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Many works have considered two-dimensional free-surface flow over the edge of a plate,
forming a waterfall, and with uniform horizontal flow far upstream. The flow is assumed
to be steady and irrotational, whilst the fluid is assumed to be inviscid and incompressible.
Gravity is also taken into account. In particular, amongst these works, numerical solutions
for supercritical flows have been computed, utilising conformal mappings as well as a
series truncation and collocation method. We present an extension to this work where a
more appropriate expression is taken for the assumed form of the complex velocity. The
justification of this lies in the behaviour of the waterfall flow far downstream and the wish
to better encapsulate the parabolic nature of such a free-falling jet. New numerical results
will be presented, demonstrating the improved shape of the new free-surface profiles.
These numerical solutions will also be validated through comparisons with asymptotic
solutions, in particular for flows with larger Froude numbers. For flows with Froude
numbers closer to 1, we demonstrate that the revised complex velocity ansatz should
be employed in place of the asymptotic solution. We present further adjustments to the
method that lead to enhanced coefficient decay. The aforementioned adjustments are also
applied to supercritical weir flows and similar improvements to the jet shape can be
observed.
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(b)(a)

Figure 1. (a) Photograph of a waterfall flow from a city fountain, taken by Mirek Durma. Adapted
from Pixabay. (Pixabay License https://pixabay.com/service/terms/#license). (b) Weir flow, photographed
by Ardfern. Adapted from Wikimedia Commons. (Creative Commons License CC BY-SA 3.0 https://
creativecommons.org/licenses/by-sa/3.0/deed.en).

1. Introduction

Our concern is with two-dimensional free-surface flows past the trailing edge of a
horizontal plate and over weirs, where the flow is uniform and horizontal far upstream,
and two free surfaces form a gravity-driven free jet (or ‘waterfall’) far downstream.
The flow is assumed to be steady and irrotational, whilst the fluid is assumed to be
inviscid and incompressible, and gravity is taken into account. Figure 1(a) demonstrates
a waterfall where the flow in any cross-section (away from the sides of the channel) is
essentially the same thus such a three-dimensional problem can be suitably approximated
as two-dimensional. The parabolic profile of the waterfall downstream can be identified in
this figure.

Numerous studies have dealt numerically with these fundamental potential flows over
the edge of a plate. Here, we note some of the most seminal works of this kind. Solutions
were obtained by Chow & Han (1979), Smith & Abd-el-Malek (1983) and Goh &
Tuck (1985) using finite difference methods or integral equations. Most importantly,
Dias & Tuck (1991) advantageously utilised conformal mappings and the efficient series
truncation and collocation method by finding suitable expressions for singularities in
the flow and removing them from a series representation for the solution – leading to
more easily obtainable results. An extension to that approach, taking a more appropriate
expression for the assumed form of the complex velocity, is the subject of the present
study. The rigorous justification of this improvement lies in the representation of the
waterfall flow far downstream, where we should look to capture the physically relevant
parabolic downfall (cf. figure 1a). A related flow of hydraulic interest is the ‘spillway’,
in which the fluid negotiates a convex corner and then runs along an angled supporting
bed, as opposed to falling freely under gravity. The method of Dias & Tuck (1991),
although used to study waterfalls, implicitly imposes such a spillway flow as a downstream
asymptote. New numerical results will be presented that, at first glance, are very similar
to free-surface profiles obtained through use of the complex velocity form of Dias
& Tuck (1991). However, profiles that have been extrapolated further downstream are
also presented, demonstrating the improvement in the shape of the new free-surface
profiles. Comparisons with the asymptotic solutions found by Clarke (1965) will be
made, validating these numerical solutions – in particular for flows with larger Froude
numbers. Further adjustments to the method and the form of the complex velocity will then
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Improved calculations of waterfalls and weir flows

be presented. These points can lead to improved numerical solutions by enhancing the
decay of the coefficients that are obtained through the series truncation and collocation
method.

A similar approach is also presented for including more terms of the expansion for
the downstream jet singularity in the case of supercritical weir flows – again, further
developing the complex velocity ansatz utilised by Vanden-Broeck & Keller (1987) and
Dias & Tuck (1991). A weir flow is analogous to a waterfall except that the fluid negotiates
a region of raised bed, or lip, before falling freely under gravity. Figures 1(b) and 8(a)
illustrate such weir flows. The influence on the flow of the height of this lip is of interest.
As with the waterfall, the new free-surface profiles are very similar to those of Dias & Tuck
(1991). However, extrapolating the free surfaces to reach further downstream highlights
the improvement to the shape of the jet. The different types of solutions (Dias & Tuck
(1991) refer to waterfall-type and solitary-wave-type solutions) are still retained through
employing the revised ansatz.

