THE AVERAGE DISTANCE PROPERTY OF CLASSICAL BANACH SPACES II

Aicke Hinrichs and Jörg Wenzel

A Banach space X has the average distance property if there exists a unique real number r such that for each positive integer n and all x_{1}, \ldots, x_{n} in the unit sphere of X there is some x in the unit sphere of X such that

$$
\frac{1}{n} \sum_{k=1}^{n}\left\|x_{k}-x\right\|=r
$$

We show that l_{p} does not have the average distance property if $p>2$. This completes the study of the average distance property for l_{p} spaces.

1. Introduction

The aim of this note is to finish the study of the average distance property of l_{p} and $L_{p}[0,1]$ for $1 \leqslant p \leqslant \infty$ using and refining the method introduced in [1]. We start by giving a short review of that method. The reader is referred to [1] for further information and to the pointers to the literature therein.

A rendezvous number of a metric space (M, d) is a real number r with the property that for each positive integer n and $x_{1}, \ldots, x_{n} \in M$ there exists $x \in M$ such that

$$
\frac{1}{n} \sum_{k=1}^{n} d\left(x_{k}, x\right)=r
$$

We say that a (real or complex) Banach space X has the average distance property if its unit sphere has a unique rendezvous number. It is known that l_{2} and $L_{2}[0,1]$ have the average distance property ($[4]$) and that l_{p} and $L_{p}[0,1]$ do not have the average distance property if $1 \leqslant p<2$ and if $p \geqslant 3$, see [3] and [1], respectively. Here we prove the following result.

ThEOREM 1. For $p>2, l_{p}$ and $L_{p}[0,1]$ do not have the average distance property.

The first author was supported by DFG grant Hi 584/2-2 and the second author was supported by DFG grant We 1868/1-1.
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/02 \$A2.00+0.00.

In [1], using an improved Clarkson inequality, the study of the average distance property for l_{p} and L_{p} in the case $p>2$ was reduced to the study of a scalar function as follows. For $n \in \mathbb{N}, p>2$ and $x, y_{1}, \ldots, y_{n} \in l_{p}$ or L_{p} such that $\|x\|^{p}=1 / n$ and $\sum_{i=1}^{n}\left\|y_{i}\right\|^{p}=1$ define

$$
\begin{equation*}
\sigma_{i}:=\frac{\left\|x-y_{i}\right\|^{p}}{\|x\|^{p}+\left\|y_{i}\right\|^{p}} \quad \text { and } \quad \alpha_{i}:=\frac{\|x\|^{p}+\left\|y_{i}\right\|^{p}}{2} \tag{1}
\end{equation*}
$$

It follows that

$$
\frac{1}{2 n} \leqslant \alpha_{i} \leqslant \frac{n+1}{2 n} \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i}=1
$$

Let $u_{i} \in[-1,+1]$ be defined by the relation

$$
\begin{equation*}
\sigma_{i}=\frac{\left(1-u_{i}\right)^{p}}{1+\left|u_{i}\right|^{p}} \tag{2}
\end{equation*}
$$

and let

$$
\varphi\left(x, y_{1}, \ldots, y_{n}\right):=2^{-n} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1}\left(\sum_{i=1}^{n} \alpha_{i} \frac{\left(1+\varepsilon_{i} u_{i}\right)^{p}}{1+\left|u_{i}\right|^{p}}\right)^{1 / p}
$$

As pointed out in [1], in order to prove Theorem 1 for a fixed $p>2$, it suffices to find n such that $\varphi>1$ for $\left(u_{1}, \ldots, u_{n}\right) \neq(0, \ldots, 0)$.

