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On particle fountains in a crossflow
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We present new experiments of particle-laden turbulent fountains in a uniform horizontal
crossflow, ua, with momentum flux, M0, and buoyancy flux, B0. We use the ratio, P, of the
crossflow speed to the characteristic fountain speed, M−1/4

0 |B0|1/2, and the ratio U, of the
Stokes fall speed of the particles, vs, to the characteristic fountain speed, to characterise the
dynamics of a particle fountain in a crossflow. We find that the dynamics of these particle
fountains can be categorised into three distinct regimes. In regime I when the fall speed
of the particles is small in comparison with the characteristic fountain speed (U � 1), the
particles remain well-coupled to the fountain fluid and the flow essentially behaves as a
single-phase fountain in a crossflow. In the transitional regime II (0.1 < U < 1), when the
fall speed of particles is comparable to the characteristic fountain speed, we observe some
particles separating from the fountain fluid during the descent of the flow which leaves
some fluid neutrally buoyant. As U > 1 (regime III), we observe particles separating from
the fountain as it rises from the source. We measure the average dispersal distance of the
particles and the speed of the descending particles as a function of U and P and compare
these results with models of a single-phase fountain in a crossflow. We build a regime
diagram to describe the effect of U and P on the flow dynamics and consider our work in
the context of deep-submarine volcanic eruptions.

Key words: particle/fluid flow

1. Introduction

1.1. Background
The release of particle-laden fluid into the environment occurs in many settings, including
both subaerial and subaqueous explosive volcanic eruptions (Head & Wilson 2003; Woods
2010; Newland, Mingotti & Woods 2022; Rowell et al. 2022) and tailings discharge from
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vessels during deep-sea mining (Mingotti & Woods 2020). The conditions of the ambient
environment, such as density stratification and the presence of local crossflows, play a
critical role in controlling the dynamics of these multiphase flows. Such conditions will
have a significant effect on the dispersal distance of particles and the final location of the
fluid in the flow, parameters which are both considered environmentally and economically
important.

Geophysical flows are often more dense than the ambient fluid they interact with,
due to the presence of dissolved or entrained material, and if the flow issues from a
localised source and the buoyancy of the flow opposes the momentum of the flow, it
will behave as a turbulent fountain (Hunt & Burridge 2015). Following the classical work
on single-phase turbulent fountains (Morton, Taylor & Turner 1956; Turner 1966), there
have been numerous experimental studies (Turner 1973; Baines, Turner & Campbell 1990;
Zhang & Baddour 1998; Kaye & Hunt 2006; Williamson et al. 2008; Burridge & Hunt
2012) that describe the rise and subsequent collapse of these flows. These observations are
further complemented by a suite of theoretical models (McDougall 1981; Bloomfield &
Kerr 2000; Mehaddi et al. 2015) that build on the entrainment assumption of Morton et al.
(1956), and find that for a turbulent fountain the entrainment coefficient α = 0.085 ± 0.01.

Mingotti & Woods (2016) carried out a detailed experimental study into particle-laden
turbulent fountains in a homogeneous environment and showed that the dynamics of the
two-phase flow is dependent on the ratio of the fall speed of the entrained particles, vs, to
the characteristic speed of the fountain, uf ,

U = vs

uf
, (1.1)

where
uf = M−1/4

0 |B0|1/2 (1.2)

is a function of the source momentum flux, M0, and the magnitude of the source buoyancy
flux, |B0|. The authors demonstrated that when U � 1, a particle-laden fountain behaves
essentially as a classical single-phase fountain. However, for U ∼ 1, the particles separate
from the flow during the fountains ascent and settle to the floor, leaving the remaining
fountain fluid positively buoyant which then rises as a plume. Using similar experimental
techniques, Carazzo, Kaminski & Tait (2015) and Newland et al. (2022) investigated
the effect of particle-sedimentation in turbulent fountains on the dynamics of volcanic
eruption columns.

In many natural environments, for example the atmosphere or ocean, turbulent flows
may interact with lateral crossflows, with magnitude ua, that occur in the ambient fluid.
There have been numerous investigations into the complex interaction between negatively
buoyant single-phase fountains with a uniform crossflow (Taherian & Mohammadian
2021). Early studies, with a focus on the dilution of brine when discharged into
estuaries (Anderson, Parker & Benedict 1973; Pincince & List 1973), presented extensive
experimental data on jets that were both perpendicular and at an angle to a crossflow.
Integral models were used to estimate the centreline location and average dilution of
the flow, however Anderson et al. (1973) concluded that the models were only able to
predict trends in the data rather than exact dilution profiles. Subsequently, by developing
a model of forced plumes in a crossflow (Chu & Goldberg 1974), Chu (1975) introduced
a mechanistic model for the motion and dilution of dense jets in a crossflow. This model,
based on the assumption that the horizontal velocity of the fountain, u, quickly adjusts
to the speed of the local crossflow, produced centreline trajectories that showed good
agreement with the experimental data presented. Further detailed experimental studies
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Figure 1. Summary of major works on turbulent flows in a crossflow.