There are many other studies of similar two-dimensional free-surface flows with two free
surfaces forming a jet downstream. These studies include: jets emerging from a nozzle by
Dias & Christoulides (1991); breaking wave flows by Dias & Tuck (1993); and flow that
rises along the bow of a ship and falls back down as a jet by Dias & Vanden-Broeck
(1993). These works also use the approach of conformal mappings with series truncation
and collocation. Furthermore, the parabolic nature of the jet is not incorporated into the
form of the complex velocity, as discussed above for the waterfall and weir flows of Dias
& Tuck (1991), making the present work relevant to these other problems.

2. Formulation of the problem

We define the Froude number, F, by

F = U√
gH
, (2.1)

where U is the far upstream velocity, g is the acceleration due to gravity, and H is the
far upstream depth of the flow. However, we further define G = F−2 for later ease of
notation. In the calculations here, we focus on supercritical flow, i.e. G < 1. We work in
non-dimensional variables so that far upstream we have unit depth and velocity. Figure 2(a)
shows the z-plane of the waterfall problem. We define z to be the complex variable
z = x + iy, where x and y are the spatial coordinates in physical space measured parallel
and normal to the horizontal plate, respectively. Note that the origin is at the edge of the
plate at point C.

Throughout the flow, the Bernoulli condition yields
1
2 q2 + Gy + p = 1

2 + G, (2.2)

where q is the magnitude of velocity and p is the pressure. Atmospheric pressure is
assumed along both the upper (IJ) and lower (CJ) free surfaces. Since the pressure is
equal and constant along these free surfaces, we set this pressure to be zero. Then we
arrive at 1

2 q2 + Gy = 1
2 + G along both free surfaces. The complex potential is defined as

f = φ + iψ . Here, φ is the velocity potential andψ is the streamfunction; and we set φ = 0
at C. We also set ψ = 0 and ψ = 1 along the lower and upper free surfaces, respectively.
Then the f -plane is as shown in figure 2(b): a semi-infinite, horizontal strip of width 1.
Note that f is an analytic function of z, and that, in the flow domain, the velocity potential
φ satisfies Laplace’s equation.
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Figure 2. Complex planes for waterfall flows: (a) z-plane, (b) f -plane, (c) t-plane.

We now introduce the intermediate t-plane, which is defined by

f = 1
π

log
(t + 1)2

2(t2 + 1)
. (2.3)

This maps the f -plane to the upper half of a unit semicircle centred at the origin of the
t-plane. The interior of the semi-infinite strip maps into the interior of the semicircle,
whilst the upper free surface IJ maps to the left-hand arc of the semicircle and the lower
free surface CJ maps to the right-hand arc of the semicircle (cf. figure 2c).

The complex velocity is defined by ζ = df /dz = u − iv = q e−iθ . Note that u and v are
the horizontal and vertical components of velocity, respectively; and q and θ (cf. figure 2a)
are the magnitude and angle of the velocity, respectively. The aim now is to find ζ as
an analytic function of the complex potential, f . Dias & Tuck (1991) use the following
conditions:

(i) ζ ∼ (1 + a eλf ) as φ → −∞, where a is an unknown constant and λ is the smallest
positive root of λ− G tan λ = 0

(ii) v = 0 on ψ = 0, φ < 0
(iii) ζ ∼ f 1/3 as φ → +∞.

We will retain the first and second conditions listed here. The first describes the upstream
flow such that as φ → −∞, the flow approaches a uniform horizontal stream of constant
unit velocity. Perturbing the governing equations around this prescribed upstream flow
gives rise to the above relation between the constant λ and the Froude number (via
the Bernoulli and kinematic boundary conditions along the free surface). The second
condition simply ensures no through-flow along the horizontal wall. It is the third
condition listed here, describing the downstream behaviour of the free-falling jet, that we
will reconsider. This is because the current form is appropriate for the jet of spillway flow
(cf. Vanden-Broeck & Keller 1986), but we expect parabolic flow for the free-falling jet.
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For reference, the Dias & Tuck (1991) form for the complex velocity is

