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§ 1. Introduction.
The present paper is concerned with formulae by which double

integrals of functions of two independent variables may be evaluated
approximately. The number of such formulae published hitherto
is not great,* and it has seemed desirable both to make a syste-
matic search for new formulae, and to test the comparative merits
of these, and of those previously known, by computing the numerical
values of certain selected integrals.

§ 2. General Formulae.
Take a known formula for the numerical evaluation of single

integrals, say

and similarly

where the Ar, A'r, B,, E, are given coefficients, <£, and \f/, functions
of the symbols of partial finite difference operating on the functions
to be integrated.

Then a general formula for the numerical evaluation of double
integrals is

1 fo+mu fb+nv 1 fo+mu
- /(*, y) dxdy = - {2BJ(x,
M"Jo Jb Mjo

+ 2tf.fc(£,)/(*, 6+ »)} cto
r BJ(a + ru,b + sv) + Y2.Ar B. <£, (Ax)/(a + ru, b + sv)

??Ar B'. ^. (\)f(a + ru,b+ sv)
; B'. +, (Az) +, (\)/(a + ru,b + sv),

a symbolic product of the single formulae from which it is derived.

* The matter is discussed briefly in § 182 of Whittaker and Robinson's
" Calculus of Observations," where references are given.
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Again, if differential coefficients are involved, instead of
differences, say

— ["+mUf(x) dx = 2Arf(a + ru) + 2 Ar <£, (u f-)/(a + ru),

[Ay)dy = 2B.f(b + 8v) + ?B.+, (v
6 \ oy

it follows in similar fashion that

— I I f(x> y) dx dy = 22 ArBJ\a + ru, b + sv)
uv)a Jb

+ *Z2A'rB,4>r (u —\ f(a + ru, b + sv)

+ 22 A rB', i//t (v —\ f(a + ru,b + sv)

+ ??ArB; 4>,. (u ^j +. (v 3 ~ ) / ( a + ru,b + sv).

In many cases we have

— r+""/(*) dx = 2 Arf(a + ru) + Rx ,

where Rx is a remainder of the form A'h /-— \ /(a + hu),

a + hu being some value of x within the range, and likewise

-^ J ^ " / ^ ) dy - 2 BJ(b + sv) + Bt Q-)''f(b + kv).

Then
1 fo+mu (b+nv

— I 1 f(x,y)dxdy = 22 4 r 5 , / (o + ru, b + sv)

+ 2 A,,B. (—)* f(a + hu, b + sv)

, b + kv)

The last three terms of this expression form the remainder JRXt „,
but in practice the last term is negligible.
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§ 3. Particular Formulae : Extended Newton-Coles Formulae.
The simplest and generally the least accurate of the common

approximations to a single integral is the "trapezoidal ' rule, viz.,
\ ra+mu m- l

— I f(x) dx = \f(a) + 2 /(a 4- ru) + \f{a -j- mu) nearly.
U Jo r = l

For a double integral, by § 2, the corresponding formula is
1 fa+mu fb+nv n

- f(x, y) dx dy - i/(«, J) + H
M V J a Jb

u, b) + 2
r=l » = 1

m - l n-1
+ \ 2 / ( a + rw, J + m>) + i / ( a + mu, b) + \ 2 / ( a + mu, b + sv) *

r=I «=1

+ ^ / ( a + mu, b + nv) nearly.
In fact, the coefficients for one variable being given in a row as

h 1, 1, ... 1, h
those for two variables may be tabulated in rows and columns as

h h h - h b
h 1, i, ••• 1. h

h h h - h i-
We shall find it convenient to refer to the sums of values of a

function taken with these coefficients as " trapezoidal" sums,
m - l

denoting by S™f (a) the sum J / (a) + ~2/(a + ru) +^/(a + mu), and
r=l

similarly for £? S^f(a, b).
The extension to a triple integral is easily seen. The

coefficients of S% <S" S^f (a, b, c) can be represented tier upon tier,
forming a cube, the coefficients at the corners being -|, along the
edges i , in the faces \ , and within the cube 1.