(Roberts & Toms 1987; Gungor & Roberts 2009; Choi, Lai & Lee 2016; Ben Meftah
et al. 2018) qualitatively and quantitatively summarised the general characteristics of
single-phase fountains in a crossflow as a function of the dimensionless crossflow Froude
number, Fra = (π/4)1/4ua/uf . Ansong, Anderson-Frey & Sutherland (2011) extended the
Lagrangian theory for fountains in a stationary fluid to predict the centreline and radius
of a fountain in a one- and two-layer crossflow. Their model assumes that the momentum
flux at the source is predominantly vertical and therefore is only valid for sufficiently small
crossflows.

It should also be noted that there is a significant body of literature on both single-phase
and particle-laden plumes in a crossflow, initiated by the foundational work of Hoult, Fay
& Forney (1969), Hewett, Fay & Hoult (1971) and Slawson & Csanady (1967), in which
the authors developed models that trace the motion of the centreline of single-phase flows.
Comprehensive studies into the entrainment of ambient fluid into such flows have since
been carried out with a specific focus on volcanic plumes (Degruyter & Bonadonna 2013;
Woodhouse et al. 2013; Aubry et al. 2017; Michaud-Dubuy, Carazzo & Kaminski 2020).
James, Mingotti & Woods (2022) investigated the effect of particle sedimentation on the
structure of particle-laden plumes in a crossflow and Mingotti & Woods (2022) extended
this study by exploring the effect of varying the buoyancy of the interstitial fluid on the
dynamics of such flows.

There has been significantly less attention paid to particle-laden fountains in a uniform
crossflow. Fan, Xu & Wang (2010) and Park & Park (2021) measured the detailed structure
and particle concentration in particle-laden jets, with the latter focusing on the influence
of counter-rotating vortex pairs on particle dispersion in the flow. However, they did not
compare the transport of the particles with the predictions of the Chu-type models of
jets in a cross-flow in order to predict particle transport and deposition distances. Here
we develop a series of new experiments to compare the predictions of these single-phase
models with new experimental data. Figure 1 summarises the major works in this field.

1.2. Dimensionless scalings
Throughout this paper, the fountains we consider have a source Froude number, Fr � 1,
where

Fr = M3/4
0

r0|B0|1/2 ∝ u0√
r0|g′

0|
(1.3)
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Figure 2. Dynamical regimes of particle-laden fountains in a crossflow as a function of the dimensionless fall
speed of the particles, U, and dimensionless crossflow speed, P. The subscript c refers to the critical value of
U at which particle separation affects the dynamics of the flow.

and u0, r0 and g′
0 are the source speed, radius and buoyancy, respectively. This condition

ensures that the momentum carries the flow vertically a greater distance than the scale of
the source and, hence, the dynamics of the fountain are strongly influenced by turbulent
entrainment (Morton et al. 1956; Burridge & Hunt 2012; Hunt & Burridge 2015), such that
the top height of the fountain scales as

hf = M3/4
0 |B0|−1/2. (1.4)

In the case that a forced fountain is rising through an ambient crossflow, there is an
additional length scale to consider (Hoult et al. 1969; Hoult & Weil 1972; Roberts &
Toms 1987; Gungor & Roberts 2009; Devenish et al. 2010b), the jet adjustment length,
hm, that describes the height over which the speed of the fountain decreases to a value that
is comparable to the speed of the crossflow:

hm = M1/2
0

ua
. (1.5)

The ratio of the buoyancy-controlled length scale, hf , to the jet adjustment length scale,
hm, provides a measure of the effect of the crossflow on the dynamics of a fountain. We
define this ratio as

P = hf

hm
= ua

uf
. (1.6)

When P < 1 the speed of the crossflow is small in comparison with characteristic
fountain speed, and therefore the height of the fountain is limited by the source momentum
and buoyancy fluxes and the ascent of the fountain is close to vertical. As the crossflow
speed increases (P > 1), the fountain is bent over and the jet adjustment length decreases
as u−1

a (1.5) until hm becomes the limiting length scale of the height of the fountain.
To assess the effect of particle size on the dynamics of the particle fountains in a

crossflow, we adopt the approach of Mingotti & Woods (2016) and use the dimensionless
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Figure 3. Experimental set-up.