ζ(t) = (− log 2c)−1/3(− log c(1 + t2))1/3
(

1 + (1 + t)2λ/π
∞∑

n=0

antn
)
, (2.4)

where c is a constant such that 0 < c < 1/2. The role of c is to ensure that the branch cut
in the logarithm of c(1 + t2) lies outside of the unit circle |t| = 1. The solution depends on
the function ζ(t) found so that the Bernoulli condition (2.2) is satisfied on the free surfaces.
Different choices of c will affect the values of the coefficients an but will not affect the
function ζ(t) represented by (2.4), so the solution will also not be affected. To proceed
using this expression for ζ(t), the series (convergent inside the unit disc) is truncated after
N terms and it remains to find the unknown coefficients an, n = 0, 1, 2, . . . ,N − 1. Then
we introduce N equally-spaced collocation points along the arc of the semicircle in the
t-plane (cf. figure 2c). We evaluate the Bernoulli equation at each collocation point, so we
have N equations in N unknowns that can be solved numerically by iteration, for example
using Newton’s method. As explained in § 5, we have used the fsolve function of MATLAB
to obtain our numerical solutions.

3. Large-φ analysis: flow far downstream

We wish to analyse the waterfall flow far downstream in order to obtain a multiple-term
expansion for the behaviour of ζ as φ → +∞. To obtain a form of Torricelli’s law, we
introduce the following shift:

xs := x − x0, ys := y − 1 − 1
2G

and φs := φ − φ0. (3.1a–c)

It follows that zs := xs + iys and fs := f − φ0 = φs + iψ , where x0 and φ0 are real
constants. We rewrite the Bernoulli condition (2.2) on the free surfaces in terms of the
new variables, so we have ∣∣∣∣ dfs

dzs

∣∣∣∣
2

= −2Gys. (3.2)

Therefore, we have obtained Torricelli’s law. We have a conserved horizontal momentum
flux since there are no external forces acting in this direction, so there is some finite value,
say u∞, for the horizontal component of velocity far downstream. Also, we have |ζ | ∼ −v
as y → −∞. It follows that

dy
dx

= dy
dt

dt
dx

∼ − |ζ |
u∞

(3.3)

along streamlines, far downstream. Then

(
dys

dxs

)2

∼ −2Gys

u2∞
(3.4)

far downstream through use of (3.2). It remains to find the value of u∞.
We define y∞ to be the vertical width of the jet far downstream and note that, by

conservation of mass, we know y∞ = 1/u∞. The angle approaches −π/2 far downstream,
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and the jet thins such that the pressure becomes ambient. Then, due to the conserved
horizontal net momentum flux, we have that∫ ψ=1

ψ=0
(u2 + p) dy (3.5)

at some x-position takes the same value far downstream as it does far upstream. We can
utilise (2.2) and (3.2) to evaluate this integral far upstream and downstream, and this leads
to the constraint

u∞ = 1 + G
2
. (3.6)

Therefore, we can now rewrite (3.4) as(
dys

dxs

)2

∼ − 2Gys

(1 + G/2)2
, (3.7)

far downstream. It should be noted that the integrated form of this is already found as
a result of the integral horizontal momentum balance as equation (6-29) of Henderson
(1966). From (3.7), we infer

ys ∼ −G
2

1
(1 + G/2)2

x2
s , (3.8)

also far downstream. This highlights that the shape of the free-falling jet far downstream
should be parabolic (as found by Clarke 1965), not following a linear path like a spillway
flow (i.e. ζ ∼ f 1/3; cf. Keller & Weitz 1957; Vanden-Broeck & Keller 1986).

Using (3.2), we have that the vertical component of velocity behaves like −(−2Gys)
1/2

as ys → −∞, so we can deduce that, far downstream,

fs ∼ (−2G)1/2
(
−2

3 y3/2
s + ixsy1/2

s

)
. (3.9)

Also, by expanding

z3/2
s = i3/2y3/2

s

(
1 − i

xs

ys

)3/2

(3.10)

as ys → −∞, we can show that

z3/2
s ∼ 3

2i1/2

(
−2

3
y3/2

s + ixsy1/2
s

)
as ys → −∞. (3.11)

It follows that we arrive at

zs ∼ Ãf 2/3
s + B̃f αs + · · · as φs → +∞, (3.12)

where α < 2/3, Ã and B̃ are unknown constants to be found. Focusing attention on the
streamline corresponding to ψ = 0, we can then write

zs ∼ (A1 + iA2)φ
2/3
s + (B1 + iB2)φ

α
s + · · · as φs → +∞, (3.13)

where A1, A2, B1 and B2 are unknown, real constants. Utilising this with (3.8), we find
A1 = 0. Now we obtain the following expression:

dzs

dφs
∼ i

2
3

A2φ
−1/3
s + α(B1 + iB2)φ

α−1
s + · · · as φs → +∞. (3.14)
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We can utilise the form of Torricelli’s law obtained earlier (cf. (3.2)) to find the value of
the constant A2: far downstream, we have

