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If V is a variety of metabelian Lie algebras then V has a finite basis for its
laws [3]. The proof of this result is similar to Cohen’s proof that varieties of
metabelian groups have the finite basis property [1]. However there are centre-
by-metabelian Lie algebras of characteristic 2 which do not have a finite basis
for their laws [4]; this contrasts with McKay’s recent result that varieties of
centre-by-metabelian groups do have the finite basis property [2]. The rollowing
theorem shows that once again ‘2’ is the odd man out.

THEOREM. If V is a variety of centre-by-metabelian Lie algebras over a
field K, and if the characteristic of K is not 2, then V has a finite basis for its
laws.

The notation will follow [4]. Throughout this paper K will denote a field
whose characteristic is not 2,

Let X be the free Lie algebra over K freely generated by x,, x,,-:-. Then the
variety of centre-by-metabelian Lie algebras over K is determined by the law
((x1%2) (x3x4))xs. Let F =X [(X*)*X and for i =1,2,--- let y, denote the image
of x; under the canonical epimorphism from X onto F. Then F is the free centre-
by-metabelian Lie algebra over K freely generated by y,,y,,--.

The theorem is equivalent to the following proposition.

PROPOSITION. F satisfies the ascending chain condition on fully invariant
ideals.

Now if V is a variety of metabelian Lie algebras then V has a finite basis for
its laws [3], and so F /(F?)? satisfies the ascending chain condition on fully in-
variant ideals. It follows that to prove the proposition it is sufficient to show that
F satisfies the ascending chain condition on fully invariant ideals of F contained
in (F?)2. The proof follows the method developed by Cohen in [1].

For each element ge(F*)? I shall define the weight of g, an element wt
g e(F?)2. 1 shall define a partial well ordering, <, and a well ordering, <, on the
set S of weights of elements of (F2)2, (A partially ordered set (S, <) is said to be
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partially well ordered if every infinite sequence of elements of S contains an
ascending subsequence. This is equivalent to the property that for every subset
T < S there is a finite subset T, = T such that for each te T there is an element
se Ty, s < t.) The partial well ordering <{ and the well ordering < will be used to
show that fully invariant ideals of F contained in (F?)? are finitely generated as
fully invariant ideals. This is equivalent to the ascending chain condition on fully
invariant ideals of F contained in (F?)?.

All products will be left-normed; thus abc denotes (ab)c.

If a, b are elements of a Lie algebra then let ab® = a,(ab'~V)b for i=1,2,---.

Let @ be the set of one-one order preserving maps of the positive integers
into the positive integers.

Let A be the set of infinite sequences of finite support of non-negative in-
tegers. Addition of elements of A4 is defined componentwise, i.e.

(“l,aZs"') + (Bhﬂb"') = ((X1+ “2’191 + BZa"')'

Define a partial ordering < on 4 by

(1,02,77) = (Bys B2, )
ifo; £B; fori=1,2,---.If pe® and o = (o3, 05, ) e 4 let

G¢ = (ﬁlsﬁ25"')
where f; =0 if i¢Im¢, B, =o; for i=1,2, ..
If i,j,k,l are positive integers, and if & = («;,0%5,,4,,,0,0,---)e 4 let

(i,j, k, 1; )
denote the element
Gy yTys -y Yey)
of (F?)>. By 2.8 of [4] the set
S = {(i,j, k. l;@): i,j,k,1 positive integers, ae A}

spans (F?)* as a vector space over K.
Define a partial ordering < on S as follows. Let

GJ, kL)< (p,q,7,5; B)

if there is an element ¢ € ® such that

ey ip = pjo=q,k¢p=r, Ip =s,
(2) 29 = B,

and if

M8
M8

3)

n

o, =
1 n

ﬁn mod2, where o = (al’aZ""), B = (ﬁl:ﬂZ&"')'

I
I

1
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Let < = denote the partial ordering of S determined by properties (1) and (2).
Then by Proposition 4.4 [5] (S, < #) is partially well ordered. Hence every infinite
sequence of elements of S contains a subsequence which is ascending with respect
to < #. This subsequence must contain a subsequence which also satisfies property
(3). Hence (S, <) is partially well ordered.

Defined a full ordering £ on S as follows.

Let
(i’jak:l; (alsab"')) < (p,q, r,s; (Blaﬁl’ ))
if one of the following conditions holds

(@i<p.

(b) i=p,j<gq.

©i=pj=q, k<r.

di=p,j=qg,k=rl<s.

(e)i=p,j=gq, k=r,l=s,and, for some n, o, < §,, &, = B, for m >n.

Then (S, £) is well ordered.
Let ge (F?)?, g # 0. Then g can be written as a linear combination

A.lsl +1282 + - +lns,,

where 4,,1,, -, A, are non-zero elements of K and s,,s,, -+, s, are distinct elements
of S. Let the weight of g, wt g, be the greatest element under £ of the set
{51552, +*",S,3. (Strictly speaking I have defined the weight of the particular
epresentation A;s; + 4,5, + -+ + 4,5, of g.)

LemMa 1. If p= (B, B2, )e A and X,°-1 B, =0 mod 2 and if (i,j,k,l; )
€S then the fully invariant ideal of F generated by (i,j, k,l;a) contains
(i, k, L+ B).

PROOF. Let 0 be the endomorphism of F determined by

0=y, + y,
forr=1,2,---. Then

13200 = e+ y1y) (2 + y2yn)
Y1V2 + (1Yn)y2 + ¥1(¥2yn) + (V1Yn) (V2yn)
= y1¥2 + ¥1V2Vn + (V1Y2) (¥29,) by the Jacobi identity

Y1¥2 + ¥1¥2Y, modulo (F?)2.