fall speed of the particles, U (1.1). Similar to the dynamics of particle fountains in a
stagnant homogeneous environment, when the crossflow speed is small in comparison
with fountain speed (P < 1) we expect that for small particles (U � 1) the fountain will
behave essentially as a single phase and for larger particles (U > 1), particle separation
will dominate the dynamics of the flow. However, as the crossflow speed increases (P > 1)
we anticipate that the critical value of U at which particle separation becomes important
will be a function of the non-dimensional crossflow speed, P (figure 2). In this paper, we
explore the effect of both U and P on the dynamics of these multiphase flows.

In § 2 of this study we describe the experimental set-up and image processing used
throughout. We then present a set of reference experiments showing single-phase saline
fountains injected from a moving source into a reservoir of fresh water and compare the
data with the models developed in Chu (1975) and Ansong et al. (2011). Following this, we
describe a series of experiments in which we form particle-laden fountains with neutrally
buoyant interstitial fluid in a uniform crossflow and systematically vary the particle size
and hence particle settling speed, vs, and the crossflow speed, ua. From these experiments,
we identify three distinct regimes as a function of the dimensionless fall speed of the
particles, U and investigate the effect of varying the crossflow speed on the point of
transition between each regime. We present quantitative data on the fall speed of the
particles and measure the average dispersal distance of the particles and compare these
data with the model predictions of Chu (1975) to identify when particle separation effects
become dominant. In § 5, we summarise the dynamics of these flows using a regime
diagram and we consider the implications of this study for submarine volcanic eruptions.

2. Experimental set-up

To form small-scale negatively buoyant fountains in a uniform crossflow, we adopt an
experimental approach used in earlier studies (Hoult et al. 1969; Chu & Goldberg 1974;
James et al. 2022) and move a source at a constant speed through a static ambient
environment; we expect this to be equivalent to a static source issuing a fluid into a
uniformly flowing ambient. The experimental system consists of a large Perspex tank with
length and width dimensions of 300 cm × 60 cm (figure 3) filled with fresh or saline water
to a depth of 50 cm. Fitted to the top of the tank is a track, along which a motorised trolley
moves at constant speed. The saline solution or particle–fluid suspension that forms the
fountain is supplied through a nozzle, with an inner diameter of 5 mm, located at the
base of the trolley. The nozzle has an outer diameter of 2 cm and height of 5 cm (aspect
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Exp. M0 Re Fr ρf ρa ua P
(×10−5) (×10−3)

a 2.00 3360 19 1057 1000 0.000 0.00
b 2.00 3360 19 1057 1000 0.003 0.05
c 2.00 3360 19 1057 1000 0.005 0.09
d 2.00 3360 19 1057 1000 0.006 0.12
e 2.00 3360 19 1057 1000 0.008 0.15
f 2.00 3360 19 1057 1000 0.008 0.16
g 2.00 3360 19 1057 1000 0.012 0.24
h 2.00 3360 19 1057 1000 0.015 0.30
i 2.00 3360 19 1057 1000 0.021 0.43
j 2.00 3360 19 1057 1000 0.031 0.61
k 2.00 3360 19 1057 1000 0.048 0.96
l 2.00 3360 19 1057 1000 0.075 1.52
m 2.00 3360 19 1057 1000 0.087 1.74
n 2.00 3360 19 1057 1000 0.138 2.77

Table 1. Experimental parameters for single-phase fountains in a uniform crossflow. Here M0 (m4 s−2) is the
source momentum flux, Re is the source Reynolds number, Fr is the source Froude number, ρf is the density of
the fountain fluid (kg m−3), ρa is the density of the ambient fluid (kg m−3), ua (m s−1) is crossflow speed and
P is the dimensionless crossflow speed.

ratio, AR = 2.5). Given the low AR of the nozzle, we do not expect there to be significant
vortex shedding as a result of the flow around the nozzle and therefore do not expect that
the dynamics of our fountain to be affected by the wake that forms behind the nozzle
(Sumner, Heseltine & Dansereau 2004). The temperature of the injected and ambient fluid
is measured and the variation between them is determined to be less than 0.5 ◦C for each
experiment. The arms of the trolley are sufficiently thin such that any wake produced by
the trolley as it traverses along the tank does not have a measurable effect on the dynamics
of the fountain. The speed of the trolley and, in turn, crossflow speed, ua, is varied between
experiments.

