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ON THE MONOTONICITY PROPERTIES OF ADDITIVE
REPRESENTATION FUNCTIONS

YONG-GAO CHEN, ANDRAS SARKOZY, VERA T. SOS AND MIN TANG

If A is a set of positive integers, let Ri (n) be the number of solutions of a + a' = n, a,
a' £ A, and let Ri{n) and Rz(n) denote the number of solutions with the additional
restrictions a < a', and a ^ a' respectively. The monotonicity properties of the three
functions Ri(n), R2(n), and /^(n) are studied and compared.

1. INTRODUCTION

Let N denote the set of positive integers, let A C N be an infinite set, and put
A(n) = \{a : a ^ n, a E A}\. For n - 0, 1, 2, . . . , let

R^n) = Rx{A,n), R2(n) = R2(A, n), R3(n) = R3(A, n)

denote the number of solutions of
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Erdos, Sarkozy and Sos [3, 4] and Balasubramanian [2] studied the monotonic-
ity properties of the functions R\(n), R2{n) and /?3(n). Somewhat unexpectedly, it
turned out that the monotonicity properties of the three representation functions dif-
fer significantly. In particular, Erdos, Sarkozy and Sos proved in [3] that Ri(n) can be
monotonically increasing from a certain point on only in the trivial way:

THEOREM A. The function Ri (n) is eventually increasing; that is, there exists an

integer n0 with

Ri(n+ 1) ^ Ri{n) forn^n0
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if and only ifN\A is finite; that is, there exists an integer nx with

A n {ni, nY + 1, ni + 2, ...} = {m, rii + 1, r^ + 2, . . .}

In [3] the following was also proved.

THEOREM B . If A C N is an infinite set such that

<»

then tie function R2(n) cannot be eventually increasing.

In [3] they also claimed the following result:

THEOREM C. Let B be a set of positive integers such that

(i) B is a "Sidon set", that is,

b1 + b2 = b3 + b4, bu b2, b3, b4 € B, &i ̂  b2, b3 ^ b4

imply that by = b3 and b2 = b4,

(ii) all the elements of B are even, and

(iii) b,b'GB implies that (b + b')/2 £ B.

Then the complement of B, that is, the set

(2) A = N\B

is such that the function R2{n) = R2{A,n) is monotonically increasing.

However, this theorem is false in its original form stated above: it is easy to check
that the set B = {2, 2 2 , . . . , 2n,...} satisfies conditions (i), (ii) and (iii) in the theorem;
but defining A by (2), we have

R2(A, 2n) = 2"-1 - n + 1

and
R2(A, 2" 4-1) = 2"-1 - n

so that
R2(A, 2") > R2(A, 2" + 1)

and thus R2(A, n) is not eventually increasing. The error in the theorem is due to

the fact that a computational error was made in the last line of (28) in [3] and thus the

formula stated there is wrong.

In [4] Erdos, Sarkozy and Sos proved:

THEOREM D. If A C N is an infinite set such that

.„. .. n-A(n)
(3) hm —i—^J. = + o o
v n-»+oo logn
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then we have

N

(4) limsupV(i?3(2fe) - R3{2k + 1)) = +oo.

It was also shown in [4] that this result is near the best possible:
THEOREM E . There exists an infinite sequence A C N such that there are c(> 0), n0

so that

(5) n - A(n) > clogn (for n > no)

and

N

(6) limsupS2 (R3(2k) ~ #3(2/1; + 1)) < +00.

Indeed, they proved this by showing that the set

(7) ^ 2fc

satisfies (5) and (6).
In [6], Tang and Chen generalised Theorem D and gave a quantitative form of it.

As a corollary, we have

THEOREM F . If A C N is an infinite set such that

, . n — A(n)
(8) hmsup — - — ^

n-t+oo log Tl

then we have

N
(9) lira sup V(i?3(2fc) - R3{2k + 1)) = +00.

Ny+oo ~

(9) implies that R3(2k) > R3(2k + 1) infinitely often, thus it follows from Theorem
F that

THEOREM G. If A C N is an infinite set such that (8) holds, then the function
R3{n) cannot be eventually increasing, that is, there is no TIQ 6 N with

R3{n + 1) > R3{n) for n ^ no.

Theorem G with (8) replacing by (3) has also been proved simultaneously and inde-
pendently by Balasubramanian [2]. However, the following problem has not been solved
yet (see [5, Problem 4]).
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P R O B L E M 1. Does there exist an infinite set A C N such that N\A is infinite and R3(n)

is eventually increasing?

By Theorem E, the set A in (7) seems to be a good candidate for being a set possess-
ing the properties described in Problem 1, thus one might like to study the monotonicity
of R3(A,n) for this set A. But for this set and I ^ 2, we have

R3(A, A21 + 42 '"2 + 2) = R3(A, 42' + 42'"2 + 3) + 1.

