CENTRE-BY-METABELIAN LIE ALGEBRAS

M. R. VAUGHAN-LEE

(Received 11 September 1970) Communicated by G. E. Wall

If V is a variety of metabelian Lie algebras then V has a finite basis for its laws [3]. The proof of this result is similar to Cohen's proof that varieties of metabelian groups have the finite basis property [1]. However there are centreby-metabelian Lie algebras of characteristic 2 which do not have a finite basis for their laws [4]; this contrasts with McKay's recent result that varieties of centre-by-metabelian groups do have the finite basis property [2]. The rollowing theorem shows that once again "2" is the odd man out.

THEOREM. If V is a variety of centre-by-metabelian Lie algebras over a field K, and if the characteristic of K is not 2, then V has a finite basis for its laws.

The notation will follow [4]. Throughout this paper K will denote a field whose characteristic is not 2.

Let X be the free Lie algebra over K freely generated by x_1, x_2, \cdots . Then the variety of centre-by-metabelian Lie algebras over K is determined by the law $((x_1x_2)(x_3x_4))x_5$. Let $F = X/(X^2)^2X$ and for $i = 1, 2, \cdots$ let y_i denote the image of x_i under the canonical epimorphism from X onto F. Then F is the free centre-by-metabelian Lie algebra over K freely generated by y_1, y_2, \cdots .

The theorem is equivalent to the following proposition.

PROPOSITION. F satisfies the ascending chain condition on fully invariant ideals.

Now if V is a variety of metabelian Lie algebras then V has a finite basis for its laws [3], and so $F/(F^2)^2$ satisfies the ascending chain condition on fully invariant ideals. It follows that to prove the proposition it is sufficient to show that F satisfies the ascending chain condition on fully invariant ideals of F contained in $(F^2)^2$. The proof follows the method developed by Cohen in [1].

For each element $g \in (F^2)^2$ I shall define the weight of g, an element wt $g \in (F^2)^2$. I shall define a partial well ordering, \leq , and a well ordering, \leq , on the set S of weights of elements of $(F^2)^2$. (A partially ordered set (S, \leq) is said to be

259

partially well ordered if every infinite sequence of elements of S contains an ascending subsequence. This is equivalent to the property that for every subset $T \subseteq S$ there is a finite subset $T_0 \subseteq T$ such that for each $t \in T$ there is an element $s \in T_0, s \leq t$.) The partial well ordering \leq and the well ordering \leq will be used to show that fully invariant ideals of F contained in $(F^2)^2$ are finitely generated as fully invariant ideals. This is equivalent to the ascending chain condition on fully invariant ideals of F contained in $(F^2)^2$.

All products will be left-normed; thus abc denotes (ab)c.

If a, b are elements of a Lie algebra then let $ab^0 = a, (ab^{i-1})b$ for $i = 1, 2, \cdots$.

Let Φ be the set of one-one order preserving maps of the positive integers into the positive integers.

Let A be the set of infinite sequences of finite support of non-negative integers. Addition of elements of A is defined componentwise, i.e.

$$(\alpha_1, \alpha_2, \cdots) + (\beta_1, \beta_2, \cdots) = (\alpha_1 + \alpha_2, \beta_1 + \beta_2, \cdots).$$

Define a partial ordering \leq on A by

$$(\alpha_1, \alpha_2, \cdots) \leq (\beta_1, \beta_2, \cdots)$$

if $\alpha_i \leq \beta_i$ for $i = 1, 2, \cdots$. If $\phi \in \Phi$ and $\alpha = (\alpha_1, \alpha_2, \cdots) \in A$ let

$$\boldsymbol{\alpha}\phi = (\beta_1, \beta_2, \cdots)$$

where $\beta_i = 0$ if $i \notin \text{Im}\phi$, $\beta_{i\phi} = \alpha_i$ for $i = 1, 2, \cdots$.

If i, j, k, l are positive integers, and if $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m, 0, 0, \dots) \in A$ let

$$(i,j,k,l;\alpha)$$

denote the element

$$(y_i y_j y_1^{\alpha_1} y_2^{\alpha_2} \cdots y_m^{\alpha_m})(y_k y_l)$$

of $(F^2)^2$. By 2.8 of [4] the set

$$S = \{(i, j, k, l; \alpha): i, j, k, l \text{ positive integers, } \alpha \in A\}$$

spans $(F^2)^2$ as a vector space over K.