Considering the case $u_{i}=1$ for $i=1, \ldots, n, \alpha_{i}=1 /(2 n)$ for $i=1, \ldots, n-1$, and $\alpha_{n}=(n+1) /(2 n)$ yields that

$$
\begin{aligned}
& 2^{-n} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1}\left(\sum_{i=1}^{n} \alpha_{i} \frac{\left(1+\varepsilon_{i} u_{i}\right)^{p}}{1+\left|u_{i}\right|^{p}}\right)^{1 / p} \\
& \quad=2^{1-2 / p} 2^{-n} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1}\left(1+\frac{1}{2 n} \sum_{i=1}^{n-1} \varepsilon_{i}+\frac{n+1}{2 n} \varepsilon_{n}\right)^{1 / p} \\
& \quad=2^{-2 / p} \sum_{\varepsilon_{n}= \pm 1}\left(2^{-n+1} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n-1}= \pm 1}\left(1+\frac{1}{2 n} \sum_{i=1}^{n-1} \varepsilon_{i}+\frac{n+1}{2 n} \varepsilon_{n}\right)^{1 / p}\right) \\
& \quad \leqslant 2^{-2 / p} \sum_{\varepsilon_{n}= \pm 1}\left(1+2^{-n+1} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n-1}= \pm 1} \frac{1}{2 n} \sum_{i=1}^{n-1} \varepsilon_{i}+\frac{n+1}{2 n} \varepsilon_{n}\right)^{1 / p} \\
& \quad=2^{-2 / p}\left(\left(\frac{3}{2}+\frac{1}{n}\right)^{1 / p}+\left(\frac{1}{2}-\frac{1}{n}\right)^{1 / p}\right) \\
& \quad \leqslant 2^{-2 / p}\left(\left(\frac{3}{2}\right)^{1 / p}+\left(\frac{1}{2}\right)^{1 / p}\right)=\frac{3^{1 / p}+1}{8^{1 / p}}
\end{aligned}
$$

which is smaller than 1 for $p<2.10528 \ldots$.
This shows that, in contrast to [1], we have to take into account the concrete definition of the u_{i} 's and α_{i} 's to be able to cover also the cases where p is close to 2 . This will be done in Proposition 2.

The remaining part of the paper is the proof of Theorem 1 , which follows from the upcoming Propositions 6 and 8.

2. The relation of α_{i} and u_{i}

We begin by providing an auxiliary estimate.
Lemma 1.

$$
\frac{1+u}{\left(1+u^{p}\right)^{1 / p}} \geqslant 1+\left(2^{1-1 / p}-1\right) u
$$

for $u \in[0,1]$.
Proof: Let $g(u):=(1+u) /\left(1+u^{p}\right)^{1 / p}$. Note that

$$
g^{\prime}(u)=\frac{1-u^{p-1}}{\left(1+u^{p}\right)^{1+1 / p}} \geqslant 0
$$

while

$$
g^{\prime \prime}(u)=-\frac{(p+1)\left(1-u^{p-1}\right) u^{p-1}+(p-1)\left(1+u^{p}\right) u^{p-2}}{\left(1+u^{p}\right)^{2+1 / p}} \leqslant 0
$$

This means that g is a concave function on $[0,1]$ and therefore $g(u) \geqslant g(0)+(g(1)-g(0)) u$. This proves the assertion.

Proposition 2. If α_{i} and u_{i} are defined by (1) and (2), then

$$
\left|u_{i}\right| \leqslant c_{1} n^{-1 / p} \alpha_{i}^{-1 / p}
$$

where $c_{1}=\max \left(2^{1-1 / p}, 1 /\left(2-2^{1 / p}\right)\right)$.
Proof: We split the proof into three cases.

First case.

$$
\alpha_{i} \leqslant \frac{1}{n}
$$

Since $c_{1} \geqslant 1$, in this case

$$
\left|u_{i}\right| \leqslant 1 \leqslant\left(n \alpha_{i}\right)^{-1 / p} \leqslant c_{1} n^{-1 / p} \alpha_{i}^{-1 / p} .
$$

Second case.

$$
\alpha_{i}>\frac{1}{n} \quad \text { and } \quad u_{i} \geqslant 0
$$

Then

$$
\frac{\left\|y_{i}\right\|}{\left(2 \alpha_{i}\right)^{1 / p}}=\left(1-\frac{1}{2 \alpha_{i} n}\right)^{1 / p}>\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p}=\frac{\|x\|}{\left(2 \alpha_{i}\right)^{1 / p}}
$$

and it follows from the definition (2) of u_{i} that

$$
\begin{aligned}
\left(1-u_{i}\right)^{p} \geqslant \frac{\left(1-u_{i}\right)^{p}}{1+u_{i}^{p}}=\sigma_{i} & =\frac{\left\|x-y_{i}\right\|^{p}}{\|x\|^{p}+\left\|y_{i}\right\|^{p}}=\left\|\frac{x}{\left(2 \alpha_{i}\right)^{1 / p}}-\frac{y_{i}}{\left(2 \alpha_{i}\right)^{1 / p}}\right\|^{p} \\
& \geqslant\left(\left(1-\frac{1}{2 \alpha_{i} n}\right)^{1 / p}-\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p}\right)^{p}
\end{aligned}
$$