4
9

A2
2φ

−2/3
s + 4

3
A2αB2φ

α−4/3
s + α2(B2

1 + B2
2)φ

2(α−1)
s

+ · · · ∼ − 1
2G

(
φ

−2/3
s

A2
− B2

A2
2
φα−4/3

s + · · ·
)
. (3.15)

The leading-order terms give

A2 = −
(

9
8G

)1/3

. (3.16)

It remains to calculate the values of B1, B2 and α. For this, we look to the next order and
find that

4
3

A2αB2 = 1
2G

B2

A2
2

⇒ B2 = 0 or α = −1
3
. (3.17)

To choose the correct solution here, we recall that earlier we found that the finite constant
for the horizontal velocity far downstream is u∞ = 1 + G/2. Utilising (3.14) and recalling
that df /dz = u − iv, we can write

1 + G
2

∼ 9α
4A2

2
B1φ

α−1/3
s + · · · as φs → ∞. (3.18)

It follows that α = 1/3, so we can then find that

B1 = 2
3 (2 + G)A2

2. (3.19)
We can also conclude that B2 = 0.

Now we look to find the next term, i.e. finding the constants C1, C2 and β of

zs ∼ iA2f 2/3
s + B1f 1/3

s + (C1 + iC2)f βs + · · · as φs → ∞, (3.20)
noting that β < 1/3. Again utilising Torricelli’s law, we find that far downstream,

4
9

A2
2φ

−2/3
s + 1

9
B2

1φ
−4/3
s + 4

3
A2βC2φ

β−4/3
s + 2

3
B1βC1φ

β−5/3
s (3.21)

+ β2(C2
1 + C2

2)φ
2(β−1)
s + · · · ∼ − 1

2G

(
φ

−2/3
s

A2
− C2

A2
2
φβ−4/3

s + · · ·
)
. (3.22)

To leading order, we recover the already known value for A2. Since we know B1 /= 0 and
β < 1/3, to the next leading order (i.e. O(φ−4/3

s )) we find that β = 0. Therefore, we have

zs ∼ iA2f 2/3
s + B1f 1/3

s + (C1 + iC2)+ · · · as φs → ∞. (3.23)
Since this next term is just a constant, and noting that we introduced a shift for the z
variable earlier in the derivation for the behaviour near the downstream singularity, we
leave C1 and C2 as unknown constants.

Finally, we can deduce that

ζ ∼ i(3G)1/3f 1/3 +
(

1 + G
2

)
+ Cf −1/3 as φ → +∞, (3.24)

where C is an unknown constant. This captures the parabolic nature of the free-falling jet.
It should be noted that only the first term of (3.24) is included in the form for ζ taken by
Dias & Tuck (1991).
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4. Revised form for complex velocity

The aim is to find the complex velocity, ζ , as an analytic function of f , and it must
satisfy:

(i) ζ ∼ i(3G)1/3f 1/3 + (1 + G/2)+ Cf −1/3 as φ → +∞, where C is a constant to be
found

(ii) ζ ∼ (1 + a eλf ) as φ → −∞, where a is an unknown constant and λ is the smallest
positive root of λ− G tan λ = 0

(iii) v = 0 on ψ = 0, φ < 0.

It can be checked that the following form for ζ satisfies those conditions:

ζ(t) = 1 + (1 + t)2λ/π B(t), (4.1)

where

B(t) =
(

3G
π

)1/3 (
− log(c(1 + t2))

)1/3
l1(t)+ G

2
l2(t)+

∞∑
n=0

antn
(
− log(c(1 + t2))

)−1/3
,

(4.2)

and l1 and l2 are the linear functions

l1(t) = 2−λ/π
(

sin
(
λ

2

)
+ t cos

(
λ

2

))
, l2(t) = 2−λ/π

(
cos

(
λ

2

)
− t sin

(
λ

2

))
.

(4.3a,b)

The constants an, n = 0, 1, 2, . . . are to be found; and c is a real constant such that 0 <
c < 1/2. This constant c is needed to ensure that the complex velocity is real along the
horizontal wall, where −1 < t < 1. The form of (4.1) allows for the upstream condition
to be satisfied as t → −1, whilst (4.2) is necessary to incorporate the form of the revised
three-term expansion (3.24) for the behaviour of the jet far downstream as t → i. Note that
the power series in t that appears in (4.2) replaces an unknown analytic function of t that
is analytic for |t| < 1 and continuous for |t| � 1. The linear functions l1 and l2 of t are
required to enforce the correct coefficients of the three-term expansion as t → i, given the
form adopted for ζ in (4.1).