The double " Simpson " formula is
i fa+2« rb+2v

— / (« , V) dx dy = \{J (a, b) + 4 / (a + u, b)
uvJ a Jb

+/(a + 2u,b) + 4/(a, b + v) + 16/(a + u, b + v)
+ 4/(a + 2u,b + v) +/(a, b + 2v) + 4/(a + u, b + 2v)
+ /(a + 2u, b + 2v)} nearly.
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Accuracy may generally be increased by having more sub-
divisions, when coefficients are obtained as below :—

1, 4, 2, 4, 2, ... 4, 1
4, 16, 8, 16, 8, ... 16, 4
2, 8, 4, 8, 4, ... 8, 2
4, 16, 8, 16, 8, ... 16, 4
2, 8, 4, 8, 4, ... 8, 2

or

4, 16, 8, 16, 8, ... 16, 4
1, 4, 2, 4, 2, ... 4, 1

n n _, ,r
Example.—The true value of I I (1 + x2 + y2)" ' dx dy is —,

Jo Jo «
•523599 to six places.

A first crude application of the elementary Simpson fofmula
for nine points gave the result -5195.

For 25 points, -52363 was obtained. 49 points gave the much
closer result -523609, and 121 points -523602.

Corresponding to the "Three-Eighths" or Simpson's Second Rule
there is the scheme

1, 3, 3, 2, 3, 3,
3, 9, 9, 6, 9, 9,
3, 9, 9, 6, 9, 9,
2, 6, 6, 4, 6, 6,
3, 9, 9, 6, 9, 9,

9ui>

3, 1
9, 3
9, 3
6, 2
9, 3

3, 9, 9, 6, 9, 9, ... 9, 3
1, 3, 3, 2, 3, 3, ... 3, 1.

49 values of the same function as above gave the result by this
formula -523591.

It is possible and sometimes convenient to combine the Simpson
with the Three-Eighths Rule, obtaining the scheme

1, 4, 2, 4, 2, ... 4, 1
3, 12, 6, 12, 6, ... 12, 3

uv
3,
2,
3,

3,
1,

12,
8,

12,

12,
4,

6,
4,
6,

6,
2,

12,
8,

12,

12,
4,

6,
4,
6,

6,
2,

... 12,

... 8,

... 12,

... 12,

... 4,

3
2
3

3
1
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r r
Jo Jo

e " dxdy was calculated by this formula for 117 values,

the result 1-10467 being obtained. The true value is 1*10469.
A fairly accurate formula when the ranges may conveniently

be subdivided into six intervals or some multiple of six, is the
double Weddle formula, viz.:

9uv
Ioo:

1, 5, 1, 6, 1, 5, 1
5, 25, 5, 30, 5, 25, 5
1, 5, 1, 6, 1, 5, 1
6, 30, 6, 36, 6, 30, 6
1, 5, 1, 6, 1, 5, 1
5, 25, 5, 30, 5, 25, 5
1, 5, 1, 6, 1, 5, 1

This formula gave for I I (1 + x2 + y'2) * dx dy the result
Jo Jo

•523602, to a degree of accuracy for 49 points equal to that of the
Simpson formula for 121 points.

A great number of other formulae may be obtained by com-
bining single formulae in pairs, but it is not necessary to exemplify
these.

I t is of course possible to obtain analogous formulae for multiple
integrals. Thus for a triple integral such as

j*a+2mu Cb+2nv fc+Vpw
f(x, y, z) dx dy dz

J a J b <c

Simpson coeflScients may be given in three tiers of nine, one above
another:

uvw
1 4 1 4, 16, 4 1, 4, 1
4 16 4 16, 64, 16 4, 16, 4
1 4 1 , 4, 16, 4 , 1 , 4, 1 .

It may be remarked that the accurate evaluation of a double or
of a multiple integral requires in most cases the addition of a large
number of terms. It is here that calculating machines, and adding
machines in particular, are of the greatest service and almost
indispensable.
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J
§ 4. Extended Gauss Formulae.

Combination of Gauss formulae of the types

gives formulae such as

f i f /{x'y)dxdy=/{ J^ ^T

¥V [64/(0, 0) + 40 {/(0, 7 f) +/(0, - JJ)+f( JT,

IT
The last of these is exact if neither of f(x, 1) and / ( I , y) is of

higher than the fifth degree.

