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Abstract
Hydrogen sulfide (H2S, “sulfide”) is a naturally occurring component of the marine sediment. Eutrophi-
cation of coastal waters, however, can lead to an excess of sulfide production that can prove toxic to
seagrasses. We used stable sulfur isotope ratio (δ34S) measurements to assess sulfide intrusion in the
seagrass Halodule wrightii, a semi-tropical species found throughout the Gulf of Mexico, Caribbean Sea,
and both western and eastern Atlantic coasts. We found a gradient in δ34S values (�5.58 � 0.54‰þ
13.58� 0.30‰) from roots to leaves, in accordance with prior observations and those from other species.
The results may also represent the first values reported for H. wrightii rhizome tissue. The presence of
sulfide-derived sulfur in varying proportions (15–55%) among leaf, rhizome, and root tissues suggests
H. wrightii is able to assimilate sedimentary H2S into non-toxic forms that constitute a significant portion
of the plant’s total sulfur content.
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Introduction

Seagrasses are marine angiosperms that provide key ecological services to coastal ecosystems.
Unfortunately, seagrasses are experiencing a global crisis in terms of habitat decline (Waycott
et al., 2009). Excess nutrients in coastal waters can lead to an increase in sulfide levels in seagrass
beds (Ruiz-Halpern et al., 2008). H2S is a potent toxin that can easily cross cell membranes and enter
the plant (intrusion), potentially inducing seagrass mortality (Koch & Erskine, 2001). Sulfide
intrusion can be assessed using stable sulfur isotope (32S, 34S) measurements. Sulfate-reducing
bacteria discriminate against the heavier 34S isotope, preferring the lighter 32S form. This yields
sedimentary H2S with a lower 34S isotopic “signal” (Canfield, 2001). This signal can be quantified in
plants, providing an estimate of the proportion of tissue sulfur derived from sedimentary sulfide
(Frederiksen et al., 2006).

Thus far, the literature on sulfide intrusion in seagrasses shows relatively few measurements
for species besides Zostera marina, Thalassia testudinum, and Posidonia oceanica (Holmer &
Hasler-Sheetal, 2014). The objective of this study was to use stable isotope analysis to examine
H2S intrusion in the seagrassHalodule wrightii, a semi-tropical species found throughout the Gulf of
Mexico, Caribbean, and parts of both the eastern and western Atlantic coasts (Green & Short, 2003).
We also estimated the proportion of total sulfur derived from sedimentary sulfide in the root,
rhizome, and leaf tissues. Our goal was to obtain a more complete picture of sulfide uptake and
distribution in this species, including its influence on the sulfur content in major plant organs.
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Methods

Forty-eight H. wrightii, 10 sediment, and five seawater samples were collected from Oso Bay, Corpus
Christi, TX, near the campus of Texas A&M University-Corpus Christi (Figure 1). Leaf, rhizome, and
root tissues were separated from each plant sample, oven-dried and ground to a fine powder using a ball
mill. Sediment sulfide was extracted and precipitated as Ag2S using a modified total reduced inorganic
sulfur (TRIS) distillation method based on Backlund et al. (2005) and Fossing and Jørgensen (1989).
A detailed protocol is available at https://doi.org/10.17504/protocols.io.b2b8qarw. Seawater sulfate was
precipitated as barium sulfate (BaSO4) under acidic conditions (Grasshoff et al., 1999). Tissue, Ag2S, and
BaSO4 samples were sent to the Stable Isotopes for Biosphere Science (SIBS) Laboratory at Texas A&M
University (College Station) for analysis of stable sulfur isotope ratios (δ34S; per mil (‰) units) and total
sulfur content (TS; % dw) using elemental analyzer combustion continuous flow isotope ratio mass
spectroscopy. δ34S represents the deviation in the ratio of 34S/32S from a particular sample relative to an
international standard, and is defined as

δ34Ssample ¼
Rð ÞSample

Rð ÞVCDT
�1

 !
�1,000 (1)

where R represents the 34S/32S ratio and VCDT corresponds to the Vienna-Canyon Diablo Troilite
international standard. δ34S values can be negative or positive depending onwhether a sample is depleted
or enriched, respectively, for the S34 isotope compared to the standard.