Now, using the relations

$$
1-\frac{1}{2 \alpha_{i} n} \leqslant\left(1-\frac{1}{2 \alpha_{i} n}\right)^{1 / p} \text { and } \frac{1}{2 \alpha_{i} n} \leqslant\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p}
$$

which follow from $\alpha_{i} \geqslant 1 /(2 n)$, we obtain

$$
u_{i} \leqslant 1-\left(1-\frac{1}{2 \alpha_{i} n}\right)^{1 / p}+\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p} \leqslant \frac{1}{2 \alpha_{i} n}+\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p} \leqslant 2\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p}
$$

From this we get

$$
\left|u_{i}\right|=u_{i} \leqslant 2^{1-1 / p} n^{-1 / p} \alpha_{i}^{-1 / p}
$$

Third case.

$$
\alpha_{i}>\frac{1}{n} \quad \text { and } \quad u_{i}<0
$$

It follows from Lemma 1 for $u=-u_{i}$ that

$$
1-\left(2^{1-1 / p}-1\right) u_{i} \leqslant \sigma_{i}^{1 / p} \leqslant\left(1-\frac{1}{2 \alpha_{i} n}\right)^{1 / p}+\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p} \leqslant 1+\left(\frac{1}{2 \alpha_{i} n}\right)^{1 / p}
$$

Finally in this case

$$
\left|u_{i}\right|=-u_{i} \leqslant \frac{1}{2-2^{1 / p}} n^{-1 / p} \alpha_{i}^{-1 / p}
$$

With this proposition in hand, we can forget about the concrete nature of the α_{i} 's and u_{i} 's. All we have to show is that for given n and $\alpha_{1}, \ldots, \alpha_{n}$ such that

$$
\frac{1}{2 n} \leqslant \alpha_{i} \leqslant \frac{n+1}{2 n} \quad \text { and } \quad \sum_{i=1}^{n} \alpha_{i}=1
$$

the function

$$
\varphi\left(u_{1}, \ldots, u_{n}\right):=2^{-n} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1}\left(\sum_{i=1}^{n} \alpha_{i} \frac{\left(1+\varepsilon_{i} u_{i}\right)^{p}}{1+\left|u_{i}\right|^{p}}\right)^{1 / p}
$$

is bigger than one as long as

$$
\begin{equation*}
\left|u_{i}\right| \leqslant c_{1} n^{-1 / p} \alpha_{i}^{-1 / p} \tag{3}
\end{equation*}
$$

and $\left(u_{1}, \ldots, u_{n}\right) \neq(0, \ldots, 0)$.
Since all relations on the u_{i} 's are symmetric and since the function φ is symmetric in u_{i}, we can henceforth assume that $u_{i} \geqslant 0$.

3. Proof of $\varphi>1$, the Case of many large u_{i} 's

Corollary 3.

$$
\left(\sum_{i=1}^{n}\left(\alpha_{i} u_{i}\right)^{2}\right)^{1 / 2} \leqslant c_{1} n^{-1 / p}
$$

Proof: It follows from (3) that

$$
\left(\sum_{i=1}^{n}\left(\alpha_{i} u_{i}\right)^{2}\right)^{1 / 2} \leqslant c_{1} n^{-1 / p}\left(\sum_{i=1}^{n} \alpha_{i}^{2-2 / p}\right)^{1 / 2}
$$

