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HITTING TIME DISTRIBUTIONS OF SINGLE POINTS FOR
1-DIMENSIONAL GENERALIZED DIFFUSION PROCESSES

MAKOTO YAMAZATO

§ 1. Introduction

In this paper, we will characterize the class of (conditional) hitting
time distributions of single points of one dimensional generalized diffusion
processes and give their tail behaviors in terms of speed measures of the
generalized diffusion processes.

Kent [10] considered the characterization problem of the class of
hitting time distributions and he got some partial results. Our Theorem 1
completely solves the characterization problem. Birth and death processes
are regarded as a type of one dimensional generalized diffusions. The
author [16] succeeded in characterizing the class of first passage time
distributions of the processes. However, in [16], first passage times to
(reachable) boundaries at infinity are not considered. In this paper we
treat hitting times of single points including boundary points. So the
result in this paper is an extension of [16] in this sense too.

Has'minskii [4] got a condition on speed measures of null recurrent
diffusion processes for hitting time distributions of regular points to belong
to domains of attraction of one dimensional one sided stable distributions
and, under this condition, he obtained a limit theorem on occupation times
of one dimensional null recurrent diffusion processes. The condition that
he obtained is complicated. Theorem 4 of this paper simplifies his condition.
However, the limit theorem on occupation time, which Has'minskii ob-
tained, had earlier been obtained by Stone [14] under the same condition
in Theorem 4, using another method.

Theorems 3-6 describe tail behaviors of hitting time distributions.
In detail, Theorem 3 is a result on the case of exponential order decay
and Theorems 4-6 are on the case of power order decay. Theorem 3(i)
and Theorem 5 treat transient generalized diffusions, Theorem 4 treats
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144 MAKOTO YAMAZATO

null recurrent ones and Theorem 3(ii) and Theorem 6 treat positive re-
current ones. All cases, except the case that masses of the speed measures
near boundaries increase or decrease with integral power orders, are
covered by Theorems 3-6.

In Section 2, we define one dimensional generalized diffusion processes
and their (conditional) hitting time distributions of single points. Section
3 is devoted to the description of results on the characterization of the
class of hitting time distributions and notions necessary to describe the
results. Section 4 is devoted to the description of the tail behaviors of
hitting time distributions. In Section 5, we summarize the theory of strings
of Kac and Krein, which plays an essential role in proving our results.
In Sections 6 and 7, we prove the results in Sections 3 and 4, respectively.

Acknowledgment. The author would like to thank Shin'ichi Kotani
for useful discussion.

§ 2. Generalized diffusion processes

Let {B(t)} be a one-dimensional Brownian motion and let l(t, x) be its
local time. We denote by JC the class of right continuous nondecreasing
function m on [— oo, oo] to [--oo, oo] with m(—oo) = — oo, m( + oo) = + oo
and m(0—) = 0. For m e Jt, we define lx = k{m) and 4 = k(m) by

(-1)% = inf{(-l)'x > 0; (~iym(x) = oo},

for i = 1, 2, and we define a measure m(dx) on [—oo, oo] by

m(dx) = dm(x) on (lu 12),

m([ll9 kY) = 0

and

m({lt}) = oo for i = 1, 2 .

Here, [ll912]
c is the complement of [ll9 /2]. Let

= f l(t,x)m(dx).
J R

Define a stochastic process {X(t), ζ} by X(t) = Biφ"1^)) and the life time

ζ = inf{ί > 0; X(t) = k or Z2} in the case { } Φ φ,

= oo otherwise .

This process is strong Markov with state space Em = (supp Jn)\ilul2) and is

https://doi.org/10.1017/S0027763000003172 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003172
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called the generalized diffusion process corresponding to the function m

(see [12] or [5]). In this paper, we abbreviate generalized diffusion process

as g.d.p. The measure m restricted to (lu l2) is called the speed measure

of the process {X(t}}. For y e Em, we define the hitting time of y by

τv = inf{t>O;X(t)=y}

if there is t > 0 such that X(i) = y and set τy = oo if otherwise. If

\k\ < oo and li eEm, where Em is the closure of Em in R, then we define

τh by lim^^ τy for ί = 1, 2. We denote by Em the set with lt (ί — 1, 2)

adjoined to 2?m whenever |Z41 < oo and k e Em. If Px(τy < oo) > 0 for x in

i?m and y in Emy we say that μX2/(cft) = Px(τy e dt)IPx(τy < oo) is the con-

ditional hitting time distribution of y starting at x. We always assume

that x Φ y when we discuss conditional hitting time distributions. We

denote by

HgΛ = {μxy(dy); x e Em9 y e Em, x Φ y, m e Jί),

the class of conditional hitting time distributions of generalized diffusion

processes.

§ 3. Characterization of Hgd

Let R+ = [0, oo) and let ^(R + ) be the class of probability distributions

on R+. We denote the Laplace transform of μ e ̂ (R+) by &μ(X) = e-λxμ(dx).

Let CE+ be the smallest subclass of ̂ (R+), which contains all exponential

distributions and closed under convolution and weak convergence. A

probability measure // on R+ is a CE+ distribution if μ is concentrated at

a point in R+, or there are ϊ ^ 0 and a nondecreasing sequence {αj of at

most countable positive numbers satisfying J^t a^1 such that

(3.1) &μ(λ) = β"» Π at(Λ + at)'1 -
i

We call {αj the parameter sequence of μ. We denote by CE+0 the class

of distributions μ in CE+ whose Laplace transform is represented as (3.1)

with T = 0. We say that a probability measure μ is a ME+ distribution

if there is a probability measure G on (0, oo] such that

μ([0, x\) = f (1 - e-*«)G(du) for JC > 0 .
J (0,oo]

We call G the mixing distribution of μ. We denote by ME+0 the class of
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distributions μ in ME+ such that μ({0}) = 0. For μβME+, the condition

μ({0}) = 0 is equivalent to G({oo}) = 0 for the mixing measure G of μ.

Let CME+QQ (CME+ resp.) be the class of distributions μ = μγ * μ2 with

μx e C£J+0 (CE+ resp.) and μ2 e ME+0 (ME+ resp.). Here * denotes convolution.

Let BO be the smallest class of distributions on R+ which contains ME+

and closed under convolution and weak convergence. It is known that

a probability measure μ on R+ belongs to the class BO if and only if

there are ϊ >̂ 0 and a measure Q on (0, oo) satisfying Q(du)
J (o,oo) u(u + 1)

< oo such that

(3.2) Xμ(λ) = expf- tt + f (—]—• - -)Q(du)
I J(0,oo)\ u + λ UJ

([1]). We call the measure Q Q-measure of μ e 2?0. The Q-measure of a

gamma distribution with density

f(x) = Γ ^ - V ^ e - ^ for x > 0 ,

= 0 for x < 0 ,

where a > 0, is absolutely continuous and the density q is given by the

following:

(3.3) q(μ) - 0 if 0<u<a,

= a if w > a .

The representation (3.2) for μ e ME+ is characterized in the following. A

distribution μ on R+ belongs to ME+ if and only if, in the representation

(3.2) of the Laplace transform of μ, ϊ = 0, Q satisfies —Q(du) < oo,
J(O,D U

Q is absolutely continuous and its density is bounded by 1 a.e. By the

definitions of the classes CME+ and BO, it is clear that CME+ c BO.