By induction

D1y Ym0 = Y1¥2** Ym + Y1V2 " YmY, modulo (F?)2.
Hence
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(Y2 Y Omt 1 Y+ 2))0
= (V1V2 YmF V1V2" VuVn + @) Ums1 Ymi2t Ymt1 Yms2Va + B)
where g, he (F?)?
= (Y1Y2" Vm) Ums1 Yms2)
+ G2 YY) Oma1Vme2) + V1Y2 " V) Umt 1 Yt 2 V)
+ W12 YmVn) Oms 1 Vs 2 Vo)
since (F?)*=0
= V2 V) Um+1Vm+2)
+ V12 V) Vst Ym+ 2DV
—= 1Y2 YnVnV) Omt 1 Yme2) + (D1Y2 2 YmVn) Vit 1 Ym+ 2)Vn
by the Jacobi identity
1Y2* V) Ums 1 Ym+2)

il

= 2 YmVaVn) Omst Yms2)
since (F?)2F =0.

Hence (3,7, YiuVuV) Um+1 Vme2) is in the fully invariant ideal generated by

1Y2 V) m+1 Ym+2)- Suppose that n > m + 2 and substitute y, ., + y,,, for
y.- We obtain

1Yz Ym VYt 1Vt ) Vs 1 Vs 2)
+ V1Y2 " YmVns2Vnt2) Ume 1 Ym+2)
+ Y2 YmVnt1Vns2) Ums1 Vms2)
+ V1Y2 YmYne2Vns ) Umt1 Ym+2)
= (11V2 YmVns 1Y+ 1) Ums 1 Yms2)
+ 012 YmVn+2Vn42) OUme 1 Yms2)
+ 20012 Ym Y+ 1Yn42) Ums 1 Y 2)
by the Jacobi identity, since (F?)3 = 0.

Now the characteristic of K is not 2, and so the fully invariant ideal of F generated

by (V1Y2:* Ym) Ut 1 Ym+2) CONLAINS (V1V3 " Y Vus 1 Yo+ 2) Yms 1 Yms2). By in-
duction, if r = 0 mod 2 the fully invariant ideal of F generated by (y,¥2:** ¥m)

(Vs 1 Ym+2) contains (3152 Ym Vas1 " Ynir) Ums 1 Yma2)-
Now let
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(i ke =Ly 1 v e y)

and let X, 8, =r. Then by the above remarks, provided n > i,j,k, I, m, the
fully invariant ideal generated by (i,j, k, l; o) contains

Gyt Y Yes 1 Yasz " Yard V)
and so contains
(ko + B) = iy yEt eyt y2) (e y)
where s is chosen so that §, = 0 for r > s.

COROLLARY. If B =(B,,B1, )€ A and if £,2,B,= 0 mod 2 then the fully
invariant ideal generated by

g= 2 )'m (im’jm’kms lm; am)
m=1
contains

m=1

PrOOF. Apply the proof of Lemma 1 to g.

LEMMA 2. (@) If ¢pe® and if s,t€S, s <t then s¢p* < tp*, where ¢* is the
endomorphism of F given by y,¢* = y s forr=1,2,+--.

() If (Lj,k,l;a) <(p,q,7,5; B) then (i,j,k,l;0 +7) <(p,q,7,5; B +7) for
all ye A.

The proof of Lemma 2 is straightforward.

LemMA 3. If g, he (F*)? and if wt g < wt h then there is an element g* in the
fully invariant ideal of F generated by g such that wtg* = wt h.

Proor. Let wt g = (i,j, k,l; &), wt h = (p,q,r,s; B) and let ¢ € @ satisfy
Dig=p,jd=q, k¢ =r,1lp=s5,
(2 ao =B,

3) § o, = E‘. B, mod 2.
n=1 n=1

Let ¢* be the endomorphism of F determined by y,¢* = y,, forn=1,2,-.-. Then

Gk, L a)p* = (p,g,r,s;90)
and by Lemma 2 this is wt(g¢*).

Since X7, o, = X2, B, mod 2, by the corollary to Lemma 1, and by Lemma
2, the fully invarjant ideal generated by g¢* contains an element with weight

https://doi.org/10.1017/5144678870001315X Published online by Cambridge University Press


https://doi.org/10.1017/S144678870001315X

264 M. R. Vaughan-Lee [6]

v.9,7,5;0¢9 + (B—ag))
= (P’q’r’s; B)
= wt h.

This completes the proof of Lemma 3.

Let I be an ideal of F contained in (F?)2. Since the set of weights of elements
of (F?)? is partially well ordered by <{ there is a finite subset G = I with the property
that for each h e I there is an element g € G such that wt g <wt h.

Let hel and let g € G, wt g < wt h. Then by Lemma 3 there is an element g*
of the fully invariant ideal generated by g such that wt g* = wt h. But then for
some Ae K wi(h + Ag*)< wt h. Since £ is a well ordering on S it follows, by
induction on wt h, that h is in the fully invariant ideal generated by G. This com-
pletes the proof of the proposition.

With minor modifications this proof gives the following result.

If V is a variety of Lie algebras over a field K, if the characteristic of K is
not 2, and if V satisfies the law

(x1%2) (X3%4)X5X 5+ X,,

for some n, then V has a finite basis for its laws.
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