Since $2-2 / p>1$ and $\alpha_{i}<1$ we have

$$
\sum_{i=1}^{n} \alpha_{i}^{2-2 / p} \leqslant \sum_{i=1}^{n} \alpha_{i}=1
$$

which proves the assertion.
Lemma 4. We have

$$
\begin{equation*}
v(u):=\frac{(1+u)^{p}+(1-u)^{p}}{2\left(1+u^{p}\right)} \geqslant 1+c_{2} u^{p} \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
w(u):=\frac{(1+u)^{p}-(1-u)^{p}}{2\left(1+u^{p}\right)} \leqslant c_{3} u \tag{5}
\end{equation*}
$$

for $u \in[0,1]$, where $c_{2}:=2^{p-2}-1$ and $c_{3}:=p 2^{p-1}$.
Proof: To see (4), we let

$$
g(u):=\frac{(1+u)^{p}+(1-u)^{p}-2}{u^{p}}
$$

and use the fact that $(1+u)^{p-1}+(1-u)^{p-1}$ is non-increasing for $p>2$, to compute

$$
g^{\prime}(u)=\frac{p}{u^{p+1}}\left(2-(1+u)^{p-1}-(1-u)^{p-1}\right) \leqslant 0 .
$$

Therefore $g(u) \geqslant g(1)=2^{p}-2$, which yields

$$
(1+u)^{p}+(1-u)^{p} \geqslant 2+\left(2^{p}-2\right) u^{p}=2\left(1+u^{p}\right)+\left(2^{p}-4\right) u^{p}
$$

Division by $2\left(1+u^{p}\right)$ and $1+u^{p} \leqslant 2$ proves (4).
Since $2 u /(1+u) \leqslant 1$, Bernoulli's inequality states

$$
\frac{(1-u)^{p}}{(1+u)^{p}}=\left(1-\frac{2 u}{1+u}\right)^{p} \geqslant 1-\frac{2 p u}{1+u} .
$$

It follows that

$$
\frac{(1+u)^{p}-(1-u)^{p}}{1+u^{p}}=\frac{(1+u)^{p}}{1+u^{p}}\left(1-\frac{(1-u)^{p}}{(1+u)^{p}}\right) \leqslant 2 p u \frac{(1+u)^{p-1}}{1+u^{p}} \leqslant p 2^{p} u
$$

which proves (5).
The following Lemma is known as a subgaussian tail estimate for Rademacher averages and is by now classical. A proof can be found for example, in [2, p. 90].

Lemma 5. For a given vector $x=\left(\xi_{1}, \ldots, \xi_{n}\right)$, let $\|x\|_{2}:=\left(\sum_{i=1}^{n}\left|\xi_{i}\right|^{2}\right)^{1 / 2}$ and $\mathbb{B}:=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right): \sum_{i=1}^{n} \varepsilon_{i} \xi_{i}>t\|x\|_{2}\right\}$, then

$$
2^{-n}|\mathbb{B}| \leqslant e^{-t^{2} / 2}
$$

We are now ready to tackle the case, where 'many' of the u_{i} 's are bigger than $1 / 2$.
Proposition 6. There exists n_{1} such that for all $n>n_{1}$ we have

$$
\varphi\left(u_{1}, \ldots, u_{n}\right)>1
$$

if $|\mathbb{A}|>n / 2$, where $\mathbb{A}:=\left\{i: u_{i}>1 / 2\right\}$.
Proof: With v and w defined as in Lemma 4, observe that

$$
v(u)+\varepsilon w(u)=\frac{(1+\varepsilon u)^{p}}{1+u^{p}}
$$

for $\varepsilon= \pm 1$. Put

$$
\mathbb{B}:=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right):-\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} w\left(u_{i}\right) \leqslant(2 \log n)^{1 / 2} c_{3} c_{1} n^{-1 / p}\right\}
$$

Since by (5) and Corollary 3

$$
\left(\sum_{i=1}^{n}\left(\alpha_{i} w\left(u_{i}\right)\right)^{2}\right)^{1 / 2} \leqslant c_{3}\left(\sum_{i=1}^{n}\left(\alpha_{i} u_{i}\right)^{2}\right)^{1 / 2} \leqslant c_{3} c_{1} n^{-1 / p}
$$

it follows from Lemma 5 that

$$
2^{-n}|\mathbb{B}| \geqslant 1-\frac{1}{n} .
$$

With these preliminaries we can estimate φ as follows

$$
\begin{aligned}
\varphi\left(u_{1}, \ldots, u_{n}\right) & \geqslant 2^{-n} \sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \mathbf{B}}\left(\sum_{i=1}^{n} \alpha_{i} v\left(u_{i}\right)+\sum_{i=1}^{n} \alpha_{i} \varepsilon_{i} w\left(u_{i}\right)\right)^{1 / p} \\
& \geqslant\left(1-\frac{1}{n}\right)\left(\sum_{i=1}^{n} \alpha_{i} v\left(u_{i}\right)-(2 \log n)^{1 / 2} c_{3} c_{1} n^{-1 / p}\right)^{1 / p}
\end{aligned}
$$