Kent [10] showed that Hgd Q BO. On the other hand, Keilson [9] showed

that the first passage time distributions of birth and death processes are

contained in CME+. Moreover, he showed that the number of exponential

distributions arising in the convolution is finite. The author [16] refined

Keilson's result and determined the class of first passage time distributions

of birth and death processes. The author also remarked that Hgd c CME+

by approximating g.d.p. by birth and death processes.

We denote by C the plane of complex numbers and denote by C+ (C_)

the open upper (lower) half plane in C. Let J^o be the class of nonnegative

valued functions h(X) on (0, oo) which is extendable to holomorphic functions
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h(λ) on C\(-oo,0] such that Λ(C+) c C_. Let 2? = jeQ{J{h== oo}. The

following representation is well known.

LEMMA 3.1. In order that a function h on (0, oo) belongs to jf 0, it is

necessary and sufficient that there are c >̂ 0 and a nonnegatίυe measure a

on [0, oo) satisfying σ^ ' < oo such that
J[o,«o 1 + ξ

(3.4) ΛW = c + f ° Ά .
J[0,oo) Λ + £

77ιe measure σ is called the spectral measure of h.

Remark 3.1. If μ e ME+, then J?μ(λ) belongs to J^o and is represented

as (3.4) with c = G({oo}) and σ(rff) = ξG(dξ) on (0, oo) by the mixing dis-

tribution G of μ. Conversely, h e «5f 0 with /ι(0) = 1 is the Laplace transform

of an ME+ distribution.

Remark 3.2 ([2] p. 27). It is known that heJf0 if and only if there

are a real number a and a measurable function q(u) satisfying 0 ̂  q(u) <̂  1

such that

= expία + f ( - i — - " _
I J(o,=o) \ ^ + ^ u2 + 1

for ,2 > 0. We also call the measure q(u)du Q-measure of he Jf0.

LEMMA 3.2. If h e Jeo and h ^ 0, ίAen (λh(λ))-1 e Jf0. TΛe Q-measure

Q of (λh(X))-1 is represented as (1 — q(x))dx by the Q-measure q(x)dx of h.

Proof. It is easy to check that if h e <#Ό and h ^ 0, then U/iOO)"1 e

We easily confirm that

f i ϋ W for ; > 0 .
M + ^ W2 + 1

By Remark 3.2, we obtain

+ ( 4 7 TTΓ
J(0,oo)\ W + ^ U2 +

Now we can describe our main result on characterization problem.

THEOREM 1. In order that a probability measure μ on R+ belongs to Hgd,

it is necessary and sufficient that there are a CE+0 distribution μx and a

ME+0 distribution μz such that
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μ = μ1 * μ2 ,

ami the parameter sequence {at} in the representation (3.1) of ^μι(λ) is either

empty or strictly increasing and the spectral measure a of (λ£?μ%{λ))~ι has a

positive point mass at at for each i.

COROLLARY 1. Let μ e ME+. Then μ e Hgd if and only if μ({0}) = 0.

This corollary is immediate from Theorem 1. The "only if" part is

also immediate from the fact that Px{X(0 + ) = y} = 0 for xψy.

COROLLARY 2. Let μ be a gamma distribution with exponent a > 0,

i.e., ^μ{λ) = (a/(λ + a))a where a > 0. Then, a > 0. Then, μ e Hgd if and

only if a<Ll.

Combining Theorem 1 with Corollary 1 or 2, we get the following.

COROLLARY 3. Hgd Q CME+00.

The condition in Theorem 1 is not easy to check. If we can prove

the following conjecture, then we can give another necessary and sufficient

condition which is easier to check.

CONJECTURE. Let μeME, and let

J(
ί G(dξ).f

(o,~] λ + ξ

The mixing measure G has a point mass at a < oo if and only if Q-measure

Q of μ satisfies Q[a — e, a] = o(ε) and Q[α, a + ε] — ε as ε j 0.

If the conjecture is true, then we have the following characterization

of Hgd: In order that μ e ^(R+) belongs to Hgύ it is necessary and sufficient

that there are μλ e CE+0 and μ2 e ME+0 such that μ = μx * μ2, the parameter

sequence {αj of μx is either empty or strictly increasing and the Q-measure

Q of μ0 satisfies Q[a — ε, a] — ε and Q[a, a + ε] = o(ε) as ε 10 for each

a e {αj.

This can be shown as follows. Since Q-measure Q of (λJ^μziλ))'1 is

given by Q(dx) = dx — Q(dx) (see Lemma 3.2), the condition that Q[a — e, a]

— ε and Q[a, a + ε] = o(ε) as ε | 0 is equivalent to the condition that

Q[a — ε, a] = o(ε) and Q[α, a + ε] — ε as ε | 0. If the conjecture is true,

the last condition is equivalent to that the spectral measure of (λ3?μ1(X))'~1

has a point mass at α.
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We say that a measure on R+ is discrete if its support is either a

finite set or a countable set having no accumulation point in R+. The

conjecture is true in the following cases.

Case 1. The mixing measure G is discrete.

Case 2. The mixing measure G is written as G = Gt + G2, where G1

is discrete and G2 is absolutely continuous with a density of O-class.

We say that μ e ^(R+) is a CMEd

+00 distribution (the superscript d

stands for discrete) if there are μx e CE+Q and μ2 e ME+Q such that μ = μt # μ2,

the parameter sequence {ak} of μx is empty or strictly increasing, the mixing

distribution G of μ2 is discrete and (supp G)f]{ak} = φ. The Laplace trans-

form £fμ(λ) is represented as follows:

(3.5) J?μ(s) = Π ak(s + a,)'1 fl c;\s + ck)bk(s + b,)'1
k k

for finite or infinite strictly increasing sequences {ak}, {bk} and {ck} ({ak}

may be empty) satisfying X] α*1 < oo in the case {ak} Φ φ, {ak}f]{bk} = φ,

bk < ck < f̂c+i for each &,

1 ^ #{cfe} = #{6fc} - 1 in the case #{ί>fc} < oo

and

\~[ — _̂ diverges to 0 in the case %{bk} = oo .
* ck

Here #{ } stands for the cardinality of a set { }.

Remark 3.3. The above representation (3.5) of 3Pμ(X) is not unique.

We call ({αfc}, {bk}, {ck}) a minimal representation of μ if {αJΠfcJ = ί̂, since

in this case {αj is minimal in a component wise sense (see [16]).

THEOREM 2. ( i ) Assume that meJί, xeEm and y e En. If one of

the following three conditions is satisfied, then the conditional hitting time

distribution μxy of the g.d.p. corresponding to m belongs to CMEd

+QQ.

1. Zj > — oo and m{lx+) > — oo .

2. lx > — oo , m(/j+) = — oo and lim(M — lγ)m(u) = 0.

3. h = — oo , τtt((— oo)+) > — oo and lim u{m(u) — /n((—oo)+)} = 0.
W — - o o

(ii) i^or μeCMEd

+QQ, there is mzJt satisfying one of the conditions

1, 2 and 3 (i) swcΛ that 0 e 2?TO, l e E m and μ is the conditional hitting

time distribution of 1 starting at 0 of the g.d.p. corresponding to m.
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§ 4. Tail behaviors

LEMMA 4.1. Let meJέ, 0eEm and b e Em. Then, Po (τb < oo) > 0 for

the g.d.p. corresponding to m if and only if m(x)dx < oo.
Jo

The proof of this lemma will be given in Section 6. In this section,

we assume that m e Jt> 0 e En and μ is the conditional hitting time distri-

bution of b e Em, b > 0, of the g.d.p. corresponding to m, starting at 0.
rb~ rb-

Since m(x)dx < oo and (b — x)m(x) <̂  m{y)dy, (b — x)m(x) is bounded
Jo J x

in x e [0, b).

