (2.1) for £> - 1 . 
In Theorem 3 we impose the further condition "(C, 1) is equivalent to (N,P%) 

for — l<a<0"(1)- In the presence of (2.1), it is a consequence of Hardy [7, 
Theorem 14] that (C, 1) and (N, P%) are equivalent for a>0. Under these circum­
stances 

| an = s[N,p«n+\ 
n = 0 

if and only if 
m 

(2.3) 2 |4a)-*r = o(»0-
n = 0 

This casts the condition of strong Nôrlund summability into a form receptive to 
an application of the deep but special inequality of Hardy Littlewood and Polya 
which we state as our Lemma 2 below. In view of the standard definition of strong 
Cesàro summability (see for example Borwein [1]), it may appear that (2.3) would 
give an appropriate definition of strong Nôrlund summability; however an ex­
amination of Borwein and Cass ([2], [3]), particularly of Theorems 1 and 6 in [2], 
shows that using the weighted mean in place of the arithmetic mean yields a much 
more satisfactory theory. 

The statements of our theorems follow. 
Suppose throughout that {pn} is a sequence with p0 > 0 and pn > 0 for n > 0. 

THEOREM 1. If a>-l, A>1, S> 1/A and (2.1) holds for £> - 1 ; then 2*=o«n 
=s[N,Pr1)* implies that 2n

œ
=0 an=s(N9p

a
n+

ô). 

THEOREM 2. If a> — 1, p> A > 1, S > 1/À— 1/ft and (2.1) holds for £ > — 1 ; then 
X°=o an=s[N,pa

n+\ implies that 2? . 0 an=s[N9p«n
+ô+1]». 

THEOREM 3. 7/>>A>l, S = l/A—1//*, (2.1) holds for £> - 1 and either a>0, or 
— l < a < 0 and (C, 1) is equivalent to (N,P%); then 2^°=o^n=^[^/?ï+1]A implies 
thatZ?m0an=s[N,pii+'+1ll. 

3. Proofs of theorems. 
Proof of Theorem 1. If 8>1 or A=l, the result follows without (2.1) from 

Theorems 11 and 13 of [2]. We now suppose that 0< S< 1 and note that it is suffi­
cient to prove our theorem for the case s=0. We are given 

2 Pf\tf>\x = o(Pi+1) asw->oo 
V = 0 

O Two methods of summability are equivalent if every series summable by the one method 
is summable to the same sum by the other method. For the definition of the method (ÏÏ, pn) 
see Hardy [7, p. 57]. Necessary and sufficient conditions for inclusion or equivalence between 
(N, pn) means are given by Garabedian and Randels [6]. 
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and are required to show that t(n+ô) = o(l) as n ->oo. 
Now 

Ka+d)| <{i/Prô} Î 4-i/\al'H. 
V = 0 

Applying Holder's inequality, we find that 

{ n "\ 1/A ( n "\ 1/A' 

where 1/A+1/A' = 1. Now S> 1/A yields (8-l)A'> - 1 , giving 

so 

Ka+a)i = o({\/prô}{prTA{ï^ 
and finally applying (2.1) we find that 

t(n+ô) = o(l) as « ->oo, as required. 

Proof of theorem 2. If 8> 1, the result follows without (2.1) from Theorems 12, 
13 and 15 in [2]. We suppose now that 0<S<1 and note that it is sufficient to 
prove our theorem for the case s = 0. We are given 

2 Pv |4a)lA = o(PZ+1) as n ->oo, 
V = 0 

and we must prove that 

2 PVÔ |4a+<T = o(P5+ô+1) as w-*oo. 
V = 0 

Now 

{prô\t(rô)\} < {l/n~-lvP* m} 

= {vi (^lîr^e^îr1-1^^)1^^)1-1^!^!} 

where l/p=l + l//x—1/A. Applying Holder's inequality in the indicated manner 
with index A we obtain 

{Pan + Ô\t(na + Ô)\}X < { J ; o ( 4 - î ) ^ ^ ^ 

since 8 > 1/A— I//*, which is the same asp(S— 1)> — 1, giving 
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Therefore 

Now applying Holder's inequality with index /*/A we find 

( n ^ M/A - 1 

Now using (2.1) and the fact that sn -> 0[N9p%+1]A we see 

P«+« | t f +»|n = o(£ |o(€Îi îyP? |4«|^a-«xp-i)J = <> n̂) say. 