Define a partial ordering \leq on S as follows. Let

$$(i,j,k,l;\boldsymbol{\alpha}) \preccurlyeq (p,q,r,s;\boldsymbol{\beta})$$

if there is an element $\phi \in \Phi$ such that

(1)
$$i\phi = p, j\phi = q, k\phi = r, l\phi = s,$$

(2) $\alpha\phi \leq \beta,$

and if

(3)
$$\sum_{n=1}^{\infty} \alpha_n \equiv \sum_{n=1}^{\infty} \beta_n \mod 2$$
, where $\alpha = (\alpha_1, \alpha_2, \cdots), \beta = (\beta_1, \beta_2, \cdots)$.

261

Let $\preccurlyeq \ast$ denote the partial ordering of S determined by properties (1) and (2). Then by Proposition 4.4 [5] $(S, \preccurlyeq \ast)$ is partially well ordered. Hence every infinite sequence of elements of S contains a subsequence which is ascending with respect to $\preccurlyeq \ast$. This subsequence must contain a subsequence which also satisfies property (3). Hence (S, \preccurlyeq) is partially well ordered.

Defined a full ordering \leq on S as follows.

Let

$$(i,j,k,l;(\alpha_1,\alpha_2,\cdots)) < (p,q,r,s;(\beta_1,\beta_2,\cdots))$$

if one of the following conditions holds

(a) i < p.
(b) i = p, j < q.
(c) i = p, j = q, k < r.
(d) i = p, j = q, k = r, l < s.
(e) i = p, j = q, k = r, l = s, and, for some n, α_n < β_n, α_m = β_m for m > n.

Then (S, \leq) is well ordered.

Let $g \in (F^2)^2$, $g \neq 0$. Then g can be written as a linear combination

$$\lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n$$

where $\lambda_1, \lambda_2, \dots, \lambda_n$ are non-zero elements of K and s_1, s_2, \dots, s_n are distinct elements of S. Let the weight of g, wt g, be the greatest element under \leq of the set $\{s_1, s_2, \dots, s_n\}$. (Strictly speaking I have defined the weight of the particular epresentation $\lambda_1 s_1 + \lambda_2 s_2 + \dots + \lambda_n s_n$ of g.)

LEMMA 1. If $\boldsymbol{\beta} = (\beta_1, \beta_2, \cdots) \in A$ and $\sum_{n=1}^{\infty} \beta_n \equiv 0 \mod 2$ and if $(i, j, k, l; \alpha) \in S$ then the fully invariant ideal of F generated by $(i, j, k, l; \alpha)$ contains $(i, j, k, l; \alpha + \beta)$.

PROOF. Let θ be the endomorphism of F determined by

$$y_r\theta = y_r + y_r y_n$$

for $r = 1, 2, \cdots$. Then

$$(y_1y_2)\theta = (y_1 + y_1y_n)(y_2 + y_2y_n)$$

= $y_1y_2 + (y_1y_n)y_2 + y_1(y_2y_n) + (y_1y_n)(y_2y_n)$
= $y_1y_2 + y_1y_2y_n + (y_1y_n)(y_2y_n)$ by the Jacobi identity
= $y_1y_2 + y_1y_2y_n$ modulo $(F^2)^2$.

By induction

$$(y_1y_2\cdots y_m)\theta = y_1y_2\cdots y_m + y_1y_2\cdots y_my_n \text{ modulo } (F^2)^2.$$