THEOREM 3. Let A = supa,6[0)δ)(6 — x)m(x). (i) If h > — oo and

is B> 0 such that

\(x - AM*)! ^ 5 /or all x e (lu 0),

then for every a satisfying 0 < a < | min{l/A, 1/B},

μ([t, oo)) = o(e~at) as t -> oo .

(ii) J/ ^ = — oo, m((— oo)+) > — oo ancί there is C > 0 suc/i

|x{m(x) - τ n ( ( - o o ) - ) } | ^ C for all x e ( - o o , 0 ] ,

then there is β in (0, min {I/A, 1/C}) and M > 0

°°)) - Me~βt as t -*

THEOREM 4. Lei 0 < a < 1. LeZ K(x) be a positive function slowly

varying at infinity. If h = — oo and

\m(~- x)\ — xa~1~ίK(x) as x —> oo ,

ί, oo)) ~ 6{a(l - a)}βra/Γ(l + a)La(t) as t -> oo ,

where taLa(t) is an asymptotic inverse function ([13]) of xa~1K(x).

THEOREM 5. If lt > — oo and if, for a non-integral a > 0.

M - * ) | ~ (IAI - x)-«-^K{\k\ - x) as * t l*il>

where K(x) is a function slowly varying at 0, then

μ{[t, oo)) ~ r βL(ί) as t -* oo ,

a function L(t) slowly varying at infinity.
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THEOREM 6. / / lγ = — oo, m((—oo)+) > — oo and if, for a non-integral

a> 0,

|τrc((-oo)+) - m{- x)\ ~ x(e+1>-1-1JSL(x) as x -> oo ,

where K(x) is a function slowly varying at infinity, then

μ([t, °°)) ~ t-a~ιL{t) as t -> oo ,

w iZ/i a function L(i) slowly varying at infinity.

§ 5. Krein's correspondence and generalized diffusion processes

Let J( + be the class of [0, oo]-valued nondecreasing right continuous

functions on [0, oo] satisfying ra(oo) = oo. Let l(m) = min{x^0; m(x) — oo}.

Let <p(x, λ) and ψ(x, λ) be the continuous solutions of

(5.1) φ(x, λ) = l + λ{ (x- y)φ(y, λ)dm(y) for x > 0

and

(5.2) ψ(x, λ) = x + λ [ (x - y)ψ(y, λ)dm{y) for x > 0

respectively. Here m({0}) is denned by /n(0). Since

dx V ^(x, ̂ ) 9 ( , )

,̂  λjr(xy λ)/φ(x, X) exists and we denote this limit by h(X). Here we

denoted right derivative by d+/dx. It is known that h e Jf. Define a map

on Jί + to &F by the above correspondence and denote it by Φ. This is

called Krein's correspondence. It is known that this map is onto and

one-to-one ([3], [6]).

Remark 5.1. h = oo and h = 0 correspond to m = 0 and m = oo,

respectively.

Remark 5.2. Let meJt+ and /ι = Φ(m). Let σ be the spectral measure

of h and let c be the number appearing in the representation (3.4) of h.

Then c = Λ(oo) = inf {x ^ 0; m(x) > 0} and

LEMMA 5.1 ([7]). If hβJf corresponds to meJi+, then (λhiλ))'1 =

0; w(y) > x}e^£+.
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For m e ^ + , let a be the spectral measure of Φ(m). Set λo(m) =

inf(suppσ). If λQ(m) = 0, then we define λx{m) by λ^m) = inf{(supp<7)|(0>oo)}.

Let

C(m) — sup (l(m) — x)m(x) if l{m) < oo ,

= 00 if Z(m) = 00 .

In the case l(m) = 00, let

Z)(ra) = sup x(m(oo—) — m(x)) if m(oo—) < 00 ,

= 00 if m(oo—) = 00 .

LEMMA 5.2 ([7]). Let w e l . 7%e^

^ 4C(/n).

LEMMA 5.3 ([7]). Let m e Jί+ and let σ be the spectral measure of Φ(m).

Then the following (i) and (ii) hold.

(i) σ({0}) = \imλh(λ) = l/m(oo-) if l{m) = 00 ,

= 0 i/ /(m) < co .

(ii) // l(m) = 00 α̂ icί m(oo—) < 00,

LEMMA 5.4 ([11]). Suppose that me^d+ such that l(m) = 00 and

τn(oo—) < 00. Pwί /ι = Φ(m) ατioί let

h*{λ) =

where σ is the spectral measure of h. Then m* = Φ~\h*) and Z* = l(m*)

are of the form

m*(x) =
m(oo—) — m(t(x))

and

/* = Γ {m(
Jo m(oo) 2

where t(x) is the inverse function of

- ) -
m(oo)2
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LEMMA 5.5 ([7]). Let me^+. The spectral measure σ of Φ(m) is dis-

crete if and only if one of the following holds.

1. I = l(m) < oo and m(l—) < oo.

2. / < co, m(l—) = oo and lim(Z — x)m(x) — 0.
x-+l

3. / = oo, m{oo—) < oo and limx(τn(oo—) — n(Λ )) = 0.

LEMMA 5.6 ([7]). Let me^+. The spectral measure σ of Φ(m) is dis-

crete and its support {λn} satisfies 2 V%n < ° ° i/ and only if one of the

following holds:

1. I — l(m) < oo and m(l—) < oo.

2. / < oo, m(l—) = oo and m(x)dx < oo.
Jo

3. / = oo cmd xdm(x) < oo .
Jo

LEMMA 5.7 ([10]). Lei meJί+. If 0 < x < oo and m(x)dx < oo,

Z/ze solutions <p(x, λ) and ψ(x, X) if (5.1) and (5.2) are constant functions

or entire functions of λ such that their zero points {—aj and { — 6{} are

negative, simple (aέ ^ a j and 6* ^ 6̂  i/ i ^ j ) and satisfy Σa," 1 < oo and

V&-1 < oo. Moreover, ψ and ψ are represented as

and

φ(χ, λ) = Π ( l + — )

LEMMA 5.8 ([8]). //, for meJΐ+,

m(x) — xa~1~1K(x) as x —> oo ,

where 0 < a: < 1 and K(x) is a function slowly varying at oo, then

Φ(m)(λ) ~ DJ-LM-1) as λ -> 0

— a)}"βΓ(l + a)Γ(l — a)~ι and xaLa(x) is the asymptotic

inverse at oo of xa~xK(x).

All these facts except Lemmas 5.5-7 are found in Kotani-Watanabe

[121.

https://doi.org/10.1017/S0027763000003172 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003172


154 MAKOTO YAMAZATO

§ 6. The proofs of Theorems 1 and 2

Let meJί and let {X(t), ζ} be a g.d.p. on Em corresponding to m.