It remains to satisfy Bernoulli’s equation on both free surfaces, which will, for a given
Froude number, enable us to find the unknown coefficients an. We truncate the infinite
series in (4.2) after N terms. For the image of the free surfaces in the t-plane, we can use
t = eiσ , for 0 < σ < π. We introduce N mesh points

σI = π

2N
+ π

N
(I − 1), (4.4)

for I = 1, . . . ,N, for the collocation method. For the N mesh points, we obtain N equations
in N unknowns (the N unknown coefficients) to be solved numerically by iteration.

5. Numerical results

The results presented here have been obtained through use of the fsolve function of
MATLAB in order to solve the system of N equations. For the numerical integration
(with respect to σ ) to each mesh point along the free surfaces to find the z-coordinates,
the integral function of MATLAB has been utilised. Figure 3 shows a comparison of the
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Figure 3. Comparison of waterfall free-surface profiles for G = 0.25, c = 0.2 and N = 400: (a) free-surface
profile; (b) upper free surface; (c) lower free surface.

free-surface profiles obtained using the Dias & Tuck (1991) complex velocity and the
revised form. The profiles are the same to order 10−3 and so are very similar. There is a
small difference that can be observed between the two profiles downstream, depicted in
figures 3(b) and 3(c).

The effect of the altered complex velocity ansatz can be seen better in figure 4. Here, the
system has been solved with 400 equations in 400 unknowns, as before, but 40 000 mesh
points have been used to plot the free surfaces – hence the profiles have been extrapolated
and we can now see further downstream. In the work of Dias & Tuck (1991), the assumed
form for the complex velocity far downstream (i.e. ζ ∼ f 1/3) means that the flow will
approach a jet of constant slope. The new waterfall appears to approach a more parabolic
shape, as hoped for. Figure 4 also includes the asymptotic outer solution of Clarke (1965),
which agrees well with the free-surface profile obtained via the revised complex velocity
form. It is expensive computationally to plot free surfaces far downstream if plotting
using the same number of mesh points as used for solving the system. This is due to
the logarithmic singularity of the t-plane mapping (2.3). An increase in the number of
equally-spaced mesh points means that we have collocation points closer to the singularity
at t = i, but this leads to only a very small advancement in distance downstream. This is
particularly evident from figure 4, where 40 000 mesh points have been used to plot the
free surfaces and yet we reach only x ≈ 2.6 – i.e. an extra 39 600 mesh points results in
an extra horizontal distance downstream of only around 1.1. Therefore, the improvement
in the extrapolated profiles far downstream points to the revised complex velocity ansatz
being computationally beneficial.

Figure 5 shows further examples of comparisons with the outer solution of Clarke (1965)
for different values of G. The agreement improves as G decreases (or as the Froude number
increases). This is to be expected since the asymptotic solution works from a perturbation
of flow under weak gravity. Therefore, it is more appropriate to utilise the numerical
method described here with the revised complex velocity – rather than to utilise the
asymptotic solution of Clarke (1965) – for larger values of G (or smaller Froude numbers)
where the gravitational effects are more dominant.
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Figure 4. Comparison of extrapolated waterfall free-surface profiles for G = 0.25, c = 0.2 and N = 400. The
asymptotic solution of Clarke (1965) has also been included.
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Figure 5. Free-surface profiles with N = 400 and c = 0.2 for revised ζ form compared with the outer
solution of Clarke (1965). (a) G = 1.1−2 ≈ 0.8264. (b) G = 3−2 ≈ 0.1111.

The effect of the value of the constant, c, can also be investigated. For all the values of
c between 0 and 0.5 that have been tested, whilst the value affects the coefficients of the
finite series, the free-surface profiles do not depend on c (up to order 10−4), so we obtain
equivalent solutions.

