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THE AVERAGE DISTANCE PROPERTY OF
CLASSICAL BANACH SPACES II

AlCKE HlNRICHS AND JORG WENZEL

A Banach space X has the average distance property if there exists a unique real
number r such that for each positive integer n and all x\,... ,xn in the unit sphere
of X there is some a; in the unit sphere of X such that

l-Y\\Xk-x\\=r.
nfc=l

We show that lp does not have the average distance property if p > 2. This completes
the study of the average distance property for lp spaces.

1. INTRODUCTION

The aim of this note is to finish the study of the average distance property of lp and
Lp[0,1] for 1 ^ p ^ oo using and refining the method introduced in [1]. We start by
giving a short review of that method. The reader is referred to [1] for further information
and to the pointers to the literature therein.

A rendezvous number of a metric space (M, d) is a real number r with the property
that for each positive integer n and Xi,..., xn € M there exists x 6 M such that

1 v^

We say that a (real or complex) Banach space X has the average distance property if its
unit sphere has a unique rendezvous number. It is known that l2 and L2[0,1] have the
average distance property ([4]) and that lp and Lp[0,1] do not have the average distance
property if 1 ^ p < 2 and if p ^ 3, see [3] and [1], respectively. Here we prove the
following result.

THEOREM 1 . Forp > 2, lp and Lp[0,1] do not have the average distance property.

Received 10th December, 2001
The first author was supported by DFG grant Hi 584/2-2 and the second author was supported by DFG
grant We 1868/1-1.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 SA2.00+0.00.

511

https://doi.org/10.1017/S0004972700020566 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700020566


512 A. Hinrichs and J. Wenzel [2]

In [1], using an improved Clarkson inequality, the study of the average distance

property for lp and Lp in the case p > 2 was reduced to the study of a scalar function

as follows. For n € N, p > 2 and x,y\,...,yn G lp or Lp such that ||x||p = 1/n. and

f: \\yi\\' = 1 define

It follows that

7T- ̂  " i ̂  —z— and2n 2n

Let ut e [—1, +1] be defined by the relation

(2) a > = T T £ J
and let

TTkj
ei,...,£n=±l x i=l ' ! |

As pointed out in [1], in order to prove Theorem 1 for a fixed p > 2, it suffices to find n

such that ip > 1 for (ui,..., un) ^ (0 , . . , ,0) .

Considering the case Ui — 1 for i = 1 , . . . ,n, cti = l/(2n) for i = 1 , . . . , n — 1, and

«n = (n + l)/(2n) yields that

El,...,£n_!=±l V 1=1

which is smaller than 1 for p < 2.10528... .

This shows that, in contrast to [1], we have to take into account the concrete defi-

nition of the «j's and a^'s to be able to cover also the cases where p is close to 2. This

will be done in Proposition 2.
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The remaining part of the paper is the proof of Theorem 1, which follows from the

upcoming Propositions 6 and 8.

2. T H E RELATION O F at AND U{

We begin by providing an auxiliary estimate.

LEMMA 1 .
1 +

forue [0,1].

PROOF: Let g(u) :- (l + u)/(l + up)l/p. Note that

while
(p + 1)(1 - u"-l)u"-' + (p -

5 ( W ) =
5 ( W ) =

This means that g is a concave function on [0,1] and therefore g(u) ^ g(0)+(g(l)-g(0))u.

This proves the assertion. D

PROPOSITION 2 . If a, and u{ are defined by (1) and (2), then

where cy = max(21-1/P, 1/(2 - 2 ^ ) ) .

P R O O F : We split the proof into three cases.

F I R S T CASE.

on ^ - .
n

Since C\ ^ 1, in this case

C l n - l / p a - 1 / p .

SECOND CASE.

at> — and ut ^ 0.
n

Then
""-" = ( 1 -

and it follows from the definition (2) of u^ that

n ^ > (1"Ui)P = t = l|a: ~yi||P - 11 J Vi \\P

11 UiJ ^ ll ||1 V/ p f 1 V/PY
lain) \2oLin) )
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Now, using the relations

V "
2a,n

which follow from a* ^ l / (2n), we obtain

1 \i /p / 1 \i/p 1 / 1 \ V P /• 1 \ V P

From this we get

THIRD CASE.

on > — and Ui < 0.
n

It follows from Lemma 1 for u = —U{ that

Finally in this case

With this proposition in hand, we can forget about the concrete nature of the
and Ui's. All we have to show is that for given n and ai,...,an such that

1 . . n + 1 , ^
7T ^ at ^ —— and
2n In

the function

is bigger than one as long as

(3)

and {uu...,un) ^ (0, . . . , 0 ) .

Since all relations on the Uj's are symmetric and since the function ip is symmetric
in Ui, we can henceforth assume that Uj ^ 0.

3. P R O O F OF ip > 1, THE CASE OF MANY LARGE u^s

COROLLARY 3 .
n .

t= l '
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P R O O F : It follows from (3) that

1/2 / « \ 1/2

t=i

Since 2 - 2/p > 1 and a; < 1 we have

which proves the assertion.

LEMMA 4 . We have

and

/ X (1 + U) ' - (1 - U)
(5)

for u € [0,1], wiiere c2 := 2P~2 - 1 and c3 := p2J>~1.

