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Let PGL(2, F) denote the group of all Moebius transformations

az-\-b
z > cz-\-d

(ad—be ^ 0)

over a field F. In a recent paper [2], the author has given a characterisation
of the groups PGL(2, F), F finite, char F ^ 2. It is the purpose of this
paper to give a similar characterisation of the group PGL (2, F), char F = 2,
F finite or infinite.

The similarity transformations z -> az+b(a # 0) form a subgroup
S(2, F) of PGL (2, F). A simple direct calculation shows that, for any field
F of characteristic 2, S(2F) is an S^subgroup of PGL (2, F) in the sense
of the following definition.

Definition. A subgroup H of a group G is called an S^subgroup of G
if, whenever a $ H and b~xab $ H, there exists a unique h e H such that
b-^ab = A-»aA.

S1-subgroups were first studied by H. W. E. Schwerdtfeger in [3],
where he discusses 7\-subgroups, being those Sx-subgroups which are
normal.

The main result of this paper is

THEOREM 1. Let H be a non-normal S^-subgroup of a group G and suppose
thatG—H contains an involution t such that H n H* # 1. Then G is isomorphic
to a group PGL(2, F), char F = 2.

There is a similar characterisation of the groups S(2, F). It is easy
to verify that, if F is any field, then the transformations

z ->• az(a =£ 0)

form an Si-subgroup of S(2, F). We prove

THEOREM 2. Let H(^ 1) be an S^-subgroup of the group G, and suppose
thatG—H contains an involution t such that flnF= 1. Then G is isomorphic
to a group S(2, F).

Notations. Upper case Latin letters stand for groups and fields, lower
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case Latin letters for their elements. H <] G means that H is a normal
subgroup of G. N(H) is the normaliser of the subgroup H, C(h) is the cen-
traliser of the element h, \H\ is the order of the group H, and (G; H) is the
index of the subgroup H in the group G. G—H is the set of elements of G
not in H and ax = x~lax, Hx = x^Hx.

By the results of Zassenhaus [6] and Tits [5] it is sufficient to prove

THEOREM 1'. Under the conditions of Theorem 1, G is isomorphic to a
triply transitive permutation group in which only the identity fixes three
symbols and in which the group fixing two symbols is abelian.

THEOREM 2'. Under the conditions of Theorem 2, G is isomorphic to a
doubly transitive permutation group in which only the identity fixes two
symbols, and in which the group fixing one symbol is abelian.

In both theorems, H is a non-normal Si-subgroup of the group G.
We prove a series of lemmas under this assumption.

LEMMA 1. 1/ h(^ l)eH, then C(h) QH.

PROOF. If a$H, then by the property Sx, the only element of H
which commutes with a is the unit element.

LEMMA 2. / / H and H are Sx-subgroups of G, then H n H is an S^-
subgroup of H.

PROOF. Suppose a, ab e H — (H n H) where b e H. We wish to show
that there exists exactly one heH n H such that ah — ab.

By the property Si, there exists exactly one heH such that ah = ah.
Then a6*"1 = a. i.e. bh'1 eC(a)QH by Lemma 1. Hence h~x e b^H = H,
and so h e H n H.

LEMMA 3. N(H) = H.

PROOF. We assume H ^ N(H) and deduce the contradiction that H
is normal in G. By lemma 1, N(H) is a Frobenius group with Frobenius
kernel H, so that H is a characteristic subgroup of N(H). Hence it is suf-
ficient to prove that N(H) is normal in G, i.e. N(H)X —N(H) for each
x e G.

Let neN(H)—H. If nx$N(H), then, since H is an S^subgroup of
G, nx = nh for some h e H; but then nxeN(H), which is a contradiction.
Hence nx e N(H). Since N(H)-H generates N(H), we have N{Hf = N{H)
as required.

LEMMA 4. / / xe G—H, then G = H+HxH.

PROOF. By lemma 3 it suffices to prove that if H ^ Hv, then y e HxH.
Since x $ H, H •=£ Hx. Hence H—Hx generates H and so, since H ^ Hv,
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we have H—Hx <£ Hv. Thus we can choose h e H such that h $ Hx and
h $ Hy, i.e. hx~ $ H and hv~ ^ H. Since H is an Sj-subgroup of G,
hv~l = hx~x^ for some hx eH. Then y~1h^1x e C(h) and so, by lemma 1,
y-^h^x — h2e H. Thus y = h^xh^1 e HxH as required.

We can now prove theorem 2'. Suppose H = Hx and consider the
permutation representation P of G on the left cosets of H. By lemma 4,
P is doubly transitive. Since H n Hx = 1, P is faithful and only the identity
fixes the symbols H and xH. Finally, the group fixing the symbol H, viz.
H itself is abelian; for by Lemma 2, H n iif" = 1 is an Sj-subgroup of iJ.
This completes the proof of Theorem 2'.

LEMMA 5. ZTie group K = H n H* is abelian and k* = k~x for each
keK.

PROOF. K* = (H n H*)* = H* n H = if. Thus * maps /£" onto itself
and, as P = 1, X u tK is a subgroup of G. Further K <\K\jtK.

Suppose keK. Then (tk)*eK, say («:)2 = kt. Then /&' = k^-1 and
so (A-1)'= Aftr1- Thus k = k** = kiik-1)* = klkki1 and so A* = ftj"1

i.e. tkeC(kl) ^K by lemma 1, which is a contradiction unless kt= 1.
Hence for every keK, (tk)2 = 1, i.e. k* = k~x. Thus k -> k~x is an auto-
morphism of K and hence K is abelian.

LEMMA 6. / / Hx is a conjugate of H different from H and H*, then
H n W n Hx = 1.

PROOF. By lemma 4, x = A^/^ eHtH, so that ff* = Hu where u is
the involution <**. Suppose h(=£ 1) e H n H* r\ Hu. By lemma 5,
ht = ha = h-\ Therefore by lemma 1, tu~1 = h1eH. Then Ht = Hhi" = Hu

contrary to assumption.
We can now prove theorem 1'. Set K = H n Hl and let Hx be a

conjugate of H different from H, Hl. Consider the permutation representation
P of G on the left cosets of H. By lemma 6, P is faithful and only the
identity fixes the three symbols H, tH, xH. It remains to prove that P
is triply transitive.

Now, by lemma 4, Hx = Hth for some h e H. Then, by lemma 6,
KnKh = H r\H* n Hx = 1 so that K is not normal in H. By lemma 2,
K is an S^subgroup of H. By lemma 4, H = K-\-KaK for some a eK.
Then, since ift = £K by lemma 5, we have

G = H+HtH = # + (K+KaK)tH,
= H+tH+KatH.

This shows that the group if which fixes the cosets H and /if permutes
the remaining cosets transitively. Since, by lemma 4, P is doubly transitive,
it is hence triply transitive. This completes the proof.
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