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A family of inequalities

for convex sets

P.R. Scott

Let K be a bounded, closed convex set in the euclidean plane.

We denote the diameter, width, perimeter, area, inradius, and

circumradius of K by d, w, p, A, r , and R respectively. We

establish a number of best possible upper bounds for (w-2r)d ,

(w-2r)R , (u-2r)p , (w-2r)A in terms of w and r . Examples

are:

{w-2r)d < u2/2 ,

(w-2r)d £

1 . Introduction

Let K be a bounded, closed convex set in the euclidean plane. We

denote the diameter, width, perimeter, area, inradius, and circumradius of

K by d, W, p, A, r , and R respectively.

The inequalities we shall establish will be shown to be best possible;

we either obtain equality when K is an equilaterial triangle (denoted

E ), or the upper bound is the limit as K approaches an "infinite

isosceles triangle" of fixed base and unbounded altitude (denoted J ).

The inequalities, together with the critical figures, are given below.

THEOREM 1. {w-2r)d < w2/2 (J) .

THEOREM 2. (u-2r)d < 2wr/V3 (£) .

THEOREM 3. (w-2r)R < w2/k (J) .
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THEOREM 4. (u-2r)i? £ Zor/3 (E) .

THEOREM 5. (u-2r)p £ a ^ / v f (E) .

THEOREM 6. {w-2r)A < w3/k ( I ) .

THEOREM 7. (w-2r)A £ wZr/V3 (E) .

By Blaschke's Theorem [ ' ] , every bounded convex figure of width W

contains a circle of radius w/3 . I t follows that w £ 3** ; equality

holds here when and only when the figure is an equilateral triangle. We

thus obtain immediately the following corollaries.

COROLLARY 1 . {w-2r)d £ 2V3 r2 (E) .

COROLLARY 2. (w-2r)R £ 2r2 (E) .

COROLLARY 3. (w-2r)p £ 2V3 wr £ 6V3 r2 (E) .

COROLLARY 4 . (w-2r)A £ V3 wr2 £ 3/3 r3 (E) .

None of these inequalities appears in [2], [3]; the first corollary

is proved independently in [4].

2. Some preliminaries

We shall require the following result.

LEMMA 1 . Let two triangles have the same vertex angle and

(a) the same perimeter, or

(b) the same area.

Then in either case, the triangle for which the difference in base angles

is smaller has the smaller circumradius and the larger inradius.

Proof. Let the t r iangles be t£CD , AB'CD', with [B' £ [B ,

IP £ /p' (Figure l ) . Let if, R' and r, r' be the circumradii and

inrad i i of &BCD, t&'CD' , respectively.

We note that [B + [D = [B' + /D' (= ir - [C) , and
IP - [B £ lp' - [B' by assumption.

(a) Let the t r iangles have common perimeter p . Then in t£CD ,

p = 2ff(sin B + sin C + sin D) .
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Hence

p/2B = sin C

+ 2 sin %(£+£>) cos

> sin C

+ 2 sin %(B'+£>') cos %(S'-Z)'

Hence R £ i?' .

(t>) Let the t r iangles have

the same area A . Then

A = %BC. OC. sin C
p

= 2fl sin B sin C sin D .

Hence

FIGURE 1

= sin C(cos(S-D) - cos(B+D)}

> sin C{cos(B'-0') - cos(B'+D')}

= A/R'2 .

Hence again R - R' .

In either case we now deduce that

BD = 2R sin C £ 2R' sin C = B'D' ,

and so

r = (p-2B0)tan(C/2) 2 (p-2B'D')tan(C/2) = r ' ,

as required.

This completes the proof of the lemma.

The incircle of K meets the boundary of K either in two

diametrically opposite points, or in three points forming the vertices of

an acute angled triangle. In the first case, W = 2r , and each theorem is

trivially true. In the second case, K is contained in a triangle T

formed by three lines of support common to K and the circle.

Our procedure in the proof of each theorem will be to show that K

must be a triangle T. satisfying certain conditions; we shall then use
1

the following lemma to show that T. is isosceles.
1r
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LEMMA 2. Let T. be a triangle, &XYZ , with [X < (J < /Z .

Choose a point Z' so that ZZ'\\XY and T*. = bJCYZ' satisfies

II - U = U: (Fi-gwe 2). Then

A[Tj = A{T*) ,

Proof. The assertions

about the width, diameter,

and area follow easily from

the choice of Z' , and the

constraints on the angles.

The inequality on perimeter

results from a well known

shortest path problem.

Since 2A = rp for each

triangle, we deduce that

r[T*.) 2 r[T.) . Finally,

Z'

and hence

FIGURE 2

XY/2R[T.) = sin Z S sin Z' = XY/2B{T*.) ,

2\) <R[T*) .