PROOF: TO see (4), we let

and use the fact that (1 + u ) p - 1 + (1 - u)v~l is non-increasing for p > 2, to compute

Therefore g(u) ^ 5(1) = 2P — 2, which yields

(1 + u)p + (1 - u)p ^ 2 + (2P - 2)up = 2(1 + up) + (2P - 4)u".

Division by 2(1 + up) and 1 + u" < 2 proves (4).

Since 2u/(l + u) ^ 1, Bernoulli's inequality states

() l+u

It follows that

which proves (5). D

The following Lemma is known as a subgaussian tail estimate for Rademacher aver-
ages and is by now classical. A proof can be found for example, in [2, p. 90].
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/ „ \ i / 2
LEMMA 5 . For a given vector x = ( f i , . . . , f n ) , let | |x||2 := £ |&|2 and

\i=l )

B : = I ( e i , . . . , e n ) : J2e£i > t | | x | | 2 J , then

2-n|B| ^ e"t2/2.

We are now ready to tackle the case, where 'many' of the u;'s are bigger than 1/2.

PROPOSITION 6 . There exists rii such that for all n > n\ we have

if |A| > n /2 , where A := {i : ut > 1/2}.

P R O O F : With v and w defined as in Lemma 4, observe that

v(u) + ew(u) = -—

for e = ±1. Put

Since by (5) and Corollary 3

V2 /_2_ _ N l / 2

^ c 3 l

it follows from Lemma 5 that
2— n | i a i | -«> 1|JBS| ? 1 .

Th

With these preliminaries we can estimate <p as follows

i p ( u i , . . . , 7 x n ) ^ 2

/ " n

n ^ f ^ a j u ( u i ) + ^ a i e i t u ^
(£1 £n)€B ^ 1=1 t=l

1 / n

n ^ t=i

From (4) and the assumption on A it follows that

c4l

where C4 :=
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Since C4 > 0, we can now choose n\ so that for all n > n\

/ P < | a n d

By these assumptions on n

¥>(Ul>... ,un) > ( l - i ) ( l + c4 -

This proves the assertion. D

4. PROOF OF ip > 1, THE CASE OF FEW LARGE W,'S

From now on, we shall only deal with the case |A| ̂  n/2. So for the rest of this
section, we assume that

(6) |A| < J , where A = {»: u,- > 1/2}.

LEMMA 7 . Denote

• = C1 - " 2 ) p (

Then lim /(M) = lim /(u) = 0 and / is bounded on [0,11.
u-»0 u-»l

PROOF: Note that the derivative of the function (1 ± u)p(l =F UP~1)P/I-P~1') is

±p(l ± uy-\l T u"-1)"'0"^ T P(l ± u)p(l =F u"

Since p > 2 we therefore have

lim -£-(1 + u)p(l - UP-1)P/(P-D _ lim A ( i _ u)P(i +

By l'Hopital's rule

(1 + uP-1)"^-!) _ (1 _ uy-t)p/(p-i)

= 0.

On the other hand, again by l'Hopital's rule it follows that

(1_UP-I)V(P-1) uP-2
lim = hm j - , . . . . = +00.

1 (1 P I ) ( P 2 ) / ( P I )
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Therefore

lim f{u) = lim

UP-1)P/P - I )

(1 - U)P (1 + U)P

= 0.

The boundedness of / on [0,1] now follows from its continuity in (0,1) and the bound-
edness of the limits of f(u) for u —> 0 and u —¥ 1. D

We can now also treat the remaining case, where only 'few' of the Uj's are bigger
than 1/2. In this case, the next proposition shows that <p(u\,... ,un) > y?(0,... ,0) = 1,
provided tha t n is big enough. This completes the proof of Theorem 1.

PROPOSITION 8 . There exists n% ^ n\ such that for all n > n-i we have

d<p

for all j — 1 . . . . , n and all Ui,..., un satisfying (6).

PROOF: Note that

d^ a, 2_n (l + ^ q p
( ) 2

We shall show that for every ex,... ,ej-i,£j+i, ...en the summand

E,=±l

is positive.
To this end we denote

t = l
#i

and show that
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Some manipulations show that this is equivalent to

o,-(ui,... ,un) > ajf(uj),

where / is the function defined in (7) in Lemma 7.

Using (6), we see that

. 2~p 1 1
n 1 + 2-P 8 1 + 2P

if n ^ 4 and c5 := 1/(8 + 2P+3). It is hence enough to show that

(8) c5 > ajHuj).

Since liniu^o / ( " ) = 0 by Lemma 7, we can find 6 > 0 small enough such that

for up < 5. Since / is also bounded by Lemma 7, we can choose

n ^ ri2 := max ( —

If Q!j < Cs/ll/Hoo then obviously (8) holds.

If on the other hand <Xj ^ Cs/H/Hoo then

5

and by (3)

Consequently
Oj y ^ Uj J ^ Ckj C5 ^ C5 j

since a ; ^ 1.

This proves the assertion. D

REMARK. Using the methods developed in Sections 3 and 4, it can be shown that without
Relation (3) one can prove the result of the main theorem for all p > po, where

Po := inf{p >2:g> 2<1+1/p>}= 2.2751...

and
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