So the function #3 (.4, n) cannot be eventually increasing.

Although Theorem F is near the best possible by Theorem E, this is not so with
Theorem G which is the consequence of Theorem F, and perhaps Theorem G could be
improved upon. It is even possible that the answer to the question in Problem 1 is
negative; that is, / ^ (n ) can be increasing from a certain point on only in the trivial way.

In this paper our goal is twofold. First we shall show that Theorem C can be
corrected by slightly modifying it. The statement of Theorem C is true if we replace
condition (iii) by

(iii)' b,b' £B implies that (b + b') i B.

Indeed, we shall prove slightly more:

THEOREM 1. Let B C N be an infinite set aii whose dements are even, and write
A = N\B. Tien R^n) = RQ^A, n) is eventually increasing, that is, there exists an
integer no with

(10) R2{n + 1) ^ R2{n) for n > n0,

if and only if

(i) Ri{B, n) < 1 for n ^ n0 and

(ii) b, b' € B, b + 6* ^ n0 imply that (b + V) $ B.

We remark that it can be shown easily by the greedy algorithm that there is an
infinite set B C {2, 4, 6, . . . } such that it satisfies (i) and (ii) in Theorem 1 and we have

(and by using a result of Ajtai, Komlos and Szemere"di [1], with a little work this lower
bound could be improved to » (nlogn)1/3). Then the complement A = N\B of B
satisfies

A(n) = \An[0,n]\=n- B(n) <n- cn1/3 (for large n).

Thus by Theorem 1 it follows:

COROLLARY 1. There is an infinite set A C N and c > 0, no, nx such that

(11) A(n) <n- cnm for n ^ no
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and Ri(A, n) is monotonically increasing for n ^ m .

We remark that there is a big gap between the lower and upper bounds given for
A(n) in (1) and (11). Unfortunately, we have not been able to tighten this gap and, in
particular, we have not been able to answer the following question.

P R O B L E M 2. Is it true that if A C N is an infinite set such that i?2(") is monotonically
increasing from a certain point on, then we must have

A(n) ,
limsup
n—t+oo

or, perhaps, even

lim
1-+ + 0O

In the second half of this paper we shall prove a further partial result on R3(n) which
seems to indicate that, perhaps, the answer to the question in Problem 1 is negative, that
is, R3{n) can be monotonically increasing only in the trivial way. We show if A is infinite
and Rz(n) is eventually increasing, then writing B = {bi < 62 < • • • } = N\.4, by Theorem
G there is a C(= C(B)) > 1 so that

bn>Cn

for all large n. Now we shall show that if the elements of B grow quickly, then again
R3{n) cannot be eventually increasing:

THEOREM 2 . Assume that 5 = {6i < 62 < ...} c N i s a n infinite sequence and

define A by A = N\B. If

(12) lim (6n + 1 - bn) = +00,
n—>+oo

then the function /?3(n) = Rz(A, n) is not eventually increasing; that is, there is no no

with

(13) R3{n + 1) ^ R3(n) for n > n0.

We could prove other similar sufficient criteria. For example, we can prove that if
all sufficiently large b € B have the same parity, then / ^ ( n ) is not eventually increasing.
However, we have not been able to settle Problem 1.

The results above reflect a striking and quite unexpected contrast between the mono-
tonicity properties of the three representation functions: while Ri (n) can be monotoni-
cally increasing only in the trivial way, by Theorem 1 there are many sets A satisfying
(11) so that .R2(n) is monotonically increasing. Finally, R3(n) is closer to Ri(n), than
to Ri{n): either it is monotonically increasing only in the trivial way or if there is a
non-trivial A with this property then it must be such that it can be obtained from N by
dropping only < c logn integers up to n (for infinitely many n).

https://doi.org/10.1017/S0004972700034912 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700034912


134 Y-G. Chen, A. Sarkozy, V.T. Sos. and M. Tang [6]

2. P R O O F OF T H E O R E M 1

Write

B{n) = \{b:b£n,beB}\,

( l i f i e B
7)1 [0 \liiB

and
R(n) = R3(B, n) = \{(b, b') : b, b' € B, b < 6', 6 + b' = n } | .

Then

R7(n) = I {(a, a') : a, a' € A, a < a', a +a' = n}\

£ (l-77(i)) (1-7,(71-*))

— > 1— U z : l < » ^ n —

Since the elements of B are even, thus it follows that

R2(2k) = {k-l)- B{2k - 2) + R(2k)

and

+ 1) = A: - B(2k)

then

R2{2k + 1) - fl2(2ifc) = 1 - {B(2k) - B{2k - 2)) -

(14) = 1 - 77(2Jfc) - H(2k)

and
R2{2k) - R2(2k - 1) = R{2k).