Let 6 > 0 belong to Em. Let φ(x, λ) and ψ(x, λ) be the continuous solu-

tions of

(6.1) φ(xy λ) = 1 + λ[ (x - y)φ(y, λ)dm{y) for x > 0

= 1 - λ [ (x - y)φ{y, λ)dm(y) for x < 0
J DM)

and

(6.2) ψ(*, J) = x + Λ f (x - y)ψ(y, λ)dm(y) for x > 0

= x - λ f (x - y)ψ(y, ^)dm(y) for x < 0,

respectively. Let

(6.3) ft^λ) = -limψ(x, λ)lφ(x, λ) and

h2(λ) = lim ψ(x, i)/o(x, Λ).

Moreover, let

πφo) = - m ( ( - x ) - )

and

for x > 0.

Then tφ) = Φ(mO and Λ2(̂ ) = Φ(m2). Define M(X, ̂ ) by

u(x, X) = p(x, ί) + ΛtW^ψίΛ, ̂ ).

Then, for λ > 0, u is a positive increasing function of x, satisfying either

u(k + , λ) = 0 or (d+/dx)w(( —oo) + , ̂ ) = 0 according as Zx = ^(m) > — oo or

/j = — oo. So, by the general theory on diffusion processes, the Laplace

transform of τb is given by the following:

(6.4) # 0(e- i Γ ) = "(0, ^)/U(6, ^) = u(b, λ)-1 if 6 < Z2 = Z2(m) and

= lim w(χ, A)"1 if 6 = Z2 < oo .
or— b

See Ito-McKean [4] p. 128-129.

Proof of Lemma 4.1. Note that since ^(x, /I) ̂  1 for λ > 0,

?<*, A) ̂  1 + A f m(y)dy for i > 0.
J ίθ,χ)
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Λ δ -

If b = lt(m) < oo and m(x)dx = oo, then φ(b — , λ) = oo. This means

that E0(e-χτ>) = 0 for λ > 0 and thus P0(τδ < oo) = 0. If C~ m(x)dx < oo,

then, by Lemma 5.7, <p(b, X) and ψ(b, X) are finite. Letting λ -* 0 in (6.4),

we have

Λ(τδ < oo) = HI/fl/,1 + 6) in case lx = lx(m) > - o o ,

= 1 in case lx = — oo .

Note that lt < 0 since m(O-) = 0 for m e ^ . Thus P0(τδ < oo) > 0. This

completes the proof.

Since the conditional hitting time distribution μ(dt) = μob(dt) is denned

for 0 e Em and 6 e Em satisfying P0{τδ < oo} > 0, m(x)dx < oo always

holds. Let

(6.5)

and

(6.6)

Then we have

Proof of the necessity part of Theorem 1. Let w e l . Let 06E m ,

b e Em, b > 0 and let μ = //06 be the conditional hitting time distribution

of b starting at 0 of the g.d.p. corresponding to Jί. Then, by the above

argument, we can represent ϋ?μ(Λ) using ψ and h defined by (6.2) and

(6.6), respectively, as

= h(λ)lf(b, λ).

Let

and

=

h(λ)(\h\

h(λ)!b

+ b)

bltfjb, X)

'(6|/>!)-' if /

if / —

- O O ,

— oo .

Λ δ -

Since 0 < b < oo and m(:x;)d:x; < oo, by Lemma 5.7 and (3.1), we see

that μί e CE+0. Noting that <&μ2(0) = 1, we have that μ2 e ME+ by Lemma

3.1 and Remark 3.1. Let {αt} be the parameter sequence of μx. We see
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that the support of the spectral measure of Ij(λh2(λ)) e ̂ 0 coincides with

the set {α,}U{0}. It is clear by the definition of h(λ) that the spectral

measure of lj(λh(X)) has a point mass on each a^ Since OeEm, hx(oo—)

or A2(oo—) = 0 holds by Remark 5.2. This is equivalent to that A(oo—) = 0.

This means that μ2({0}) = 0. This proves the necessity of the condition.

Proof of the sufficiency part of Theorem 1. Let μ satisfy the condition

of Theorem 1 and let μ = μ * μ2 be the decomposition of μ given in Theorem

1. Let {αJ ί<0 be the parameter sequence of Jgμ^λ). That is, {αj = φ or

{αj is an at most countable increasing sequence of positive numbers

satisfying J^aϊ1 < oo such that

(6.7) &μi(λ) = 1 in the case {α,} = φ and

= Π at{λ + α^"1 in the case {α,} φ φ.

By the assumption of Theorem 1, there are c >̂ 0 and a nonnegative

measure σ satisfying o(dξ) < oo such that
Moo) 1 + ξ

= c+ ί
J[0,o

and ^ has a point mass on each at in the case {at} Φ φ. Note that

<j({0}) = 1 since ^ 2 ( 0 ) = 1. Since 2̂({0}) = 0, ^f/i2(oo— ) = 0 and thus

c > 0 or σ(fθ, oo)) = oo. Decompose σ as σ = ^ + <72 so that supp σ2 =

{αj U {0} and σ2({0}) = 1. Note that σx({0}) = 0. By Lemma 3.1 and Lemma

3.2, there are measures σx and σ2 on [0, oo) such that

(6.8) Γf ^Λ^dι(dξ)V = d + \ - ± — σ

and

cA + —-—σ2(dξ)\ = e + — - —

where d = [^[(0, oo))]"1. Denote the functions in (6.8) and (6.9) by hx(λ)

and A^Λ), respectively. We have

(6.10) Seμjtf) = (AiW"1 +

Note that either e = [<τ2[(0, 00))]-1 or e = 0 according as c = 0 or c > 0.

We show that either d = 0 or β = 0. In the case c = 0, since <7([0, 00))

= 00 and since a — σx + σ2, either ^([0, 00)) or σ2([0, 00)) = 00. This yields
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that d or e = 0. Note that hx(0) = ^({O})"1 = oo, Λ2(0) = ^({O})"1 = 1 and

h2(X) is meromorphic and its zero points { — α4} satisfy Σ α,"1 < oo. Thus,

h2(λ) is written as

h2(λ) = UaTKλ+adlUbΛλ+b,)

with 0 ^ 6j < ax < 62 < a2 < . Here {&<} may be empty. See [16]. By

the surjectivity of Krein's correspondence, there are mx and m2e^+ cor-

responding to hx and Λ2, respectively. Since Λ2(0) = 1, /2 = Z(m2) = 1. The

function m2 satisfies either 1 or 2 of Lemma 5.6. If m2 satisfies 2, then

1 = Z2 e 2?m2. If /722 satisfies 1, then we can extend m2 so that 1 e Emz and

1 < Z2(m2) < oo without changing h2(X). We use the same symbol m2 to

represent the extended one. Since we have chosen σx so that inf {x ^ 0;

τh\(x) > 0} = 0 for a function rh^^Jί^ corresponding to σu and since mx

is the inverse mΐ1 of mu m^O) = 0. Let

m{x) = — m^ί —x)—) for x < 0 and

= m2(x) for x > 0.

Then, m e ^ . Let ^ and ψ be the continuous solutions of (6.1) and (6.2),

respectively, with the above m. Then h^λ) and h2(λ) are represented by

φ and ψ as

hλ(λ) = -]

and

h2(λ) = lim

Since ψ(l, 0) = 1 and since the set of zero points of ψ(l, λ) coincides with

{-**},

(6.11) Seμ&λ) - l/ψ(l, I)

by Lemma 5.7 and (6.7). Thus, we have, by (6.10) and (6.11),

Since d = 0 or e = 0, 0eEm. Therefore, μ is the hitting time distribution

of 1 starting at 0 of the generalized diffusion process corresponding to m.