Hence

$$\begin{aligned} ((y_1y_2\cdots y_m)(y_{m+1}y_{m+2}))\theta \\ &= (y_1y_2\cdots y_m+y_1y_2\cdots y_my_n+g)(y_{m+1}y_{m+2}+y_{m+1}y_{m+2}y_n+h) \\ & \text{where } g, h \in (F^2)^2 \\ &= (y_1y_2\cdots y_m)(y_{m+1}y_{m+2}) \\ &+ (y_1y_2\cdots y_my_n)(y_{m+1}y_{m+2}) + (y_1y_2\cdots y_m)(y_{m+1}y_{m+2}y_n) \\ &+ (y_1y_2\cdots y_my_n)(y_{m+1}y_{m+2}y_n) \\ & \text{since } (F^2)^3 = 0 \end{aligned}$$
$$= (y_1y_2\cdots y_m)(y_{m+1}y_{m+2}) \\ &+ (y_1y_2\cdots y_m)(y_{m+1}y_{m+2}) + (y_1y_2\cdots y_my_n)(y_{m+1}y_{m+2})y_n \\ &- (y_1y_2\cdots y_m)(y_{m+1}y_{m+2}) + (y_1y_2\cdots y_my_n)(y_{m+1}y_{m+2})y_n \\ & \text{by the Jacobi identity} \end{aligned}$$

$$= (y_1 y_2 \cdots y_m)(y_{m+1} y_{m+2}) - (y_1 y_2 \cdots y_m y_n y_n)(y_{m+1} y_{m+2}) since (F^2)^2 F = 0.$$

Hence $(y_1y_2\cdots y_my_ny_n)(y_{m+1}y_{m+2})$ is in the fully invariant ideal generated by $(y_1y_2\cdots y_m)(y_{m+1}y_{m+2})$. Suppose that n > m+2 and substitute $y_{n+1} + y_{n+2}$ for y_n . We obtain

$$(y_{1}y_{2}\cdots y_{m}y_{n+1}y_{n+1})(y_{m+1}y_{m+2})$$

$$+ (y_{1}y_{2}\cdots y_{m}y_{n+2}y_{n+2})(y_{m+1}y_{m+2})$$

$$+ (y_{1}y_{2}\cdots y_{m}y_{n+1}y_{n+2})(y_{m+1}y_{m+2})$$

$$+ (y_{1}y_{2}\cdots y_{m}y_{n+2}y_{n+1})(y_{m+1}y_{m+2})$$

$$= (y_{1}y_{2}\cdots y_{m}y_{n+1}y_{n+1})(y_{m+1}y_{m+2})$$

$$+ (y_{1}y_{2}\cdots y_{m}y_{n+2}y_{n+2})(y_{m+1}y_{m+2})$$

$$+ 2(y_{1}y_{2}\cdots y_{m}y_{n+1}y_{n+2})(y_{m+1}y_{m+2})$$
by the Jacobi identity, since $(F^{2})^{3} = 0$.

Now the characteristic of K is not 2, and so the fully invariant ideal of F generated by $(y_1y_2\cdots y_m)(y_{m+1}y_{m+2})$ contains $(y_1y_2\cdots y_my_{n+1}y_{n+2})(y_{m+1}y_{m+2})$. By induction, if $r \equiv 0 \mod 2$ the fully invariant ideal of F generated by $(y_1y_2\cdots y_m)$ $(y_{m+1}y_{m+2})$ contains $(y_1y_2\cdots y_my_{n+1}\cdots y_{n+r})(y_{m+1}y_{m+2})$. Now let Centre-by-metabelian Lie algebras

$$(i,j,k,l;\boldsymbol{\alpha}) = (y_i, y_j y_1^{\alpha_1} \cdots y_m^{\alpha_m})(y_k y_l)$$

and let $\sum_{n=1}^{\infty} \beta_n = r$. Then by the above remarks, provided n > i, j, k, l, m, the fully invariant ideal generated by $(i, j, k, l; \alpha)$ contains

$$(y_i y_j y_1^{\alpha_1} \cdots y_m^{\alpha_m} y_{n+1} y_{n+2} \cdots y_{n+r})(y_k y_i)$$

and so contains

$$(i,j,k,l;\boldsymbol{\alpha}+\boldsymbol{\beta})=(y_i\,y_j\,y_1^{\alpha_1}\cdots\,y_m^{\alpha_m}y_1^{\beta_1}\cdots\,y_s^{\beta_s})(y_k\,y_l)$$

where s is chosen so that $\beta_r = 0$ for r > s.