The particle–fluid suspension that forms the fountain consists of a dilute mixture of
fresh water, with density ρf = 1000 kg m−3, and silicon carbide particles of density ρm =
3206 kg m−3 and major axis of length, d, in the range 22.8–212 μm. For each particle
size in our experiments, we estimate there to be a variation of size about the mean of,
σ ≈ ±15 %, calculated from the particle size range in Washington Mills SIC Particle Size
Guide. Although the particles are not spherical, we use Stokes law to estimate the vertical
fall speed of the particles, vs, and control experiments carried out in previous studies
(Mingotti & Woods 2019, 2020; Newland & Woods 2021) show that the measured values
of the sedimentation speeds are in good agreement with the Stokes fall speed estimate. The
dilute particle–fluid suspension, with particle volume concentration C0 typically 2.5 %, is
stirred continuously and supplied to the injection nozzle using a Watson Marlow peristaltic
pump at a constant volumetric flow rate, Q0. The source buoyancy flux of the mixture B0
is given by

B0 = ρa − ρm

ρa
gQ0, (2.1)

where ρm = C0ρp + (1 − C0)ρf is the bulk density of the mixture and g is gravitational
acceleration. The source Reynolds number, Re = (u0r0)/ν0, where ν0 is the kinematic
viscosity of the source fluid, for each experiment is maintained above 2000 to ensure
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Exp. M0 Re Fr C0 Dp vs U ua P
(×10−5) (×10−6) (×10−3)

1 2.00 2500 27 0.025 22.8 0.70 0.014 0.004 0.08
2 2.00 2500 27 0.025 22.8 0.70 0.014 0.054 1.11
3 2.00 2500 27 0.025 22.8 0.70 0.014 0.080 1.63
4 2.00 2500 27 0.025 22.8 0.70 0.014 0.106 2.16
5 2.00 2500 27 0.025 22.8 0.70 0.014 0.138 2.82
6 2.00 2500 27 0.025 44.5 2.68 0.055 0.045 0.92
7 2.00 2500 27 0.025 44.5 2.68 0.055 0.079 1.61
8 2.00 2500 27 0.025 44.5 2.68 0.055 0.098 2.01
9 2.00 2500 27 0.025 44.5 2.68 0.055 0.135 2.76
10 2.00 2500 27 0.025 63.0 5.35 0.11 0.005 0.09
11 2.00 2500 27 0.025 63.0 5.35 0.11 0.036 0.73
12 2.00 2500 27 0.025 63.0 5.35 0.11 0.061 1.25
13 2.00 2500 27 0.025 63.0 5.35 0.11 0.080 1.64
14 2.00 2500 27 0.025 63.0 5.35 0.11 0.135 2.76
15 2.00 2500 27 0.025 106 15.2 0.31 0.006 0.13
16 2.00 2500 27 0.025 106 15.2 0.31 0.018 0.36
17 2.00 2500 27 0.025 106 15.2 0.31 0.038 0.77
18 2.00 2500 27 0.025 106 15.2 0.31 0.065 1.33
19 2.00 2500 27 0.025 106 15.2 0.31 0.126 2.58
20 2.00 2500 27 0.025 125 21.2 0.43 0.005 0.10
21 2.00 2500 27 0.025 125 21.2 0.43 0.039 0.79
22 2.00 2500 27 0.025 125 21.2 0.43 0.059 1.21
23 2.00 2500 27 0.025 125 21.2 0.43 0.078 1.59
24 2.00 2500 27 0.025 125 21.2 0.43 0.129 2.63
25 2.00 2500 27 0.025 150 30.5 0.62 0.005 0.13
26 2.00 2500 27 0.025 150 30.5 0.62 0.022 0.45
27 2.00 2500 27 0.025 150 30.5 0.62 0.032 0.66
28 2.00 2500 27 0.025 150 30.5 0.62 0.061 1.26
29 2.00 2500 27 0.025 150 30.5 0.62 0.129 2.63
30 2.00 2500 27 0.025 180 43.9 0.90 0.034 0.69
31 2.00 2500 27 0.025 180 43.9 0.90 0.066 1.34
32 2.00 2500 27 0.025 180 43.9 0.90 0.078 1.58
33 2.00 2500 27 0.025 180 43.9 0.90 0.127 2.59
34 2.00 2500 27 0.025 212 60.8 1.24 0.006 0.12
35 2.00 2500 27 0.025 212 60.8 1.24 0.036 0.73
36 2.00 2500 27 0.025 212 60.8 1.24 0.067 1.37
37 2.00 2500 27 0.025 212 60.8 1.24 0.085 1.74
38 2.00 2500 27 0.025 212 60.8 1.24 0.123 2.51
39 2.00 3183 40 0.021 212 60.8 1.81 0.063 1.90
40 2.00 3183 54 0.016 212 60.8 2.43 0.062 2.51