The proof is complete.

Remark 6.1. Let μ be a gamma distribution with Laplace transform

= (α/(α + Λ))α, 0 < α < 1, α > 0. Then the following hold:
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(i) The spectral measure a of J?μ(X) is absolutely continuous and its

density s(x) is given by

s(x) = 0 for 0 < x < a,

= Sinaπ( a V for*>α.
π \x — a /

(ii) The spectral measure of {λ£?μ(X))~ι has a point mass 1 at the

origin and absolutely continuous on (0, oo).

Proof of Remark 6.1. (i) Since

Γ (—-—\e-χudu = Γ(l - a)aaxa~ιe-ax

and since Γ(ά)Γ(l — a) = π/sin απ, we have

Γ s(u)e-χudu = Γ(α)-1αβxβ-1e-α* .
Jo

This means that s(u) is the density of σ.

(ii) Let (7 be the spectral measure of h(X) = (λJ£μ(X))~\ By Fatou's

lemma [3], σ is obtained by

1 C~u

σ[u, v] = — lim — Im h(x + ίy)dx
y 10 7Γ J - υ

at continuity points ^ and v of σ. Let us calculate Im h(X). Note that

h(λ) is real on R+. We have

Im h(λ) = (Ίa + 1̂ Vl^Γ1 s i n ία Arccot a + x - Arccot — ) .
\ a / \ y /

Since

|ImΛ(/l)| <̂  {(x + α)2}^^""!^!"1, λ = x + iy,

we have, by Lebesgue's dominated convergence theorem,

σ[u, υ] = S l n^—"~ a'π l^l"1 1 + — dx
π Jc-ϋ)Λ(-α) a

for 0 < u < u. Here, α Λ b denotes min {a, b}. Thus a is absolutely con-

tinuous on (0, oo) and its density is given by

six) = 0 for 0 < x < a,

for x > a .
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The point mass σ({0}) is obtained by

σ({0}) = lim λh(λ) = lim (——)" = 1.
λ i o x i o \ a + λ /

Proof of Corollary 2. Since every gamma distribution μ with exponent

# ^ 1 belongs to ME+ and does not have a point mass at 0, (i) is imme-

diate from Corollary 1. Let us prove (ii). Let μ be a gamma distribution

with Laplace transform S?μ(λ) = (a/(a + λ))a, a > 1, α > 0. Keeping (3.2)

and (3.3) in mind, we see that in the case a > 2, it is impossible to

decompose J?μ(λ) as &μx(λ)£?μ%(λ) with μx e CE+Q and μ2 € ME+ and in the
case 1 < a <L 2 only way is as follows:

If 1 < α < 2 , then, by Remark 6.1, the spectral measure of {λ{aj{a + A))""1)"1

is absolutely countinuous on (0, oo). If a = 2, then the spectral measure

is concentrated at 0. So in both cases, the spectral measure does not

have a point mass at α. We conclude that μ <£ Hgd.

LEMMA 6.1. (i) Hgd 3 CMEd

+00.

(ii) Let μ e Hgd and let μx and μ2 be the CE+0 part and the ME+i

part of μ, respectively, in the representation in Theorem 1. // the spectral

measure of ^μ2(λ) is discrete, then μ e CMEd

+ϋ0.

Proof, (i) Let μβCMEd

+w and let ({α{}, {6t}, {ct}) be the minimal

representation of μ. For each i, choose α so that at < a < ai+1 and the

interval (at, α ) contains no point of {6̂ } U {cfc}. Then the Laplace trans-

form J?μ(λ) of μ is represented as

where {M} = {6J U {αj, {ĉ } = {c<} U {αί}. By the choice of {̂ }, Π

diverges to 0 in the case jt{6i} = oo. This representation shows that

e Hgd. Also we have that the spectral measure of fj ((c + ^)60/((6 + Λ)c )

is discrete, (ii) By representing ^μ{λ) in the reduced form, we imme-

diately get the conclusion.

Proof of Theorem 2. (i) Let m^Jί satisfying 1, 2 or 3. In order to

prove the assertion, we may assume that 0 e Em, 0 < b e Em and μ is the
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conditional hitting time distribution of b starting at 0. As in the proof

of Theorem 1, decompose &μ(X) as Sfμ(X) = &μι(λ)&μz(λ) where

and

Here ψ and h are defined by (6.2) and (6.6) from m. It is clear that the

spectral measure of (λh2(X))~1 is discrete by Lemma 5.6. By the assumption

and Lemma 5.5, we have that the spectral measure of (λh^λ))'1 is discrete.

Therefore the spectral measure of (λhiλ))'1 is discrete. This means that

the spectral measure of h(X) is discrete. By Lemma (6) (ii), we get the

conclusion μ e CMEd

+00. (ii) Let μ e CME%ύύ. Then, as in the proof of

Lemma 6.1 (i), we can decompose &μ(X) as S£μ{ΐ) = £? μx(ΐ)S£ μ2(ΐ) where

h(X)(\h\ + I

h(X)lb

0 = blψ(b,

if

if
/ .>

/ . =

— oo and

— oo .

) = Π —%-r, &μJLλ) = Π frΐfΛ* {<*,} C {C4}«i + ^ (&i + Λfo

and f] —̂ - diverges to 0 in the case %{bΛ — oo and #{cj = #{&*} — 1 in the

case #{6J < oo. According to the method used in proving Theorem 1,

we can construct hx{X) and h2(λ) so that

Since the support of the sepctral measure of (λh^X))'1 is contained in {cj,

the specral measure of Λ^ )̂ is discrete. By Lemma 5.5, the measure

m1e^+ corresponding to hγ satisfies one of the conditions (l)-(3). The

proof is complete.

§ 7. Proof of Theorems 3-6

In the proofs of Theorems 3 and 4 we use the notations φ, ψ, h9 hu

h2 defined in Section 6.

Proof of Theorem 3. Since 0 < b < oo and I m(x)dx < oo, the sup-
Jo

port of the spectral measure σ2 of h2 is discrete by Lemma 5.6. Let

a21 — infsuppσ2. Since 6 < oo, α 2 1 > 0 by Lemma 5.3. The function h2 is

meromorphic in C and, its zero points are negative and interlace the

points in — suppσ2 = { — a; αesuppσ2}. Let — b2ί be the largest zero of

hi(λ). Then -b2ι < - α 2 1 < 0 and h2(λ) > 0 on (-α2 1,0). Let σί be the
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spectral measure of hx. (i) Let an — inf supp^. Since lx > — oo, by

Lemma 5.2, we have an >̂ 1/45 > 0. Hence, hx(λ) is continued analytically

to the interval ( — αu, 0) and strictly decreasing in the interval. Now we

see that hΐ1 and hϊ1 are positive and analytic in the interval (-(α n Λα M ), 0).

Hence, the infimum of the support of the spectral measure σ of h is not

less than anΛa2ί. Since the largest zero of ψ(6, X) is — &21, h(X)lψ(b, X) is

analytic in (—(απΛα21), 0). In the case ψ = const., we directly obtain

that, for each 0 < c < αnΛα21,

ectμ([t, oo)) > 0 as t -» oo .

In the case ψ ^ const., applying Cauchy's theorem to the inversion formula

for Laplace transforms ([15], we get the same asymptotics. On the other

hand, by Lemma 5.2, we have

απ ^ 1/4J5 and α21 ^ 1/4A .