For I I (\ + x* + if) *~ dx dy this formula gives the result
Jo Jo

•5233. For e'"y dx dy it gives 1-20698, the true value to five
Jo Jo

places being 1-20702. A Simpson of 121 points gave 1-20703.
We may mention here a formula of Burnside derived by a

different method,
1 /(*, y) dxdy = £{f{ J^, 0) +/( - JT, 0)

j _
+ / ( - Jb- Jl)}-

n n
For I (l+z? + y'i)~'i dxdy this formula gives -5232. For

Jo Jo
f1 f1 (3-*"-^)"* dxdy it gives -6641, and for P f (2-a?-y°-)'idxdy
JoJo Jo J o
•9262, the true values being -6638 and 9202. Results obtained by
the third Gauss formula given above are slightly better, being
•6638 and 9144.
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The amount of computation required by the two formulae is
about the same.

All formulae such as the Simpson, Weddle, etc., involve the use

of corner points of the range of integration, and therefore fail in

I (2 -3? - y2)'dx dy, -where the integrand

o Jo

becomes infinite at the point x=\, y = \. To evaluate such
integrals we may combine a formula involving end points with a
formula not involving end points Thus a combination of
elementary Gauss and Simpson formulae gives

i - J /<a:>
This gives for f f (2 -3?-y2)~* dxdy the value -9205, but

Jo Jo
the accuracy of the result is possibly accidental.

§ 5. Chebyshef Formulae.

Combination of Chebyshef formulae of the types

where p = -707166.., q ̂ -832437.., r =-374542.., gives
formulae such as

f i f /(X' V) dX dy = ̂ f^ P) + fij)' ~ P) + /( ~Pt P)

+ f(~P, -p) + /(0,0)

) + f(0, -p)},

and other formulae of a greater number of terms.
Such formulae have the advantage that the terms may be

summed without first multiplying by various coefficients, but even
so the values of the variables required in them are not very con-
venient for ordinary applications. The simplest of these formulae,
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written out above, gives fair results, e.g. for I I (1 + x 2 + y2)~* dxdy
Jo Jo

P f (2 - x2 - y2)"* dx dy and P [ (3 - a? - f)'h dx dy the values
Jo Jo Jojo

•5245, -9107 and -6645 respectively.

§ 6. Formulae in Finite Differences.
These formulae are of use where the values of the integrand are

tabulated for equidistant values of the variables. As in the case
of a function of one variable, they consist of terms giving a
trapezoidal sum, followed by correction terms, but while in the
former case these terms refer to the ends of the linear range of
integration, here they refer to the boundary of the rectangular
region.

Corresponding to the single formula

19 A3 3 A4

{ / ( + ) / ( ) } + {720
we have by § 2 the double formula

+mu rb+nv

Ax
[ S I S : {/( u, b)-f(a, b)}]

Z
19A' A A

"Tajf [et0- - ] - - + - j ^ - ' [ / ( « + ««. b + nv)-f(a,b +
,b) + f(a,b)]

2M b + nv)-etc.]+...,

where5°/(a)=/'(a).

2 Vol. 42
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The mode of applying the formula can best be illustrated from
the actual table below of z = ex'y.

•4

1-2312
1-2511
1-2712
1-2918
1-3126
1-3338

•5

1-3840
1-4191
1-4550
1-4918
1-5296
1-5683

•6

1-5968
1-6553
1-7160
1-7789
1-8441
1-9117

•7

1-8908
1-9858
2-0855
21902
2-3002
2-4157

•8

2-2979
2-4498
2-6117
2-7843
2-9683
31645

1-3
1-4
1-5
1-6
1-7
1-8

The terms S°u S"f(a, b) and similar ones mean the trapezoidal
sums of columns, <S"5J/(a, b) the trapezoidal sums of rows.

Hence the best method is first to take trapezoidal sums of
columns and rows, and construct two difference tables of these.
(For the above formula columns and rows outside the range are
necessary in order to obtain the required differences.)

. The trapezoidal sum of either these sums of columns or the
sums of rows gives the trapezoidal approximation to the integral,
S"S^f(a, b). The more important correction terms are obtained
from the two difference tables, just as for single numerical integra-
tion. As for the terms in AxAy, A,Ay, AXAJ, etc , they are small
corrections taken at the four corners, and are generally negligible.