3. Proof of Theorems 1 and 2

Let K be contained in the t r iangle T = bBCD , where [B 5 [C 5 [D .

Now d{T) = BC , and

w(K) S w(T) , r{K) = r(T) , d(K) S d{T) .

In proving Theorem 1, we seek to maximise (w-2r)d for fixed u . We

e a point

AC'BC . Then

choose a point D' on DC distant W from BC , and l e t T denote

w(K) = u

and
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since T is a subset of T . Hence we may assume that K is the

triangle 2" . From Lemma 2, we see that w is left invariant and

(w-2r)d is not decreased by taking T isosceles.

We notice that the statement of Theorem 2 is equivalent to

(1/u) + (l/(V3 d)) 2 (l/2r) .

Taking K = T fixes f and does not decrease w, d ; now Lemma 2 shows

that we can assume T to be an isosceles triangle.

Let K be the isosceles

triangle in Figure 3. We have

w = d sin B = 2d sin 0 cos D .

Also

24 = wd = pr

= r{2d+2d cos 0) .

Hence

w = 2r(l + cos 0) ,

and

(u-2r)d = 2rd cos D .

It follows that

(w2) I {(w-2r)d) = [2d sin D cos D.2r(l + cos 0))/(2rd cos D)

= 2 sin 0 + sin 2D

> 2 sin (TT/2) + sin TT

= 2 ,

since 2 sin D + sin 20 is a decreasing function of D over the allowable

range TT/3 Z D < ir/2 .

Hence

{w-2r)d < Ui

Similarly
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(wr)/((w-2r)d) = [2d sin D cos D.r)/{2rd cos D)

= sin D

2: sin(ir/3) for TT/3 2 D < IT/2

= 1/3/2 .

Hence

{w-2r)d 5 2wr/v/3 .

4 . Proof of Theorems 3 and 4

To establish Theorem 3, we seek to maximise {w-2r)R for given w .

Let K be contained in the triangle T = ABCZ5 . Choose a point D' on

DC distant W from BC , and choose a point B' on the ray ~CB so that

the triangle T2 = AS'CZ?' satisfies

p{T2) = p(T) .

Then

wU) = w[T2) ,

and

r U ) = r(T) 2 r(r2) , R{K) < /?(?) < i?(r2) ,

by Lemma 1.

Hence we may assume that K is the triangle T? ; also that T~ is

isosceles, by Lemma 2.

The statement of Theorem 1* is equivalent to

Obviously we may here take K to be the t r iangle T ; by Lemma 2, T

may be assumed isosceles .

Now

[w2)/{(w-2r)B) = {[i/)f[{w-2r)d)).{d/R)

= (2 sin D + sin 21?) .2 sin D

> (2 sin(w/2) + sin TT) .2 sin(Tr/2)

= h .
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since (2 sin D + sin 2D).2 sin D assumes i t s minimum value of h a t

D = TT/2 when D sa t i s f ies ir/3 £ D £ TT/2 .

Hence

(u-2r)R < w2/k .

Also

(wr)/[(w-2r)R) = [(wr)/ [(w-2r)d)) .(d/R)

= sin D.2 sin Z)

2: 2 sin2(iT/3) (for TT/3 5 D £ TT/2)

= 3/2 .

Thus

(w-2r)i? £ 2wr/3 .

5. Proof of Theorem 5

We seek to maximise (u-2r)p for given w . We may assume that K

is the isosceles triangle T ? defined in Section 4. We see that

[w2] I {(w-2r)p) = (wv)/{{w-2r)d)
= ( (ur) / (2r cos £))).((sin 2D)/w)

= sin 0

> 1/3/2 ,

since ir/3 £ 0 < ir/2 . Hence

£ 2w2/\/3 .

6. Proof of Theorems 6 and 7

To prove Theorem 6, we maximise {w-2r)A for given W . Let # be

contained in triangle T = bSCD . Choose point D' on DC distant U

from BC , and choose a point B' on the ray CB so that triangle

T3 = bfi'CD' satisfies

A{T3) = A{T) .

Then

u(K) = w[T3) , A{K) 2 A(T) = A[T3) ,
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and

r(K) = r(T) 2 r[T ) ,

by Lemma 1. By Lemma 2 we may take T to be an isosceles t r i ang le .

The inequal i ty of Theorem 7 i s equivalent to

(2/u ) + (1/V54) 5 (l/wr) .

Taking K = T, fixes w , does not decrease A and does not increase v ;

as usual, Lemma 2 gives T_ isosceles.

Now

= {{w3)/(w-2r)).(2/wd)

as in Section 3.

Hence

(w-2r)A < w3/k .

Finally,

(w2r)/((w-2rM) = {{w2r)/[(w-2r))) .(1/dw)

as in Section 3.

Hence (w-2r)A < w2r/V3 .
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