The latter is always non-negative, thus (10) holds if and only if (14) is non-negative for

2k ^ no:

(15) 1 - 7?(2A;) - ~R(2k) ^ 0 (for 2k > TI0).

Assume first that (10) holds. Since T](k) ^ 0, it follows from (15) that

(16) R{2k) = R3(B,2k) ^ 1 for 2*:* no.
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The elements of B are even, thus

(17) R3(B,2k + l) = Q for all k 6 N.

(i) in the theorem follows from (16) and (17). Moreover, if b, b' € B and b + b' > n0,
then writing b + b' = 2k, we have R3(B, 2k) - ~R(2k) ^ 1, thus it follows from (15) that
r}(2k) = T)(b + b') = 0 so that b + b' £ B which proves (ii) in the theorem.

Assume now that (i) and (ii) in the theorem hold. If 2k ^ no, then by (i) we have
fl(2A:) = R3(B, 2k) < 1 so that H(2k) = 0 or 1. If H(2k) = 0, then by 77(2*) < 1
(15) holds trivially. Finally, if ~R(2k) = R3{B, 2k) = 1, then there are b, b' G B with
b + b' - 2k. By (ii), it follows that 2k £ B then T](2k) = 0 and thus (15) follows. This
completes the proof of Theorem 1. D

3. P R O O F OF THEOREM 2

We shall use proof by contradiction: assume that S c N satisfies (12), however, (13)
holds for some no.

Define B(n), T}(i) and R(n) = R3(B, n) as in the proof of Theorem 1. Then we have

fls(«)= £ (1-»?(*)) (l~»?(n-i))

(here we have r)(n/2) = 0 if n is odd). It follows that

Rt(2k) = k- B{2k - 1) -

and
R3{2k + l) = k- B(2k) + R~{2k + 1)

then

R3(2k + 1) - R3{2k) = -(B(2k) - B(2k - 1)) + 77^) + (R{2k + 1) - R(2k))

(18) = -r]{2k) + r](k) + (R3(B, 2k+ 1)- R3{B, 2k)).

Clearly we have R3(B, 2k + 1) = R2{B, 2k + 1), and R3{B, 2k) - j){k) = R2{B,2k) (if
k £ B, then b = k, V = k is z solution of b + V = 2k, b, b1 e B, b ^ 6*) thus (18) can be
rewritten as

R3(2k + 1) - R3(2k) = -rj(2k) + (R2(B, 2k + 1) - R2(B, 2k))

(19) ^ R2(B, 2k+ 1)- R2(B, 2k).
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It follows from (13) and (19) that

(20) 0 ^ -i?(2*) + (R2{B, 2k+ 1)- R2(B, 2k))

^ R2(B, 2k + 1) - R2(B, 2k) for * > no/2.

Write B0 = {b: b e B, b + 1 $ B, 2 | b}, Bx = {b : b e B, b + 1 £ B, 2 \ b}. For a set 5 ,
define S{m,n) = {b : m < 6 ^ n,b € S} and S(n) = 5(1,n). By (12) we have at least
one of Bo and B\ is an infinite set. Write

M =

max6 if |Bo| < oo
66 Bo

maxfi if \BA < oo
66Si ' '
1 others.

By Theorem G, there exists a constant C = C(A) such that

B(n)^ Clogn

for infinitely many positive integers n. By the bipartite method, there are infinitely many
positive integers n with

\B{n,2n)\ < 2C.

For such an integer n, let bu be the least b£ B with b ̂  2n. Then

B[^bu,bu(21)

for large n. Thus, there are infinitely many bu € B with (21). Let bu be such one with
bu > M + no and 6u+i — 6U > 1, and let i — 0 or 1 with 6U e S*. Let

v = v(u)= min
m£B(b

- 6m_i} - 2

and

By the definition of M and (12), we have |Bj(u)| -> co as u -> oo. So x > 2C + 1 for

large u. Since u = B(bu) ^ B(6U — &u-i)i we have

bj ^ v < bu - bu-i ^ bu.

So
+ b i ) ^ ! for j = 1,2,..., x.

Noting that bu,bj 6 B^ we have 2 | 6U + bj. By 6U + bj^bu>n0 and (20), we have

R2{B,bu + bj + l) ^ 1 for j = l , 2 , . . . , x .
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Let

(22) bu + bJ + l = btj+bti, bSj<btj, j = l,2,...,x.

Then

and

So

By (21) and x > 2C +1, there exist 1 ^ p < q ^ x with tp — tq. Hence, by (22), we have

0 < b3q - bSp =bg-bp^v.

So

(23) bSp+l - bap < v.

If btp = bu, then b8p = bp + 1, a contradiction with bp € Bj. Thus, 6^ < 6U and

b3p = bu + bp + 1 - 6tp > &u - &u-i>

then sp ^ B(6U - 6u- i ) , a contradiction with (23) and the definition of v. This completes
the proof of Theorem 2. 0
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