From (4) and the assumption on \mathbb{A} it follows that

$$
\sum_{i=1}^{n} \alpha_{i} v\left(u_{i}\right) \geqslant \sum_{i=1}^{n} \alpha_{i}+\sum_{i \in \mathrm{~A}} \alpha_{i} c_{2} u_{i}^{p} \geqslant 1+\frac{n}{2} \frac{1}{2 n} c_{2} 2^{-p}=1+c_{4}
$$

where $c_{4}:=c_{2} 2^{-p-2}$.

Since $c_{4}>0$, we can now choose n_{1} so that for all $n>n_{1}$

$$
(2 \log n)^{1 / 2} c_{3} c_{1} n^{-1 / p}<\frac{c_{4}}{2} \quad \text { and } \quad\left(1-\frac{1}{n}\right)\left(1+\frac{c_{4}}{2}\right)^{1 / p}>\left(1+\frac{c_{4}}{4}\right)^{1 / p}
$$

By these assumptions on n

$$
\begin{aligned}
\varphi\left(u_{1}, \ldots, u_{n}\right) & \geqslant\left(1-\frac{1}{n}\right)\left(1+c_{4}-(2 \log n)^{1 / 2} c_{3} c_{1} n^{-1 / p}\right)^{1 / p} \\
& \geqslant\left(1-\frac{1}{n}\right)\left(1+\frac{c_{4}}{2}\right)^{1 / p} \\
& \geqslant\left(1+\frac{c_{4}}{4}\right)^{1 / p}
\end{aligned}
$$

This proves the assertion.

4. Proof of $\varphi>1$, the case of few large u_{i} 'S

From now on, we shall only deal with the case $|\mathbb{A}| \leqslant n / 2$. So for the rest of this section, we assume that

$$
\begin{equation*}
|\mathbb{A}| \leqslant \frac{n}{2}, \quad \text { where } \mathbb{A}=\left\{i: u_{i}>1 / 2\right\} \tag{6}
\end{equation*}
$$

Lemma 7. Denote

$$
\begin{equation*}
f(u):=\frac{\left(1-u^{2}\right)^{p}}{1+u^{p}} \frac{\left(1+u^{p-1}\right)^{p /(p-1)}-\left(1-u^{p-1}\right)^{p /(p-1)}}{(1+u)^{p}\left(1-u^{p-1}\right)^{p /(p-1)}-(1-u)^{p}\left(1+u^{p-1}\right)^{p /(p-1)}} . \tag{7}
\end{equation*}
$$

Then $\lim _{u \rightarrow 0} f(u)=\lim _{u \rightarrow 1} f(u)=0$ and f is bounded on $[0,1]$.
Proof: Note that the derivative of the function $(1 \pm u)^{p}\left(1 \mp u^{p-1}\right)^{p /(p-1)}$ is

$$
\pm p(1 \pm u)^{p-1}\left(1 \mp u^{p-1}\right)^{p /(p-1)} \mp p(1 \pm u)^{p}\left(1 \mp u^{p-1}\right)^{1 /(p-1)} u^{p-2}
$$

Since $p>2$ we therefore have

$$
\lim _{u \rightarrow 0} \frac{d}{d u}(1+u)^{p}\left(1-u^{p-1}\right)^{p /(p-1)}-\lim _{u \rightarrow 0} \frac{d}{d u}(1-u)^{p}\left(1+u^{p-1}\right)^{p /(p-1)}=2 p .
$$

