A CHARACTERISATION OF THE MOEBIUS AND SIMILARITY GROUPS

P. J. LORIMER

(received 28 April 1964, revised 1 November 1964)

Let PGL(2, F) denote the group of all Moebius transformations

$$z \rightarrow \frac{az+b}{cz+d}$$
 $(ad-bc \neq 0)$

over a field F. In a recent paper [2], the author has given a characterisation of the groups PGL(2, F), F finite, char $F \neq 2$. It is the purpose of this paper to give a similar characterisation of the group PGL(2, F), char F = 2, F finite or infinite.

The similarity transformations $z \to az+b(a \neq 0)$ form a subgroup S(2, F) of PGL(2, F). A simple direct calculation shows that, for any field F of characteristic 2, S(2F) is an S_1 -subgroup of PGL(2, F) in the sense of the following definition.

Definition. A subgroup H of a group G is called an S_1 -subgroup of G if, whenever $a \notin H$ and $b^{-1}ab \notin H$, there exists a unique $h \in H$ such that $b^{-1}ab = h^{-1}ah$.

 S_1 -subgroups were first studied by H. W. E. Schwerdtfeger in [3], where he discusses T_1 -subgroups, being those S_1 -subgroups which are normal.

The main result of this paper is

THEOREM 1. Let H be a non-normal S_1 -subgroup of a group G and suppose that G-H contains an involution t such that $H \cap H^{\mathfrak{s}} \neq 1$. Then G is isomorphic to a group PGL(2, F), char F = 2.

There is a similar characterisation of the groups S(2, F). It is easy to verify that, if F is any field, then the transformations

$$z \rightarrow az (a \neq 0)$$

form an S_1 -subgroup of S(2, F). We prove

THEOREM 2. Let $H(\neq 1)$ be an S_1 -subgroup of the group G, and suppose that G-H contains an involution t such that $H \cap H^t = 1$. Then G is isomorphic to a group S(2, F).

Notations. Upper case Latin letters stand for groups and fields, lower

237

case Latin letters for their elements. $H \triangleleft G$ means that H is a normal subgroup of G. N(H) is the normaliser of the subgroup H, C(h) is the centraliser of the element h, |H| is the order of the group H, and (G; H) is the index of the subgroup H in the group G. G-H is the set of elements of G not in H and $a^x = x^{-1}ax$, $H^x = x^{-1}Hx$.

By the results of Zassenhaus [6] and Tits [5] it is sufficient to prove

THEOREM 1'. Under the conditions of Theorem 1, G is isomorphic to a triply transitive permutation group in which only the identity fixes three symbols and in which the group fixing two symbols is abelian.

THEOREM 2'. Under the conditions of Theorem 2, G is isomorphic to a doubly transitive permutation group in which only the identity fixes two symbols, and in which the group fixing one symbol is abelian.

In both theorems, H is a non-normal S_1 -subgroup of the group G. We prove a series of lemmas under this assumption.

LEMMA 1. If
$$h(\neq 1) \in H$$
, then $C(h) \subseteq H$.

PROOF. If $a \notin H$, then by the property S_1 , the only element of H which commutes with a is the unit element.

LEMMA 2. If H and \overline{H} are S_1 -subgroups of G, then $H \cap \overline{H}$ is an S_1 -subgroup of H.

PROOF. Suppose $a, a^b \in H - (H \cap \overline{H})$ where $b \in H$. We wish to show that there exists exactly one $h \in H \cap \overline{H}$ such that $a^h = a^b$.

By the property S_1 , there exists exactly one $h \in \overline{H}$ such that $a^h = a^b$. Then $a^{bh-1} = a$. i.e. $bh^{-1} \in C(a) \subseteq H$ by Lemma 1. Hence $h^{-1} \in b^{-1}H = H$, and so $h \in H \cap \overline{H}$.

LEMMA 3. N(H) = H.

PROOF. We assume $H \neq N(H)$ and deduce the contradiction that H is normal in G. By lemma 1, N(H) is a Frobenius group with Frobenius kernel H, so that H is a characteristic subgroup of N(H). Hence it is sufficient to prove that N(H) is normal in G, i.e. $N(H)^x = N(H)$ for each $x \in G$.

Let $n \in N(H) - H$. If $n^x \notin N(H)$, then, since H is an S_1 -subgroup of G, $n^x = n^h$ for some $h \in H$; but then $n^x \in N(H)$, which is a contradiction. Hence $n^x \in N(H)$. Since N(H) - H generates N(H), we have $N(H)^x = N(H)$ as required.

LEMMA 4. If $x \in G-H$, then G = H+HxH.