Table 2. Experimental parameters for particle fountains in a uniform crossflow. Here M0 (m4 s−2) is the
source momentum flux, Re is the source Reynolds number, Fr is the source Froude number, C0 is the initial
concentration of particles in the fountain mixture, Dp (m) is the particle diameter, vs (m s−1) is the particle
sedimentation speed, U is the dimensionless particle fall speed, ua (m s−1) is crossflow speed and P is the
dimensionless crossflow speed.

the flow is turbulent. An electroluminescent light sheet (LightTape by Electro-LuminiX
Lighting Corp.) is used to provide uniform lighting from one side of the tank and each
experiment is filmed from a distance of 5 m using a Nikon D5300 digital camera at frame
rate of 50 Hz. The frames captured in each experiment are analysed using MATLAB
to extract bulk properties of the flow. Tables 1 and 2 display the conditions for each
experiment.
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Figure 4. (a) Synthetic time-averaged images from (i) experiment d, (ii) experiment g and (iii) experiment k
in table 1, displaying the three morphological regimes observed as a function of P. The fountain top height
zt is shown in (i) and the touchdown distance and maximum height of the fountain centreline is shown in (iii)
alongside the measured fountain centreline and outer edge. (b) The measured height of a fountain in a crossflow
as a function of P. The red triangles represent the transient initial height, zi, only observable when P < 0.2,
the yellow squares represent the steady-state top height, zt (as shown in (a-i)), and the green circles represent
the maximum height of the centreline, zp (as shown in (a-iii)). The dashed horizontal lines show the estimates
of the initial and top height of fountain in a stagnant environment (Turner 1973), the dot-dashed and solid
lines show the model estimates of the maximum height of the fountain centreline from Ansong et al. (2011)
and Chu (1975), respectively. (c) The measured touchdown distance, xt, as a function of the dimensionless
variable P. The horizontal dashed line indicates the estimate of the maximum radius of a fountain in a stagnant
environment, Rf , as defined by Burridge & Hunt (2013). The dot-dashed and solid lines show the model
estimates of the touchdown distance, xt, from Ansong et al. (2011) and Chu (1975) respectively. The vertical
dashed lines in (b,c) represent the morphological regimes as a function of P, described in § 3.1.

3. Single-phase fountains in a crossflow

3.1. Experimental observations
Figure 4(ai–iii) shows a series of time-averaged experimental images of single-phase
saline fountains with the same initial momentum, M0, and buoyancy flux, B0, but with
increasing crossflow speed, ua. From these time-averaged images, we isolated the vertical
distribution of dye concentration along each vertical line through the fountain and fit a
Gaussian distribution to these profiles. Using the position of the maximum and standard
deviation of this Gaussian fit, we obtained an estimate of the centreline and outer edges of
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the fountain, as shown in figure 4(a-ii). Figure 4(b) presents the measured and theoretical
heights of a fountain as a function of P. For P < 0.2, the transient initial, zi and steady
state, zt, of the fountain are presented and for P > 0.2, the maximum height of the fountain
centreline is presented. Figure 4(c) presents the measured and theoretical distance at which
the centre of mass of the fountain passes the nozzle height (the touchdown distance, xt), as
shown in figure 4(a-iii). Based on the morphology of these fountains we have characterised
the flows as a function of P into three regimes (Roberts & Toms 1987; Gungor & Roberts
2009).

In the case of a weak crossflow, P = 0–0.2, the fountain is only slightly deflected as it
rises from the nozzle. The fountain entrains ambient fluid during its initial ascent which
leads to an increase in the radius of the flow, until it reaches a maximum height, zt. The
fountain then collapses and, as it is only slightly deflected, interacts and entrains fluid
from the upflowing region. Similar to a fountain in a stagnant homogeneous environment,
the interaction between the upflow and downflow causes a reduction in the top height of
the fountain to a steady-state value zt. As shown in figure 4(b), in the region P = 0–0.2,
an initial height zi and steady-state height zt can be measured and the values are in
agreement with the classical scalings of Turner (1966) for single-phase fountains in
a stagnant environment. As the fountain collapses back on itself, we expect that the
touchdown distance, xt, is comparable to the width of the fountain at the maximum height.
For comparison, we have plotted a scaling for the maximum radius of a fountain, Rf ,
as predicted by Burridge & Hunt (2013), that provides a lower limit for the touchdown
distance of the fountain as P ∼ 0.