By l'Hopital's rule

$$
\begin{aligned}
\lim _{u \rightarrow 0} f(u) & =\lim _{u \rightarrow 0} \frac{\left(1+u^{p-1}\right)^{p /(p-1)}-\left(1-u^{p-1}\right)^{p /(p-1)}}{(1+u)^{p}\left(1-u^{p-1}\right)^{p /(p-1)}-(1-u)^{p}\left(1+u^{p-1}\right)^{p /(p-1)}} \\
& =\lim _{u \rightarrow 0} \frac{p\left(1+u^{p-1}\right)^{1 /(p-1)} u^{p-2}+p\left(1-u^{p-1}\right)^{1 /(p-1)} u^{p-2}}{\frac{d}{d u}(1+u)^{p}\left(1-u^{p-1}\right)^{p /(p-1)}-\frac{d}{d u}(1-u)^{p}\left(1+u^{p-1}\right)^{p /(p-1)}} \\
& =0 .
\end{aligned}
$$

On the other hand, again by l'Hopital's rule it follows that

$$
\lim _{u \rightarrow 1} \frac{\left(1-u^{p-1}\right)^{1 /(p-1)}}{1-u}=\lim _{u \rightarrow 1} \frac{u^{p-2}}{\left(1-u^{p-1}\right)^{(p-2) /(p-1)}}=+\infty .
$$

Therefore

$$
\begin{aligned}
\lim _{u \rightarrow 1} f(u) & =\lim _{u \rightarrow 1} \frac{2^{1 /(p-1)}\left(1-u^{2}\right)^{p}}{(1+u)^{p}\left(1-u^{p-1}\right)^{p /(p-1)}-(1-u)^{p}\left(1+u^{p-1}\right)^{p /(p-1)}} \\
& =\lim _{u \rightarrow 1} \frac{2^{1 /(p-1)}}{\frac{\left(1-u^{p-1}\right)^{p /(p-1)}}{(1-u)^{p}}-\frac{\left(1+u^{p-1}\right)^{p / p-1)}}{(1+u)^{p}}} \\
& =0
\end{aligned}
$$

The boundedness of f on $[0,1]$ now follows from its continuity in $(0,1)$ and the boundedness of the limits of $f(u)$ for $u \rightarrow 0$ and $u \rightarrow 1$.

We can now also treat the remaining case, where only 'few' of the u_{i} 's are bigger than $1 / 2$. In this case, the next proposition shows that $\varphi\left(u_{1}, \ldots, u_{n}\right)>\varphi(0, \ldots, 0)=1$, provided that n is big enough. This completes the proof of Theorem 1.

Proposition 8. There exists $n_{2} \geqslant n_{1}$ such that for all $n>n_{2}$ we have

$$
\frac{\partial \varphi}{\partial u_{j}}\left(u_{1}, \ldots, u_{n}\right)>0
$$

for all $j=1, \ldots, n$ and all u_{1}, \ldots, u_{n} satisfying (6).
Proof: Note that

$$
\frac{\partial \varphi}{\partial u_{j}}\left(u_{1}, \ldots, u_{n}\right)=\frac{\alpha_{j}}{\left(1+u_{j}^{p}\right)^{2}} 2^{-n} \sum_{\varepsilon_{1}, \ldots, \varepsilon_{n}= \pm 1} \varepsilon_{j} \frac{\left(1+\varepsilon_{j} u_{j}\right)^{p-1}\left(1-\varepsilon_{j} u_{j}^{p-1}\right)}{\left(\sum_{i=1}^{n} \alpha_{i} \frac{\left(1+\varepsilon_{i} u_{i}\right)^{p}}{1+u_{i}^{p}}\right)^{1-1 / p}}
$$

We shall show that for every $\varepsilon_{1}, \ldots, \varepsilon_{j-1}, \varepsilon_{j+1}, \ldots \varepsilon_{n}$ the summand

$$
\sum_{\varepsilon_{j}= \pm 1} \varepsilon_{j} \frac{\left(1+\varepsilon_{j} u_{j}\right)^{p-1}\left(1-\varepsilon_{j} u_{j}^{p-1}\right)}{\left(\sum_{i=1}^{n} \alpha_{i} \frac{\left(1+\varepsilon_{i} u_{i}\right)^{p}}{1+u_{i}^{p}}\right)^{1-1 / p}}
$$

is positive.
To this end we denote

$$
a_{j}\left(u_{1}, \ldots, u_{n}\right):=\sum_{\substack{i=1 \\ i \neq j}}^{n} \alpha_{i} \frac{\left(1+\varepsilon_{i} u_{i}\right)^{p}}{1+u_{i}^{p}}
$$