δ34S values from seagrass tissues (root, rhizome, leaf), sediment sulfide, and seawater sulfate were used
to calculate the Fsulfide parameter, an estimate of the percentage of the total sulfur content within a tissue
that is derived from sedimentary sulfide (Frederiksen et al., 2006):

Fsulfide ¼ δ34Stissue�δ34Ssulfate
δ34Ssulfide�δ34Ssulfate

�100 (2)

Figure 1. Sampling site in Oso Bay, Corpus Christi, TX.
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Results

The mean δ34S value from 10 sediment samples was�27.38� 1.41‰, while that of the seawater sulfate
samples was þ21.11 � 0.76‰ (Table 1). Mean δ34S values for seagrass tissues ranged from
�5.58 � 3.73‰ for roots to þ13.58 � 2.04‰ for leaves (Table 2). Fsulfide values ranged from
15.51 � 4.2% of the total sulfur content in leaves to 55.02 � 7.68% in roots (Table 2).

While the proportion of sulfur derived from sediment sulfide varied, the total sulfur content (%TS)
across tissues was similar (Table 2). Mean TS values ranged from 0.49 � 0.18% in rhizomes to
0.55 � 0.23% in roots. Variation in mean δ34S, Fsulfide, and TS values among tissues was assessed with
a one-way analysis of variance (ANOVA) test. Results showed significant differences for Fsulfide and δ

34S
across seagrass tissues, but no statistically significant difference for TS (Figure 2).

Discussion

The mean δ34S values forH. wrightii leaf and root tissues were higher than those previously reported for
this species (þ9.3‰ and �7.4‰, respectively, Holmer & Hasler-Sheetal, 2014) but the high level of
variation for thesemeasurements across studies suggests the differences may not be significant. Although
we could find no previous report forH. wrightii rhizomes, the mean δ34S value for this tissue was similar
to one calculated across a number of seagrass species (þ5.1‰, Holmer & Hasler-Sheetal, 2014).

We found a gradient in δ34S values from roots to leaves, suggesting that H2S enters the roots and then
passes up to the rhizome and leaf tissue, either as sulfide itself or in an oxidized ormetabolized form. This
was quantified as Fsulfide, which estimated that approximately 55, 32, and 15% of the total sulfur content
in roots, rhizomes, and leaves, respectively, came from sediment-derived H2S. The range of values
suggests a mixing of the sulfur pools (seawater sulfate and sedimentary sulfide) in the various tissues,
similar to other species. A comparable gradient, however, was not observed for total sulfur content, which
remained similar across tissue types. This could suggest that, while H2S can intrude and become
distributed throughout the plant, the level does not exceed H. wrightii’s normal metabolic requirements
for sulfur.

Conclusion

Our findings suggest that significant sedimentary H2S intrusion can occur in H. wrightii, entering
through the roots and then becoming distributed throughout the plant. The results verified a trend
previously observed for H. wrightii, and seagrasses in general. They also represent the first report we are
aware of for rhizome tissue from this species. The relatively high proportions of total sulfur content
derived from sedimentary sulfide in root, rhizome, and leaf tissue suggest H. wrightii is able to convert
H2S into non-toxic forms that can accumulate andmix with other sulfur-containing compounds derived
from seawater sulfate, as demonstrated in Z. marina (Hasler-Sheetal & Holmer, 2015). Diverse levels of
intrusion, however, did not translate into differences in total sulfur content among tissues, suggesting
that H2S-derived products may constitute a normal part of their sulfur budget.

Table 1. δ34S values of sulfur sources (sediment TRIS or seawater sulfate) from H. wrightii bed in Oso Bay, Corpus Christi, TX

Species
Sediment (TRIS) Seawater sulfate

Location N δ34S (‰) N δ34S (‰)

H. wrightii Corpus, Christi, TX 10 �27.38 � 1.41 4 þ21.11 � 0.76

Note. Values are given as sample mean � SD. N ¼ number of observations.
Abbreviation: TRIS, total reduced inorganic sulfur.
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Table 2. Total sulfur (TS) and δ34S values for H. wrightii leaf, rhizome, and root samples from Oso Bay, Corpus Christi, TX

Species
Leaf Rhizome Root

Location TS (% dw) δ34S (‰) Fsulfide (%) TS (% dw) δ34S (‰) Fsulfide (%) TS (% dw) δ34S (‰) Fsulfide (%)

H.wrightii Corpus Christi, TX 0.54 � 0.12 þ13.58 � 2.04 15.51 � 4.2 0.49 � 0.18 þ5.72 � 3.37 31.72 � 2.04 0.55 � 0.23 �5.58 � 3.73 55.02 � 7.68

Note. Values are given as mean � SD. Sample sizes for each tissue were Nleaf ¼ 47, Nrhizome ¼ 48, and Nroot ¼ 48.
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