As the speed of the crossflow increases so that P lies in the range 0.2–0.5, the
steady-state height of the fountain increases as, owing to the larger deflection of the
fountain, the collapsing region of the flow no longer interacts with nor entrains fluid
from the upflowing region. In addition, the transient initial height visible for fountains
when P < 0.2 is no longer observed and the touchdown distance of the fountain increases
(figure 4c). Figure 4(a-iii) illustrates the case when P > 0.5 and the crossflow speed is
comparable to characteristic speed of the fountain. The fountain displays a decrease in the
steady top height, zt, and an increase in the touchdown distance, xt, as P increases.

3.2. Modelling
A number of models have been proposed to describe single-phase fountains in a uniform
crossflow. In figure 4(b,c) we present the estimates for the fountain top height, zp, and
touchdown distance, xt, from models developed by Ansong et al. (2011), for low-moderate
crossflow speeds, and Chu (1975), for moderate-high crossflow speeds. Ansong et al.
(2011) extend the Lagrangian theory for fountains in stationary environments (Lee & Chu
2003) and assume that the momentum flux near the source is predominately vertical and
therefore neglect the development of streamwise vorticity. Although the model does not
account for the reduction in zp that is observed as the crossflow speed increases, when
P = 0.2–0.5 the measured values of zp and xt in figure 4 show reasonable agreement with
the model estimates.

For moderate-high crossflow speeds, the flow becomes blown over by the effective
ambient flow (in the frame of the jet) and so the entrainment and mixing is dominated
by the tilted fountain dynamics, which includes the effect of the coherent axial vorticity,
rather than the vertical fountain dynamics, where the entrainment is smaller. To illustrate
the transition between a vertical fountain and a bent-over fountain, figure 5 shows the
vertical momentum flux of a fountain at the height at which the upward speed is equal
to the crossflow speed, M̂, calculated using the model presented in Ansong et al. (2011),
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α = 0.23 (Ansong et al. 2011)

α = 0.17 (Lee & Chu 2003)

M̂ /M0

M̂  = M0

Figure 5. The ratio of the momentum flux of a fountain at the height at which the upward speed is equal to the
crossflow speed, M̂, to the initial vertical momentum flux, M0, calculated using the model presented in Ansong
et al. (2011), as a function of the dimensionless crossflow speed, P. The different curves represent the model
results using the best-fit values of the entrainment coefficient from Ansong et al. (2011) and Lee & Chu (2003).

as a function of the dimensionless crossflow speed, P. For a fountain to be controlled by
the bent-over fountain dynamics, the horizontal speed of the fountain should adjust to the
crossflow speed while the upward momentum flux is still of comparable size to M̂. Figure 5
shows that this transitions occurs in the region P ∼ 1.

For a fountain in this regime, Chu (1975) introduced a mechanistic model, based on
the assumptions that the horizontal component of the fountain velocity, u, is equal to
the crossflow speed, ua, and using conservation of mass and momentum for the vertical
flow at each point along the jet, including a simple parameterisation of the entrainment.
A similar approach has also been used to describe the trajectory of buoyant plumes in a
crossflow (Hoult et al. 1969; Hewett et al. 1971; James et al. 2022). Given the assumption
that u = ua, the horizontal position of the fountain centreline is given by

dx
dt

= ua. (3.1)

The fountain fluid has a vertical speed defined as w = dz/dt and a characteristic radius, r,
perpendicular to the direction of the crossflow. The entrainment of ambient fluid leads to
an increase in the radius of the fountain with height (Hewett et al. 1971; Chu & Goldberg
1974)

dr
dz

= α, (3.2)

where α is an entrainment coefficient. As the buoyancy flux along the fountain remains
constant in a homogeneous environment, the vertical momentum in each element of the
fountain develops as it moves downstream

d(πr2w)

dt
= γπr2g′, (3.3)

where g′ is the reduced gravity of the fountain fluid and γ is a coefficient used to account
for the momentum that is associated with any circulation in the fountain fluid, in addition
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to the added mass of ambient fluid that is displaced as the fountain rises and falls. Given
the source buoyancy flux takes value B0 this can be expressed as

d(πr2w)

dt
= −γ |B0|

ua
(3.4)

which leads to the relation

πr2w = (±) γ

( |B0|
ua

t + M0

ua

)
. (3.5)