6. Further adjustment to complex velocity form

The decay of coefficients from the truncated series can be improved upon. Closer
inspection of the resulting velocity (here we take just the horizontal component) highlights
an area of concern far downstream. Figure 6 is a plot of the horizontal component u of
the velocity against σ (the argument of a point along the free surface in the t-plane).
Interpolation accentuates the spurious oscillations in the velocity. One resolution to this
problem is to modify our approach in finding y at the collocation points (these values are
utilised in satisfying the Bernoulli equation). In the results presented so far, the MATLAB
integral function (performed to an accuracy of order 10−6) has been used to evaluate the
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1.24 N = 400
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1.4 1.6 1.8 2.0 2.2 2.4

σ
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1.01

1.02

1.03

1.04

(b)

(a)

Figure 6. Horizontal component u of the velocity against σ , for G = 0.25, N = 400: (a) for the lower free
surface; (b) for the upper free surface.

integral

zI =
∫ σI

0

dz
df

df
dt

dt
dσ

dσ , (6.1)

where σI is a collocation point, in order to obtain the values of z (and hence y) along
the free surfaces at the collocation points. Instead, we can utilise the MATLAB integral
function to find y at two points either side of a collocation point and then take the average
of these values to be the y-value at the collocation point. This leads to a smoothing effect –
visible if we interpolate the newly obtained values for the horizontal velocity u, for
comparison with figure 6 – and it results in improved decay of the coefficients: the first ten
coefficients are the same as obtained previously, to order 10−4; and the last few coefficients
have improved from being of order 10−4 to being of order 10−6. Note that the correct value
for u, approached (ideally, continuously) from both sides at σ = π/2, is given by u∞ (cf.
(3.6)).

Further altering the form of the complex velocity ζ grants additional improvement to
coefficient decay. If, for the y-values along the upper free surface, we integrate from
t = −1 (i.e. σ = π) and set y = 1 at this point, then we force unit depth and velocity
of the flow as x → −∞ through several conditions:

(i) y = 1 (limit of integration)
(ii) ζ(−1) = 1 (cf. (4.1))
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Integrate to mesh points

Averaging y and A-method

(×10–3)

(×10–4)

Figure 7. Coefficient decay resulting from integrating to each collocation point directly (N = 400) compared
with coefficient decay from finding y by averaging values either side of the collocation point and using the
A-method (N = 399), for G = 0.25, c = 0.2.

(iii) 1
2 |ζ(−1)|2 + G = 1

2 + G (Bernoulli constant).

The first and second points above imply that the volume flux has been normalised to unity,
which is implicit in the third point. However, the explicit imposition of all three has an
impact on the decay rate of the coefficients an in the numerical method that we utilise. We
can instead use the following form for the complex velocity:

ζ = A + (1 + t)2λ/π B(t), (6.2)

with the function B(t) defined as before (cf. (4.2)–(4.3a,b)) and where A is an additional
unknown for which to solve, but which we expect to converge to unity as more collocation
points are used. We will refer to the employment of this additional unknown in the form for
ζ as the ‘A-method’. Figure 7 shows the improved coefficient decay when both averaging
y-values either side of collocation points and employing the A-method, compared with
simply integrating directly to each collocation point. The first few coefficients agree very
well, to order 10−4; the last few coefficients have decayed to be of order 10−7; and a
clearly improved decaying tail is apparent in figure 7. As for the value found for A as part
of the solution, for N = 400 and G = 0.25 we have A = 0.999991, i.e. very close to 1 as
expected.

The A-method can also be utilised for spillway flows (cf. Vanden-Broeck & Keller 1986).
Here, the form for the complex velocity is altered to become

ζ(t)=
(

A + (1 + t)2λ
N∑

n=0

antn
)
(− log(c(1 + t2)))1/3(− log(2c))−1/3

(
1
4(t − 1)2

)β/π−1
,

(6.3)

in order to use the t-plane defined through (2.3). This complex velocity form has the extra
unknown constant A to be found as part of the solution. It results in similar improvement
in the decay of the coefficients, as can be seen in the case of the waterfall.

7. Extension to weir flows

For weir flows, as depicted in figure 8(a), we can employ the revision to the complex
velocity ζ that incorporates the improved form for the behaviour of the jet far downstream.
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Figure 8. Complex planes for weir flows: (a) z-plane, (b) f -plane, (c) t-plane.

The variables are non-dimensionalised, resulting in unit depth and velocity far upstream
as earlier, in the waterfall case. We retain (2.3) to relate f and t; and their complex planes
(cf. figures 8b,c) are very similar to those used for the waterfall.