From this order relation and the Toeplitz theorem (see, for example, Hardy [7, 
Theorem 2]) applied to the matrix [cm,n] with 

/

m 
2 <f>r(

2) for 0 < n < m 
r = 0 

and 
Cm.n = 0 for n > m; 

then using the fact that {n(1"d)(p~1)} is monotonie nondecreasing we obtain 

t Pn
a+* | # + T = oint1-**-» 2 2 A* |4a)IMd-v1)p) 

n = 0 \ n = 0 v = 0 / 

\ v=0 n=v / 

= o(ma~6Xp~1)+p(ô~1)+1Pa+1) 

since /?(S -1) +1 > 0. Thus 
m 

(1/Prd + 1) 2 Pn + Ô W + T = 0(m(1-a)(p-1) + p(d"1) + 1-0) = 0(1) 
n = 0 

as required. 
Before proving Theorem 3, we state two lemmas. 

LEMMA 1. Let 0<fK 1, let sn>0 for all n, tn==(n + l)~1J4
1i=0sv and / = supfn, 

then 

2 (v+l)-% < tffa + l)1-"/. 
v = 0 

If further, tn=o(l)9 then 
n 

2 (v+l)~% = ofa1""") as «-»oo. 
v = 0 

This follows easily by partial summation. 

(2) Note that if </>n is identically zero, then so is tf+<5) so there is nothing to prove. 
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The next lemma is due to Hardy, Littlewood, and Pôlya. See [9], [8, Theorem 4], 
[10, Theorems 381, 382, and 383]. 

LEMMA 2. 7/"l<A</x<oo, S = l/A-l//z, cn>0, Cn = J4V<n(n-v)ô-1cv, then 

{2c»y»<H&cW\ 

Proof of Theorem 3. We may suppose as before that 0<S< 1 and that s=0. 
Since, when a>0 it follows from Hardy [7, Theorem 14] that (C, 1) and (N, P%) 
are equivalent, it is sufficient to show that if 

then 

Now 

2 |#T = o(m), 
n = 0 

f |4a+T = o{m). 
n = 0 

l#+a)i < (MPV6) 2 4-\p$ \tr\ 
V=0 

< iVPV) 2 4-lP? I'H 
0£V£n/2 

+(i/i,ra) 2 4^PvaKa)l+^K°W+d 

n/2 £ v < n 

= ô n + ^ n + ^ n S a y . 

Thus, applying Minkowski's inequality, to complete the proof we have to show 
that 

( n 2 o ^ j = o(m1/w) 

in each of the cases where Wn is replaced by Qn, Rn, or Sn. 

Qn < (Hle° + ÔPn) 2 <~^ m ^ 

s^ l f 2 «î I*9! < -gi 2 -î I'H 
*n OSvsn/2 e n v = 0 

sffi|(i/6ï+1) 2o«?|/?TJ 

by Holder's inequality. So by Hardy [7, Theorem 14], Qn=o(l). Thus 

| n 2 o fis) = Km1'»). 
Now 

*„ < (H/4+ôPn) 2 «2-Î€tf\ |4a)| 
n /2£v<n 

^ i / 2 (»-")*-1("+i)-al4a)|. 
0 £ v < n 
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Now let 
cn = (n+l)-ô\tia)\ forn<m 

and 
cn = 0 for n > m; 

also let 
O i v < n 

Then, by Lemma 2, 

Since A3 < 1 we may apply Lemma 1 to this last term to find that it is 

o(ma ~ A<5X1/A)) = o(mllu) as m -> oo. 

Finally Sn < H(n + l)~ô \t^\, so by Jensen's inequality (see for example Wilansky 
[12, p. 7]), 

( m -\ Un ( m \llu cm \ii\ 

| n 2 o « J < #|n2o(n+1)-"\#>\*j < H^2O(*+i)-Adl^a)lA} 
and again applying Lemma 1 we obtain that the final term is o(m1111). The desired 
conclusion now follows. 
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