PROOF. By lemma 3 it suffices to prove that if $H \neq H^{y}$, then $y \in HxH$. Since $x \notin H$, $H \neq H^{x}$. Hence $H-H^{x}$ generates H and so, since $H \neq H^{y}$, we have $H - H^x \notin H^y$. Thus we can choose $h \in H$ such that $h \notin H^x$ and $h \notin H^y$, i.e. $h^{x^{-1}} \notin H$ and $h^{y^{-1}} \notin H$. Since H is an S_1 -subgroup of G, $h^{y^{-1}} = h^{x^{-1}h_1}$ for some $h_1 \in H$. Then $y^{-1}h_1^{-1}x \in C(h)$ and so, by lemma 1, $y^{-1}h_1^{-1}x = h_2 \in H$. Thus $y = h_1^{-1}xh_2^{-1} \in HxH$ as required.

We can now prove theorem 2'. Suppose $\overline{H} = H^x$ and consider the permutation representation P of G on the left cosets of H. By lemma 4, P is doubly transitive. Since $H \cap H^x = 1$, P is faithful and only the identity fixes the symbols H and xH. Finally, the group fixing the symbol H, viz. H itself is abelian; for by Lemma 2, $H \cap H^x = 1$ is an S_1 -subgroup of H. This completes the proof of Theorem 2'.

LEMMA 5. The group $K = H \cap H^t$ is abelian and $k^t = k^{-1}$ for each $k \in K$.

PROOF. $K^t = (H \cap H^t)^t = H^t \cap H = K$. Thus t maps K onto itself and, as $t^2 = 1$, $K \cup tK$ is a subgroup of G. Further $K \triangleleft K \cup tK$.

Suppose $k \in K$. Then $(tk)^2 \in K$, say $(tk)^2 = k_1$. Then $k^t = k_1 k^{-1}$ and so $(k^{-1})^t = kk_1^{-1}$. Thus $k = k^{t^2} = k_1^t (k^{-1})^t = k_1^t kk_1^{-1}$ and so $k_1^t = k_1^{-1}$ i.e. $tk \in C(k_1) \subseteq K$ by lemma 1, which is a contradiction unless $k_1 = 1$. Hence for every $k \in K$, $(tk)^2 = 1$, i.e. $k^t = k^{-1}$. Thus $k \to k^{-1}$ is an automorphism of K and hence K is abelian.

LEMMA 6. If H^x is a conjugate of H different from H and H^t , then $H \cap H^t \cap H^x = 1$.

PROOF. By lemma 4, $x = h_1 t h_2 \in H t H$, so that $H^x = H^u$ where u is the involution t^{h_2} . Suppose $h(\neq 1) \in H \cap H^t \cap H^u$. By lemma 5, $h^t = h^u = h^{-1}$. Therefore by lemma 1, $tu^{-1} = h_1 \in H$. Then $H^t = H^{h_1 u} = H^u$ contrary to assumption.

We can now prove theorem 1'. Set $K = H \cap H^t$ and let H^x be a conjugate of H different from H, H^t . Consider the permutation representation P of G on the left cosets of H. By lemma 6, P is faithful and only the identity fixes the three symbols H, tH, xH. It remains to prove that P is triply transitive.

Now, by lemma 4, $H^x = H^{th}$ for some $h \in H$. Then, by lemma 6, $K \cap K^h = H \cap H^t \cap H^x = 1$ so that K is not normal in H. By lemma 2, K is an S_1 -subgroup of H. By lemma 4, H = K + KaK for some $a \in K$. Then, since Kt = tK by lemma 5, we have

$$G = H + HtH = H + (K + KaK)tH,$$

= $H + tH + KatH.$

This shows that the group K which fixes the cosets H and tH permutes the remaining cosets transitively. Since, by lemma 4, P is doubly transitive, it is hence triply transitive. This completes the proof.

P. J. Lorimer

References

- W. Feit, A Characterisation of the Simple Groups SL(2,2^a), Amer. J. Math. 82 (1960), 281-300.
- [2] P. J. Lorimer. T₃-groups and a Characterisation of the Finite Groups of Moebius Transformations. To appear in the Canad. J. Math.
- [3] H. W. E. Schwerdtfeger, Über eine spezielle Klasse Frobeniusscher Gruppen, Archiv der Math. 13 (1962), 283-289.
- [4] H. W. E. Schwerdtfeger, On a property of the Moebius Group, Ann. di Mat. (4) 54 (1961), 23-32.
- [5] J. Tits, Sur les groupes doublement transitifs continus, Comm. Math. Helvetici (26) 203-224.
- [6] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Abh. Math. Sem. Univ. Hamburg. 2 (1936), 17-40.

McGill University,

Montreal, Quebec,

Canada.

University of Canterbury,

Christchurch, New Zealand.

240