Dias & Tuck (1991) present supercritical solutions for this weir problem, utilising the
same expansion for the assumed behaviour of the jet far downstream as in their waterfall
calculations (i.e. ζ ∼ f 1/3 as φ → +∞). As seen earlier, for the jet we take

ζ ∼ i(3G)1/3f 1/3 + u∞ + Cf −1/3 as φ → +∞, (7.1)

where u∞ and C are unknown constants. It is important to note that the constant term u∞
in this expression is unknown here (in contrast to the waterfall case, where it is known to be
1 + G/2). This is due to the unknown contribution (or rather, reduction) to the horizontal
momentum flux provided by the vertical weir wall. It can be checked that the following
form for ζ satisfies the necessary conditions for the supercritical weir flow far upstream,
downstream and inside the corner at the origin:

ζ = −i
(

t − tO
1 − ttO

)1/2

(1 + (1 + t)2λ/π B(t)), (7.2)

where

B(t) =
(

1
π

)1/3

(− log(c(1 + t2)))1/3l1(t)+ l2(t)+
∞∑

n=0

antn(− log(c(1 + t2)))−1/3,

(7.3)
and l1 and l2 are the linear functions

l1(t) = Re(m1)+ t Im(m1), l2(t) = Re(m2)+ t Im(m2), (7.4a,b)
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with

m1 = −(3G)1/32−λ/πe−iλ/2
(

1 − itO
i − tO

)1/2

, m2 = 2−λ/πe−iλ/2

(
iu∞

(
1 − itO
i − tO

)1/2

− 1

)
.

(7.5a,b)

Here, tO denotes the point in the t-plane corresponding to the origin in the z-plane.
In (7.3) and (7.5a,b), the constants u∞ and an, n = 0, 1, 2, . . . are to be found. The
solution (7.2)–(7.5a,b) is formed similarly to the solution for the waterfall of § 4. Here,
the difference for the weir is the need to satisfy the condition of flow inside the corner at
the origin of the z-plane.

The constant u∞ can be found by adding an extra equation to the system. This constraint
is derived similarly to (3.6), taking care to include the pressure force due to the vertical
portion of the wall in the horizontal momentum balance. Then the extra equation to be
satisfied is

u∞ = 1 + G
2

−
∫ w

0
p
∣∣∣∣
ψ=0

ds, (7.6)

where s is the displacement from the origin along the vertical wall, and w denotes the
height of the vertical weir wall. The pressure p along this wall can be found via

p = 1
2 (1 − |ζ |2)+ G(1 − y). (7.7)

As before, we truncate the series in the complex velocity ζ after N terms. We impose the
height, w, of the vertical weir wall and so leave tO as an unknown to be found as part of the
solution. We also wish to find u∞ – overall we have N + 2 unknowns to find. Satisfying the
Bernoulli condition along the free surfaces at N collocation points, along with imposing
the height of the vertical weir and the condition (7.6) on u∞, results in N + 2 equations in
N + 2 unknowns. The A-method (introduced in the previous section) can also be employed
here to improve coefficient decay.

Application of the revised form for the complex velocity leads to free-surface profiles
that are very similar to those obtained by Dias & Tuck (1991) for supercritical weir
flows. Figure 9 shows profiles obtained for a weir wall height of w = 0.2 with various
values taken for G. Note here that for G = 0.64 we have two supercritical solutions.
This agrees with the findings of Dias & Tuck (1991): for sufficiently large values of w
and Froude numbers sufficiently close to 1, we obtain two solutions – a waterfall-type
solution (cf. figures 9a,b) and a solitary-wave-type solution (cf. figure 9c). The difference
between these two solution types is characterised by the ‘bump’ in the free surface for
the solitary-wave type. In particular, the latter solution type heads towards a limiting
configuration where there is a stagnation point (with difficulty in obtaining such solutions
due to the unknown location of the stagnation point), which is conjectured and discussed
by Dias & Tuck (1991). Figure 10 shows many solutions by focusing on the values obtained
for y	 (the value of y corresponding to the point ψ = 1 and φ = 0) plotted against the
Froude number, for different choices of the physical weir wall height w. This may be
compared with figure 9 of Dias & Tuck (1991), which shows similar curves but instead for
different choices of tO, marking the position of the corner of the weir in the t-plane. As
tO increases towards 1, the weir height decreases to zero. A qualitative comparison of the
curves shows similar features.