In the momentum equation, we have included the factor of γ in front of the source
momentum term as well, as the initial source momentum is partitioned into the upward
flow, the circulation and the added mass, which are not present in the vertical flow leaving
the nozzle. Using (3.2), we integrate (3.5) with the negative sign with respect to time to
obtain the expressions for the height of the fountain above the source, zu, for the ascending
fountain

z3
u =

(
3γ

πα2

)(
−1

2
h3

m

h2
f

x2 + h2
mx

)

r3
u =

(
3γα

π

)(
−1

2
h3

m

h2
f

x2 + h2
mx

)
⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

, as x < xp, (3.6)

where the transform x = uat has been used and hm and hf are the jet adjustment and
buoyancy controlled length scales, as defined in § 1 and xp is the horizontal distance to
the peak of the fountain where

dz3
u

dx
= 0 (3.7)

and therefore the distance, xp, and height, zp, at the maximum height of the fountain are
given by

xp =
h2

f

hm
, zp =

(
3γ

2πα2

)1/3

(hmh2
f )

1/3, rp = αzp. (3.8a–c)

For the descending plume which develops downstream from this point, using the positive
sign we integrate (3.5) with respect to time to give expressions for the height above the
source, zd,

2z3
p − (2zp − zd)

3 =
(

3γ

πα2

)(
−1

2
h3

m

h2
f

x2 + h2
mx

)

2r3
p − r3

d =
(

3γα

π

)(
−1

2
h3

m

h2
f

x2 + h2
mx

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, as x > xp. (3.9)

By differentiating equations (3.6) and (3.9) with respect to time, we obtain expressions
for the vertical component of the fountains velocity in the upflowing

wu =
( γ

9πα2

)1/3
(

−1
2

h3
m

h2
f

x2 + h2
mx

)−2/3 (
−h3

mua

h2
f

x + h2
mua

)
, (3.10)
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and downflowing regions of the fountain

wd = −
( γ

πα2

)[
2z3

p −
(

3γ

πα2

)(
−1

2
h3

m

h2
f

x2 + h2
mx

)]−2/3 (
−h3

mua

h2
f

x + h2
mua

)
. (3.11)

3.3. Entrainment coefficient
To obtain a value of the entrainment coefficient, α, we measured the spreading rate of
the initial rise of the fountain as a function of height for experiments in which P > 1.
As described in § 3.1, we measure the radius of the fountain by fitting a Gaussian curve to
vertical dye profiles taken along the length of the fountain and define the outer-edges of the
fountain as a standard deviation, σ , away from the centre of mass. We find the relationship

σ = (0.25 ± 0.03)z, (3.12)

and therefore, if we define the fountain radius as equal to the standard deviation, we find
that

dσ

dz
= α = 0.25 ± 0.03. (3.13)

This value for the entrainment coefficient is consistent with that obtained by Ansong
et al. (2011) who find that for a fountain in a slow-moderate crossflow, α = 0.23. These
estimates of the entrainment coefficient are larger than those obtained for other free shear
flows because the flow at hand includes coherent axial vorticity in the form of a double
vortex structure as the flow becomes progressively more horizontal while it rises or falls –
this increases the entrainment. Although our value of the entrainment coefficient is smaller
than the value obtained by Chu & Goldberg (1974) and Chu (1975), their formulation did
not account for the added mass and circulation of the flow and their measurements of the
radius in fact suggested that α has value of about 0.25 (Chu 1975) consistent with the
present value.

Studies of turbulent buoyant plumes in a crossflow have found that, once the flow has
fully developed, the spreading rate of the plume can be described using a value of the
entrainment coefficient α = 0.4 − 0.6 (Hoult et al. 1969; Hoult & Weil 1972; Chu & Lee
1996; Devenish, Rooney & Thomson 2010a; James et al. 2022). For a turbulent fountain in
a crossflow, the descending region of the flow essentially behaves as a buoyant plume with
an initial finite radius, rp. However, at the peak of the fountain the flow includes significant
circulation with an associated speed which we expect to scale with the bent-over fountain
speed

uc =
( |B0|2

M0ua

)1/3

. (3.14)

As the flow descends from the top of the fountain, we expect it will gradually adjust
towards the classic self-similar plume in a cross-flow as described by Hoult et al. (1969),
Hewett et al. (1971) and Slawson & Csanady (1967). In this adjusted flow, we expect that
the circulation in the flow will scale with the mean flow; since the speed of a self-similar
plume increases with vertical distance according to the relation,

up =
( |B0|

ua

)1/2

z−1/2, (3.15)

it follows that the adjustment will require a distance which scales with the height of the
fountain. Thus during the descent the flow will be in transition, and the entrainment may
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be intermediate between the fountain and the plume like flow regimes. Comparison of
the model with our experimental data suggest that the entrainment coefficient α = 0.25 ±
0.03 and added mass coefficient γ = 0.25 provides the best fit to the data; these are smaller
than the values for the adjusted self-similar plume, α = 0.4 and γ = 0.47 (James et al.
2022) and so we adopt these in the present analysis.