COROLLARY. If $\beta = (\beta_1, \beta_2, \cdots) \in A$ and if $\sum_{n=1}^{\infty} \beta_n \equiv 0 \mod 2$ then the fully invariant ideal generated by

$$g = \sum_{m=1}^{n} \lambda_m (i_m, j_m, k_m, l_m; \alpha_m)$$

contains

$$\sum_{m=1}^{n} \lambda_m(i_m, j_m, k_m, l_m; \alpha_m + \beta)$$

PROOF. Apply the proof of Lemma 1 to g.

LEMMA 2. (a) If $\phi \in \Phi$ and if $s, t \in S$, s < t then $s\phi^* < t\phi^*$, where ϕ^* is the endomorphism of F given by $y_r\phi^* = y_{r\phi}$ for $r = 1, 2, \cdots$.

(b) If $(i,j,k,l;\alpha) < (p,q,r,s;\beta)$ then $(i,j,k,l;\alpha+\gamma) < (p,q,r,s;\beta+\gamma)$ for all $\gamma \in A$.

The proof of Lemma 2 is straightforward.

LEMMA 3. If g, $h \in (F^2)^2$ and if wt $g \leq wth$ then there is an element g^* in the fully invariant ideal of F generated by g such that $wtg^* = wth$.

PROOF. Let wt $g = (i, j, k, l; \alpha)$, wt $h = (p, q, r, s; \beta)$ and let $\phi \in \Phi$ satisfy

(1)
$$i\phi = p$$
, $j\phi = q$, $k\phi = r$, $l\phi = s$,

(2) $\alpha \phi \leq \beta$,

(3) $\sum_{n=1}^{\infty} \alpha_n \equiv \sum_{n=1}^{\infty} \beta_n \mod 2.$

Let ϕ^* be the endomorphism of F determined by $y_n \phi^* = y_{n\phi}$ for $n = 1, 2, \dots$. Then

$$(i,j,k,l;\alpha)\phi^* = (p,q,r,s;\alpha\phi)$$

and by Lemma 2 this is $wt(g\phi^*)$.

Since $\sum_{n=1}^{\infty} \alpha_n \equiv \sum_{n=1}^{\infty} \beta_n \mod 2$, by the corollary to Lemma 1, and by Lemma 2, the fully invariant ideal generated by $g\phi^*$ contains an element with weight

$$(p,q,r,s;\alpha\phi + (\beta - \alpha\phi))$$

= $(p,q,r,s;\beta)$
= $wt h.$

This completes the proof of Lemma 3.

Let I be an ideal of F contained in $(F^2)^2$. Since the set of weights of elements of $(F^2)^2$ is partially well ordered by \leq there is a finite subset $G \subseteq I$ with the property that for each $h \in I$ there is an element $g \in G$ such that wt $g \leq wt h$.

Let $h \in I$ and let $g \in G$, wt $g \leq wt h$. Then by Lemma 3 there is an element g^* of the fully invariant ideal generated by g such that $wt g^* = wt h$. But then for some $\lambda \in K$ wt $(h + \lambda g^*) < wt h$. Since \leq is a well ordering on S it follows, by induction on wt h, that h is in the fully invariant ideal generated by G. This completes the proof of the proposition.

With minor modifications this proof gives the following result.

If V is a variety of Lie algebras over a field K, if the characteristic of K is not 2, and if V satisfies the law

$$(x_1x_2)(x_3x_4)x_5x_5\cdots x_n$$

for some n, then V has a finite basis for its laws.

References

- [1] D. E. Cohen, 'On the laws of a metabelian variety', J. Algebra, 5 (1967), 267-273.
- [2] Susan McKay, Some problems in group theory (Oxford D. Phil. thesis, 1970).
- [3] M. R. Vaughan-Lee, Some varieties of Lie algebras (Oxford D. Phil. thesis, 1968)).
- [4] M. R. Vaughan-Lee, 'Varieties of Lie algebras', Quart. J. Math. Oxford Ser. 21 (1970), 297– 308.
- [5] M. R. Vaughan-Lee, 'Abelian-by-nilpotent varieties', Quart. J. Math. Oxford Ser. 21 (1970), 193-202.

University of Queensland Australia

Present address

Christ Church, Oxford England