From figure 10, it can also be observed that for sufficiently tall weir walls (e.g. w = 0.2),
there is a maximum value for G above which (or a minimum value for F below which) a
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Figure 9. Free-surface profiles for w = 0.2, N = 200, c = 0.2. (a) G = 0.25, y	 = 1.25. (b) G = 0.64 (or
F = 1.25), y	 = 1.32. (c) G = 0.64 (or F = 1.25), y	 = 1.47.
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Figure 10. Plots of y	 (the value of y at the point corresponding to ψ = 1 and φ = 0) against F for N = 99
(the A-method has been applied) and c = 0.2. Here, we plot trends with the Froude number F for comparison
with figure 9 of Dias & Tuck (1991).

solution cannot be obtained. These maximum values of G correspond to maximum values
of the unknown constant u∞ for the same wall height (cf. figure 11). It is interesting to
note that for a particular value of G for which there exist two supercritical solutions (e.g.
figures 9b,c), the values obtained for the unknown constant u∞ are very similar despite
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Figure 11. Plots of u∞ against G with N = 99 (the A-method has been applied) and c = 0.2 for various wall
heights. The dashed line is 1 + G/2 (the value of u∞ for the waterfall, i.e. when w = 0).

N u∞

50 0.996750
100 0.996764
200 0.996768
300 0.996769
400 0.996770

Table 1. Values obtained for u∞ for various values of N where G = 0.25, w = 0.2 and c = 0.2.

resulting in very different free-surface profiles: one of waterfall type and the other of
solitary-wave type. This is due to the global nature of the constant u∞ for the flow.

More generally, figure 11 shows the increase in u∞ as the wall height w decreases, whilst
u∞ always remains less than 1 + G/2 (the value of u∞ for the waterfall), as expected. It
should be noted that the value of u∞ appears to converge as N increases – cf. table 1 for
the case where G = 0.25, w = 0.2 and c = 0.2. For each wall height, the value of u∞ also
increases as G increases, until a maximum value of u∞ (as mentioned above) is reached. In
the absence of gravity, an exact solution can be found (cf. equations (17) and (18) of Dias &
Tuck 1991) and then we can integrate the pressure p = 1

2 (1 − |ζ |2) along the vertical weir
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w u∞ (exact) u∞ (numerical)

0.4 0.827747 0.827845
0.3 0.870165 0.870228
0.2 0.913041 0.913076
0.1 0.956336 0.956350
0.05 0.978129 0.978134

Table 2. Comparison of values obtained for u∞ when G = 0 via the exact solution and numerical solution.

–1.0 –0.5 0 0.5 1.0
x

y

1.5 2.0 2.5
–0.2

0

0.2

0.4

0.6

0.8

1.0

1.2

Dias & Tuck (1991)

Revised (§ 7)

Figure 12. Comparison of extrapolated weir free-surface profiles for G = 0.25, c = 0.2 and w = 0.1. The
A-method has been utilised here for the revised ζ free surfaces only, i.e. N = 399 for the revised ζ case, and
N = 400 for the Dias & Tuck (1991) free surfaces. The two circles are the last two points of the non-extrapolated
profiles.

wall in order to obtain u∞, the (finite) value of the horizontal velocity far downstream.
Whilst the constant u∞ is not involved in the complex velocity form in the case of zero
gravity, this physical quantity is still relevant and allows us to compare the results obtained
through the exact and numerical solutions as G → 0. The lines on figure 11(a) have been
extrapolated to G = 0 to facilitate this comparison, and table 2 gives the values of u∞
obtained through the exact solution – the values agree to order 10−3.

The effect of the revised form for the complex velocity ζ can be seen in the free-surface
profiles of figure 12. This figure compares the profiles obtained through the Dias & Tuck
(1991) form for ζ with the profiles obtained through use of the revised ζ form (along
with use of the A-method). Also, note that both are extrapolated free-surface profiles,
and the revised form leads to a jet that appears to approach a more parabolic shape.
As in the case of the waterfall, whilst the revised complex velocity ansatz leads to very
similar profiles when the number of mesh points used for plotting is the same as used
in finding the unknown coefficients, the improvements observed when extrapolating the
profiles downstream point towards great computational benefit from the revised ζ form.

8. Conclusions

Overall, the forms for the complex velocity that are adopted by Dias & Tuck (1991)
for the waterfall and supercritical weir have been improved to better encapsulate the
behaviour of the free-falling jet. Visually, this is evident in figures 4 and 12, where the
new extrapolated free-surface profiles are compared with those of Dias & Tuck (1991)
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and (in the case of the waterfall) the asymptotic solution of Clarke (1965). Employing the
revised complex velocity forms also has great computational benefits since the resulting
free surface profiles can be extrapolated, so we can reach further downstream without
necessarily having to use a huge number of collocation points and solve for a huge number
of unknown coefficients. Moreover, it has been demonstrated that the effectiveness of the
overall numerical method is greatly improved by obtaining carefully the y-values at the
collocation points and by utilising the A-method (the addition of the unknown constant A
in the complex velocity, cf. (6.2)), thereby improving the coefficient decay of the truncated
series.
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