We get the conclusion.

(ii) By Lemma 5.3, σx({0}) > 0 and inf [(suppσj)!^,] ^ 1 / 4 O 0. Set

α12 = inf [(suppσ^l^oo)]. Hence h^λ) is continued analytically to (—α12, 0)

and strictly decreasing in ( —α12, 0). Since the origin is a pole of hx(X),

there is unique zero —bn of hx in ( — α12, 0). Λx maps [—bn, 0) onto (— oo, 0].

Hence there is only one zero —a of hx + h2 in (—(α21Λ&n), 0). Although

the origin is a pole of hu it is cancelled with the numerator of

h(λ) = Uλ)Uλ)KUλ) + ht{λ))

and thus, — a is unique pole of h(λ) in ( — (α2iΛ&n), 0]. The zeros of ψ(b, X)

are less than — a since h2eJ4?0. Hence — a is the largest pole of Jίfμ(X).

Note that —bn is the largest pole of ljλhx{λ). Set

D — sup (^i(oo) — xϊmϊXx),
0<#<mi(oo-)

where m^x) = m((—x)~) for a > 0. Then C — D. By Lemma 5.2, we have

1/4C^ bn ̂  1/C.

Hence

In the case ψ ξέ const., applying the residue theorem to the inversion
formula for Laplace transforms, we see that there is M > 0 such that

, oo)) ~ Me~at as t-*oo.
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In the case ψ = const., we directly get the same asymptotics. The proof

is complete.

Proof of Theorem 4. By Lemma 5.8, we have

(7.1) hx(λ) ~ Daλ-«La(λ-1) as λ -> 0.

Note that

(7.2) fφ) - ht(λ) = O(λ) as λ -> 0

since h2(X) is analytic near λ = 0. By (7.1) and (7.2), we have

h(0) - h(λ) ~ Vλ*l{DJ,Jίλ-')} as Λ -* 0.

This yields

J2>(0) - ^ « = Λ(0)/ψ(6, 0) -

By the Tauberian theorem, we have

μ([t, oo)) ~ 6r-/{Γ(l - a)DJLM}

The proof is complete.

In order to prove Theorems 5 and 6, we can not apply Lemma 5.8

directly. We prepare some lemmas.

LEMMA 7.1. Let g and h be functions in J^o which are n (^0) times

differential in a right neighborhood of the origin such that g(0) Φ 0.

Assume that there are a function L slowly varying at 0, real numbers α,

b and 0 < a < 1 such that

(7.3) g(x) == Σ l^β-χ« + (a+ o(l))xn+"L(x)

and

(7.4) h(x) = Σ^-Pβix* + (b+ o(l))xn+«L(x)

as x 4 0. Then f(x) = h(x)/g(x) is n times dίfferentίable and

(7.5) f(χ) = ±f-M-χ* + (M+ o(l))x^'L(x)

as x 10 where M = (6^(0) - α/ι(0))/#(0)\
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Proof. It is easy to get in the case n = 0. Let n >̂ 1. Since g, he J^Qy

the derivatives of g(x) — Σ ——x f c and h(x) — Σ ^-xk are mono-

tone in x > 0. Then formulas (7.3) and (7.4) imply that g, he Cn[0, oo) and

(7.6) g^(x) - gM(0) ~ c(n + a, n)axaL(x),

hin)(x) — /ι(7l)(0) ~ c(n + a, ή)bx°L(x)

as x I 0, respectively, where c(n + a, ή) = (n + a)(n — 1 + a) - (1 + a).

Since ^(0) Φ 0, it is obvious that f is n times continuously diίferentiable

on [0, oo). Differentiating h(x) = f(x)g(x) n times, we have by Leibniz's

formula that

π - l

f^(χ\σ(χ\ — h{n)(x) —• V CJ f{ίc)(r)0{n-k)(x)

We have

where

p(x) =

and

By (7.6)

and

as x 4 0.

(7.7)

we have

P(Λ ) = g(0)~'

Hence we

x) - Λ«.>(0]

[[h(n)(x) — ι

a, ri)g(0)~

have that

- /<">(0) ~

-fw(0).

n-1

}-Σ,

= P(*) +

^(^)(0) — /(0){^"(n)

H6 - ah(0)lg(0) •

q(x) =

c(n + a

O(x)

•g(*)

+ o(l)}*"I(*)

, ή)Mx"L(x) as ϊ ί

+ O(x)

+ O(x)

0

with M in the lemma. This shows that /(n)(x) varies regularly at the

origin. Integrating (7.7) n times, we get (7.5). The proof is complete.

LEMMA 7.2. For Λ e ^ 0 with 0 < Λ(0) < oo, cfe/*ra? W e ^ 0 &y Λ#W =

l/{λh(λ)} — l/{λhφ)}. Let 0 < a < 1 cmcί feί L be a function slowly varying

at 0.
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(i) //

h*(λ) = λ'-'Liλ) as λ 10,

then

(7.8) h(λ) = h(0) - (h(0)2 + o(ΐ))λ*L(λ) as λ j 0.

(ii) // W is n (n ̂  0) times differentiable in a right neighborhood of

0 and satisfies

(7.9) h\λ) = Σ ( Λ # Γ, ) ( 0 ) λ* + ^n

as λ I 0, ί/ieπ Λ(Λ) is τι + 1 times dίfferentίable in a neighborhood of 0 and

satisfies

(7.10) h(λ) = Σ - ^ ^ - i* - WO)2 + o(l))^+ 1 + αLα) as ^ I 0.

Proof, (i) By the definition of h*(X), we have

a s

/ι(0)

Thus, we have the conclusion.

(ii) Set g(λ) = ^/ι#(̂ ) Then, since

g<*)(X) = λ(hT\λ)

we have

>(n+ l)(h*yn)(O) as Λj 0.

Thus g(ί) is 7i + 1 times differentiable at λ = 0. Set g(ί) = ̂ ) + h(ϋ)~\

By (7.9), the definition of g and the uniqueness of Taylor's formula, we

have

n+l A W f ί ϊ

(7.11) #(ί) = Σ ^-ΓT^-^ + ^ + 1 + ° L « as n 0

Applying Lemma 7.1 to h(λ) = l/g(X), we have (7.10) by (7.11). The proof

is complete.

LEMMA 7.3. Let me^+ satisfying l(m) = oo and m(oo—) < oo. Set

h*(λ) = h(λ) — σ({0})/λ where σ is the spectral measure of h. Assume that

for a> 0 (a φ 1)
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m ( o o - ) - m{x) ~ x~al{lJra)Lix) as x -> oo

with a function L slowly varying at oo. Then we have the following for

m * = Φ~\h*)\

( i ) In the case 0 < a < 1, it holds that Z* = Z(m*) = oo

m*(*) - *(1-β)~1-1Mβ(:c) as x -> oo ,

x(1+a)/(1"a){Ma(x)}2 (x-> oo) is an asymptotic inverse of Ct(1~aW+a){L(t)}2.

Here

(7.12) C = τw(oo-)-*/a+«)((i + a )/( i - a ) ) 2 a / ( 1 + a ) .

(ii) 7λi the case a > 1, it holds that Z* < oo ami

/n*(a) - (Z* - x)-ί-l)-χ-ιMail* - x) as x | Z* ,

(1+a)/(1-a){Ma(x)}2 (x j 0) is an asymptotic inverse of a ( 1 - a ) / a + a ) { i (0} 2

Here C is the constant defined by (7.12).