When values of the integrand within the range of integration
only are available, e.g. if from the table above we have to find

p-8 rt-9 x,
I I e dx dy, we may use the similar formula
J -4J is

o+mu eb+nv

J
b) - / ( a , b) }]
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19AJ19AJ
-• 7 2 0 " [SI'S? { / ( « + » - S u , b)-f{a, b)}]

1OA» A A

^[etc ] + + i y [

-lu, b)+f(a,b)]+...

Example.—From the given table of values of ex y the trapezoidal
sums of columns are 6-4092, 7 3716, 87485, 107149, 13-5453, of
rows 6-6361, 69106, 71979, 74989, 78143, 81448.

The trapezoidal sum of either of these sets, with the differences
f8 f1"8 x'y

of successive orders, gives approximations to 1 I « dx dy of
J -4 J l 8

•36812, -36652, 36598, 36595, -36591, the last being correct to five
places. Corner corrections were neglected.

As a further test, a = ( l + x ! + ys)"' was tabulated at intervals
of '1 between the values a; = 0, 1, y = 0, 1. To the third order of

f1 f1 i
differences this gives for I I ( l+a^ + y2)"* dx dy the good

Jo Jo
approximation -523604.

If values of x outside its range of integration are available,
but not of y outside its range, a compromise between the two
preceding formulae may be given :

V) dxdy = S?S:f(a, b)

~ Jf [ # $ {f(a,b + ~ 1 v)-f(a, b)}]

~ | [Si Si { /(«, b +—2v) + f{a,b)}]-1-?§ [etc.]

19A3

-f(a + mu, b) + /(a, 6)] + ...etc.
' b + n-lv)-f(a, b + n-lv)
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12

From the Bes3el central difference formula

where /xSfr = £ (8/,+j + S/r-j) in the usual notation, we derive by § 2
1 Ca+mu fb+nv

- \ f(x,y)dxdy = S?S°.f{a,b)
uvJa Jb

~ [5.°«(/-..-A.)]- ^[SrS(A-- Ao)]

+ ^ ' ( / , , - A . - / M + A . ) + -etc,

where /xA/r,. = J (s*fr+\,» + 8x/r-j,.) and so for /iy Sy.

To apply this formula, take trapezoidal sums of columns and
rows and form difference tables with these as before. For
differences as far as the third, corner terms being neglected, it

p-8 pl-8
gave for I I e*5* dxdy the value correct to five places, -36591.

J-4 Jl-3

Central difference formulae of numerical integration are rapidly
convergent, differences of even order not appearing. In the corre
sponding interpolation formulae no differences of odd order appear,
so that, if a function is to be tabulated for the double purpose of
interpolation and numerical integration, as useful a table as any
is one giving the values of the function and of all the central
differences as far as required.

§ 7. Formulae in Differential Coefficients.
The double Euler-Maclaurin formula is

r+m" f + " V ( ) f o * S S S ? - ^ . £ [fl» 5? {/(a + mu, 6)
\i OX
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Wo • & [KS°{f{a+mu'b) ~/{a> b)}]

uv 82

- etc.... + T-77 • 5—g- [ / ( « « « , 6+nr) - / ( a , 6+nv) -/(a+wiu, 6)

+ / ( « , &)] + •••
The correction terms here, as in previous formulae, are taken

in columns and rows on the boundary, summed trapezoidally,
together with small and generally negligible corner terms.

The formula gave for I I (l+ar' + w2) dxdy the value
Jo Jo

-523604, partial coefficients as far as the third being taken, and
121 values of the integrand being tabled.

n n , r-8 n-2 *
exy dxdy and eXJ/dxdy

Jo Jo Jo Jo

were also calculated for 121 and 117 points respectively, results
being obtained correct to five places, 1-20702 and 1-10469.

§ 8. General Conclusions.

Comparisons of the rapidity and accuracy of calculations
performed by means of all the foregoing formulae of double
numerical integration seem to show that the best method is to
apply one or other of the finite difference formulae to trapezoidal
sums of the rows and columns concerned. For moderately close
approximations, however, a double Simpson or a Gauss formula
may serve.

In conclusion we wish to thank Professor E. T. "Whittaker, at
whose suggestion this work was undertaken, for valuable advice
given from time to time during its preparation.
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