and show that

$$
\frac{\left(1+u_{j}\right)^{p-1}\left(1-u_{j}^{p-1}\right)}{\left(a_{j}\left(u_{1}, \ldots, u_{n}\right)+\alpha_{j} \frac{\left(1+u_{j}\right)^{p}}{1+u_{j}^{p}}\right)^{1-1 / p}}>\frac{\left(1-u_{j}\right)^{p-1}\left(1+u_{j}^{p-1}\right)}{\left(a_{j}\left(u_{1}, \ldots, u_{n}\right)+\alpha_{j} \frac{\left(1-u_{j}\right)^{p}}{1+u_{j}^{p}}\right)^{1-1 / p}}
$$

Some manipulations show that this is equivalent to

$$
a_{j}\left(u_{1}, \ldots, u_{n}\right)>\alpha_{j} f\left(u_{j}\right)
$$

where f is the function defined in (7) in Lemma 7.
Using (6), we see that

$$
a_{j}\left(u_{1}, \ldots, u_{n}\right) \geqslant \sum_{\substack{i \notin A \\ i \neq j}} \alpha_{i} \frac{\left(1-u_{i}\right)^{p}}{1+u_{i}^{p}} \geqslant\left(\frac{n}{2}-1\right) \frac{1}{2 n} \frac{2^{-p}}{1+2^{-p}} \geqslant \frac{1}{8} \frac{1}{1+2^{p}}=c_{5}
$$

if $n \geqslant 4$ and $c_{5}:=1 /\left(8+2^{p+3}\right)$. It is hence enough to show that

$$
\begin{equation*}
c_{5}>\alpha_{j} f\left(u_{j}\right) \tag{8}
\end{equation*}
$$

Since $\lim _{u \rightarrow 0} f(u)=0$ by Lemma 7, we can find $\delta>0$ small enough such that

$$
f(u)<c_{5}
$$

for $u^{p}<\delta$. Since f is also bounded by Lemma 7, we can choose

$$
n \geqslant n_{2}:=\max \left(\frac{c_{1}^{p}\|f\|_{\infty}}{c_{5} \delta}, n_{1}, 4\right)
$$

If $\alpha_{j}<c_{5} /\|f\|_{\infty}$ then obviously (8) holds.
If on the other hand $\alpha_{j} \geqslant c_{5} /\|f\|_{\infty}$ then

$$
\alpha_{j} n>\frac{c_{5}}{\|f\|_{\infty}} \frac{c_{1}^{p}\|f\|_{\infty}}{c_{5} \delta}=\frac{c_{1}^{p}}{\delta}
$$

and by (3)

$$
u_{j}^{p} \leqslant \frac{c_{1}^{p}}{n \alpha_{j}}<\delta
$$

Consequently

$$
\alpha_{j} f\left(u_{j}\right)<\alpha_{j} c_{5} \leqslant c_{5}
$$

since $\alpha_{j} \leqslant 1$.
This proves the assertion.
Remark. Using the methods developed in Sections 3 and 4, it can be shown that without Relation (3) one can prove the result of the main theorem for all $p>p_{0}$, where

$$
p_{0}:=\inf \left\{p>2: g \geqslant 2^{(1+1 / p)}\right\}=2.2751 \ldots
$$

and

$$
g(u):=\left(1+\frac{(1+u)^{p}}{1+u^{p}}\right)^{1 / p}+\left(1+\frac{(1-u)^{p}}{1+u^{p}}\right)^{1 / p}
$$

References

[1] A. Hinrichs, 'The average distance property of classical Banach spaces', Bull. Austral. Math. Soc. 62 (2000), 119-134.
[2] M. Ledoux and M. Talagrand, Probability in Banach spaces (Springer-Verlag, Berlin, Heidelberg, 1991).
[3] P.-K. Lin, 'The average distance property of Banach spaces', Arch. Math. (Basel) 68 (1997), 496-502.
[4] S. A. Morris and P. Nickolas, 'On the average distance property of compact connected metric spaces', Arch. Math. (Basel) 40 (1983), 459-463.

Mathematisches Institut
FSU Jena
D-07743 Jena
Germany
e-mail: nah@rz.uni-jena.de, wenzel@minet.uni-jena.de