Proof Note that σ({0}) > 0 by Lemma 5.3. ( i) Let 0 < a < 1. In

this case, by Lemma 5.4 we have Z* = x(oo—) = oo and

x(t) ~ ^±^Lm(oo-)-H«-aw+a){L(t)}2 as t -> oo .
1 — a

Setting C = Cm(oo— )2(l — α )/(i + α ) , we have, by the definition of Ma,

t{x) ~ (Cfx)^a^-a){Ma{x)Y as x ~> oo .

We have, by Lemma 5.4, that

m*ix) - m{oo

- m(oo

as x—> oo. By the definition of Maix), we have

(7.14) Z#(*)) - C-1/2{Ma(x)Ya-ί)/(a+ί)

as x->oo. Hence, substitutig (7.14) into (7.13), we have

m*(x) ~ xa/(ί-a)Ma(x).

(ii) Let a > 1. In this case, by Lemma 5.4 we have Z* = x(oo—) < oo

and

Z* - x(0 ~/n(oo _ ) - 2 / 1 + " A (*-«>/»+«>{/#)}* as ί -> oo .
\ 1 — a /
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We have, by the definition of Ma9

t(x) ~ (C'(l* - x)yi+a)ni-a){M«(l* - *)}2 a s x - ^ / * .

As in the proof of (i), use Lemma 5.4 and the definition of Ma. We get

the conclusion of (ii). The proof is complete.

LEMMA 7.4. Let m e Jί+. Assume that I = l(m) < oo and m(l—) = oo.

// there are a > 0 (a Φ 1) and a function L(x) slowly varying at 0 such that

m(x) ~ (l-xy-'^Lil-x) as x-+l,

then the following hold:

(i) If 0 <a< 1, then I* = l((m~ψ) = oo and

(1-e)*ulMW as x

a function M slowly varying at oo.

(ii) If a > 1, ίΛβ/x Z* < oo

(m-1)*^) -(Z* - xJ-^-^^MίZ1 - x) as x f Z*

a function M slowly varying at 0. ί/ere * stands for the operation

defined in Lemma 7.3.

Proo/. We have

m - i ( c o - ) _ /n-^tf) - χ-a/il+a)Ma(x) as x -> oo,

where x'anί+a)Ma(x) is an asymptotic inverse oft~a~l-1L{t)(t-*0). The con-

clusions in (i) and (ii) are direct from Lemma 7.3 (i) and (ii), respectively.

The proof is complete.

LEMMA 7.5. Let m e Jί\ satisfying I = l(m) < oo and m(l—) = oo.

Let a be a non-integral positive number and n be an integer satisfying

n < a < n + 1. If there is a function L slowly varying at 0 such that

m(x) _ (l-xyo-^Lil-x) as x-+l

then h(X) = Φ(m)(X) is n times differentiable in a right neighborhood of 0

and satisfies

h(λ) = Σ*-o ̂ β-λk + ( - iY^λ«M(λ) as λ 10

with a function M slowly varying at 0.
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Proof. Let m be a function defined by the n + 1 times iteration of
#: m—^Ott"1)* to m. Then, by Lemma 7.4, we have

m(x) ~ x(n+1-a)"1-1if(x) asx-^oo

where if is a function slowly varying at oo. By Lemma 5.8, there is a
function N slowly varying at 0 such that

h(λ) = Φ(m)(λ) ~ λ-^n+1-a)N(λ) as λ -> 0.

By Lemmas 5.1, 3 and 4, we see that the function h is obtained from h
iterating the operation # defined in Lemma 7.2 n + 1 times. Taking Lemma
7.2 into consideration, we have the conclusion by (7.8) and (7.10). The
proof is complete.

LEMMA 7.6. Let μeέ?(R+) and let h(λ) = J£μ(λ) be the Laplace trans-
form of μ. If n-th right derivative h(n\0) exists, then the following hold:
( i ) μ has k-th moments for k <̂  n.

(ii) Fk(t) = Γ Γ • Γ μ(dto)dtr -dt^ ,
J t J tk-l J ti

1 ^ k ^ n + 1, is well defined and has (n — k)-th moment tn~kFk(t)dt.
Jo

(iii) Γ e-"Fk{t)dt

Proof. ( i ) Clearly, μ has £-th moment (£ <̂  ή) and

(7.15)

(ii) Note that Fk(t) = Γ Fk_x{t)dt for 2 ̂  k £ n. In order to prove that

Fk(t), l<Lki^n, is well defined and has (n — £)-th moment, it is enough

to show that fμ(dt) < oo if and only if th~ιμ[t, oo)dt < oo. More-
Jo Jo

over, we see that

(7.16) Γ f-'μlU co) dt = k-1 Γ tkμ(dt) .
Jo Jo

Let us show the above fact. Let M > 0. Integrating by parts we have

Γ ?-χμ[t, oo)dt = k-ι\Mkμ[M, oo) + f tkμ(dt)] .
Jθ L JiOyM) J

Thus, if ί°° tk-^[t9 oo)dt < oo, then Γ t*μ(dt) < oo. Conversely, if Γ tkμ(dt)
Jo Jo Jo
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< oo, then since tkμ[t, oo) <£ skμ(ds), we have tkμ[t, oo)->0 as £->oo.

Hence Γ **'>[*, oo)dί is finite and equals k'1 Π fμ(dt). Thus (7.16) holds.
Jo Jo

By (7.16), we have

(7.17) Fk+ί(0) = - L Γ W )
#! Jo

(iii) We represent ^Fk(λ) by Λ and its derivatives by induction in k.

For k = 1, integrating by parts, we have

Γ e'λtF,(t)dt = λ-'lμlO, oo) - Γ β- ; ^(ώ)l = λ-HΛ(O) - h(λ)}.

Assume that (iii) is true for k <I /. Integrating by parts and using (7.17),

we have

(7.18) J° L Jo

= λ-^lϊ)-1 £ tιμ(dt) -

We have, by (7.15), (7.18) and the assumption of induction,

Γ e-»Fι+ί(t)dt = (- ΐ)^λ-ι'4h(λ) t
Jθ I ;=0 j\

This completes the proof.

LEMMA 7.7. Let μ e ^(R+). 1/ the Laplace transform ££μ{ΐ) of μ is n

times differentiable in a right neighborhood of 0 and saitsfies

= Σ
A 0

as λ 4 0 iί;iί/ι n < α < n + 1 and a function K slowly varying at 0, then

μ[t, oo) ~ At~aK(llt) as t -> oo

where A = {Γ(a + l)sin π(a — n)}/τr.

Proo/. By Lemma 7.6,

^ . + i ( < ) = Γ Γ * Γ ^dt*)dt^ " d t n
Jtjtn Jtx

is well defined and its Laplace transform satisfies
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Γ e-uFn+ί{t)dt = λ-n-ιK(λ) as n o .
Jo

By the Tauberian theorem,

Fn+i(t) ~ -=r, t~ia~n)K(l/t) as t -> oo .
Γfa + 1 — a)

Note that FΛ(ί) (1 <I /? ̂  ^ + 1) are monotone functions. Differentiating

Fn+xit) n times, we have

μ[t,oo) = F&) ~ At-aK(llt) as t -> oo

The proof is complete.

Proof of Theorem 5. Let n be a nonnegative integer satisfying n <. a

< n + 1. Let mi = fli((— x)—) for x > 0. Let ψ, Λj, Λ2 and h be functions

defined by (6.2), (6.3), (6.5) and (6.6), respectively. By Lemma 7.5, hx = Φ(mx)

is ?z times differentiable in a right neighborhood of 0 and satisfies

as n ohx{x) Σ λ ( iy

with a function M slowly varying at 0. Write the function h as h{λ) =

hι(λ)lg(λ) where g(Λ) = 1 + h^lthiλ). Noting that Λ2 is analytic near the

origin, we have that g(λ) is n times differentiable in a right neighborhood

of 0 and satisfies

g(X) = f; * ^ ^ + ( - l) n + 1 (-r^r- + o(ΐ))λ M(λ)
λ =o k\ \ n2(υ) /

as λ I 0. Since £(0) > 0, we can apply Lemma 7.1 to Λ. We have that h

is 7i times differentiable in a right neighborhood of 0 and satisfies

h(λ) = Σ ^P-λk + ( - 1Y+\A + o(l))λ M(λ)

as ^ j 0 where A = [Λ2(0)/(Λt(0) + Λ2(0))]2 > 0. Since ψ(6, )̂ is an entire

function of λ and ψ(6, 0) = 6,

L o(ϊ))λ M(λ)

as λ j 0. By Lemma 7.7, we get the conclusion. The proof is complete.

Proof of Theorem 6. Let m^x) = m((— x)—) for x > 0. Let ψ, Λ1? Λ
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and h be functions defined by (6.2), (6.3), (6.5) and (6.6), respectively. Then

hx = Φ(m^. Define hf as in Lemma 7.3 for hu Set f(λ) = λhx(X). Let n

be an integer such that n < a < n + 1. Let us show that the function /

is n times differentiable in a right neighborhood of 0 and satisfies

(7.19) /(a) = Σ J-rrLtK + (- D d + o(i))λ°N(λ)

k=o n\

as λ I 0. Let 0 < α < 1. Then, by Lemma 7.3(i),

m?(x) = φ-\h*)(x) - x(1-a)~1-1M(x) as x ->

with a function ikί slowly varying at oo. By Lemma 5.8,

hf(X) - λ—Wiλ) a s ^ j θwith a function iV slowly varying at 0. This implies (7.19). Now let

a > 1. Then by Lemma 7.3 (ii), Z* = l(mf) < 00 and

mf(x) - (/* - x ) - ^ - 1 - 1 ^ / * - x) as x -> /*

with a function M slowly varying at 0. By Lemma 7.5, we have

h*(λ) = Σ

sa /I 4 0 with a function N slowly varying at 0. We have (7.19) in a

similar way for g(X) in the proof of Lemma 7.2. Note that, by Lemma 5.3,

/(O) = lim λhx{λ) = l/m^oo - ) > 0 .

i i o

The function h(X) is written as follows:

h(λ) = f(λ)ht(λ)l{f(λ) + λh,(λ)} = Λ2(0)

where

p(X) = f(λ) + λh,{λ)

and

q(λ) =

By (7.19), the functions, p and q are rc times differentiable in a right

neighborhood of 0 and satisfy

P(λ) = ±^β-λk + (- 1) (1 + o(ϊ))λ'N(X)
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as λ 4 0 and

Q(X) = £ ^P_χ* + (_ i)nW(0) + o(ΐ))λ"N(X)

as λ I 0. Let us apply Lemma 7.1 to r(λ) = q(λ)jp(λ). Note that p(0) = /(0)

and g(0) = /(0)Λ£(0) - /*2(0)2. Thus the constant M appearing in Lemma 7.1

for rC*) is given by M = ( — l)nΛf where ΛΓ = {Λ2(0)//(0)}2 > 0. Hence we

have, by Lemma 7.1.

h(λ) = Λ(0) + 4 Σ - ζ ^ * + ( - Dn(M' + oO))λ"N(λ))
U=o £ ! J

as Λ j 0. Since ψ(b, X) is an entire function of λ,

λ" + ( - ΐ)n+\M;lb + o(ΐ))λ«+1N{λ)Σλ

as ^ 4 0. By Lemma 7.7, we have

μ[t, °°) - t-«-ιL(t) as t-+ oo

where L is a function slowly varying at infinity. This completes the proof.

REFERENCES

[ 1 ] Bondesson, L., Classes of infinitely divisible distributions and densities, Z. Wahrsch.
Verw. Gebiete, 57 (1981), 39-71.

[ 2 ] Donoghue, W. F., Jr., Monotone matrix functions and analytic continuation,
Springer, Berlin Heidelberg New York, 1974.

[ 3 ] Dym, H. and McKean, H. P., Gaussian processes, function theory, and the inverse
spectral problem, Academic press, New York San Francisco London, 1976.

[ 4 ] Has'minskii, R. Z., Stochastic stability of differential equations, Sijthoff & Noσrd-
hoff, Alphen aan den Rijn Rockville, 1980.

[ 5 ] Ito, K. and McKean H. P., Jr., Dffusion processes and their sample paths, second
printing, Springer, Berlin Heidelberg New York, 1974.

[ 6 ] Kac, I. S. and Krein, M. G., On the spectral functions of the string, A. M. S. Trans-
lations Series 2, Vol. 103 (1974), 19-102, (original in Russian, "Mir", Moscow
(1968), 648-737).

[ 7 ] , Criteria for the discreteness of the spectrum of a singular string, Izv. Vyss.
Ucebn. Zaved. Mat., 2 (1958), 136-153, (in Russian).

[ 8 ] Kasahara, Y., Spectral theory of generalized second order differential operators
and its applications to Markov processes, Japan J. Math., 1 (1975), 67-84.

[ 9 ] Keilson, J., On the unimodality of passage time densities in birth-death processes,
Statist. Neerlandica, 35 (1981), 49-55.

[10] Kent, J. T., Eigenvalue expansions for diffusion hitting times, Z. Wahrsch. Verw.
Gebiete, 52 (1980), 309-319.

[11] Krein, M. G., On some classes of the effective determination of the densities of a
non-homogeneous string from its spectral function, Dokl. Acad. Nauk SSSR 93

https://doi.org/10.1017/S0027763000003172 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003172


172 MAKOTO YAMAZATO

(1953), 617-620 (in Russian).
[12] Kotani, S. and Watanabe, S., Krein's spectral theory of strings and generalized

diffusion processes, Functional Analysis in Markov Processes (M. Fukushima, ed.),
Lecture Notes in Math., 923 (1982), 235-259, Springer, Berlin Heidelberg New
York.

[13] Seneta, E., Regularly varying functions, Lecture notes in Math., 58 (1976),
Springer, Berlin Heidelberg New York.

[14] Stone, C, Limit theorems for random walks, birth and death processes, and diffu-
sion processes, Illinois J. Math., 7 (1963), 638-660.

[15] Widder, D. V., The Laplace Transform, Princeton Univ. Press, Princeton, 1972.
[16] Yamazato, M., Characterization of the class of upward first passage time distri-

butions of birth and death processes and related results, J. Math. Soc. Japan, 40
(1988), 477-499.

Department of Mathematics
Nagoya Institute of Technology
Gokiso, Showa-ku
Nagoya, 466
Japan

https://doi.org/10.1017/S0027763000003172 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000003172