Figure 4(b,c) presents the model estimates of the maximum height, zp, and the
touchdown distance, xt, of the fountain respectively. The measured values of the maximum
height show good agreement with the model estimates as P > 1 and the model estimates
of the touchdown distance, xt, slightly over predicts the measured values, however follows
the same trend.

4. Particle fountains with neutrally buoyant fluid

4.1. Qualitative observations
We now present a series of experiments exploring the dynamics of particle-laden fountains
with neutrally buoyant interstitial fluid and the effect of varying the dimensionless fall
speed of the particles, U, and the dimensionless crossflow speed, P (table 2). Figure 6
displays images from experiments 2, 17, and 36 and highlights the three qualitative regimes
identified in this study to describe the dynamics of particle fountains in a crossflow.
For comparison of these three regimes we have presented instantaneous experimental
images, time-averaged images with the backgrounds subtracted and the model estimates
of the mean centreline and radius superimposed (3.6) and (3.9) and a simplified schematic
diagram highlighting the key observations.

Regime I describes the case when the fall speed of the particles is significantly slower
than the characteristic speed of the fountain (U � 1). In this regime the particles in the
mixture remain well coupled with the fountain fluid and the flow essentially behaves as a
single-phase fountain. From the time-averaged image, we can see that the model estimates
of the centreline and radius of a single-phase fountain show very good agreement with
the morphology of the particle fountain in this regime. This observation is consistent with
observations of similar flows in various studies (Mingotti & Woods 2016; Newland &
Woods 2021; James et al. 2022).

As the size and the fall speed of the particles increase (0.1 < U < 1.0), the structure of
the flow deviates from that of a single-phase fountain in a crossflow. In the instantaneous
image for regime II, we can see that the particles and fountain fluid remain well mixed
during the ascent of the fountain. The time-averaged image also shows that during the
ascent of the fountain, the model predictions of the centreline and radius show good
agreement with the experimental image. However as the mixture descends, there is some
separation of particles from the mixture and in both the instantaneous and time-averaged
images dyed red fluid is seen on the top-side of the flow whereas a dark region of particles
is observed on the bottom-side of the flow. It is also evident that as the flow descends
the trajectory of the mixture diverges from the single-phase model predictions and the
dark region of particles reaches the base of tank more quickly than the prediction of a
convecting flow.

Finally, as U increases towards a value of 1, the fall speed of the particles approaches
the characteristic fountain speed. The experimental images demonstrate that, in regime
III, the structure of the flow is substantially different to that of a single-phase fountain
in a crossflow. The instantaneous image shows that during the initial rise of the fountain,
particles begin to sediment from the base of flow and settle through the water column. As a
result, the bulk density of the mixture is reduced and when all the particles have separated
from the fluid, the fluid becomes neutrally buoyant and therefore does not collapse to the
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Figure 6. Selection of images from experiments 2, 17 and 36 showing the three separation regimes observed
in particle-fountains in a uniform crossflow: I, no particle separation; II, particle separation on the downflow
section of the fountain; and III, particle separation on the upflow section of the fountain. (a–c) displays
instantaneous experimental images. (d– f ) shows synthetic time-averaged images with the estimated centreline
(white or black dashed lines), z, and outer edge (red dashed lines), z ± r, for a single-phase fountain in a
crossflow (3.6) and (3.9) superimposed. (g–i) displays schematic diagrams showing the variables used to
describe particle-laden fountains in a crossflow: ua, uniform crossflow speed; xp, zp, coordinates of maximum
height of the fountain centreline (Chu 1975); r, characteristic radius of fountain; xd , particle-dispersal distance;
w, vertical speed of fountain; and vs, vertical particle settling speed.

base of tank but instead rises slowly through the water column due to a residual component
of vertical momentum. In the time-averaged image, a dark region of settling particles can
be seen below the rising red region of fluid. The dispersal distance of the particles from
the source is significantly shorter than the distance reached by a single-phase fountain.

Thus far, we have presented the qualitative effect of varying the particle size on the
dynamics of particle-laden fountains in a crossflow. We will now explore the influence of
the crossflow speed on the dynamics of these complex multiphase flows. Figure 7 displays
instantaneous and time-averaged images from three experiments in which the particle size
and therefore dimensionless fall speed is kept constant, U = 0.62, and the crossflow speed
is varied. When the crossflow speed is small in comparison to the characteristic fountain
speed, P = 0.13, it is noticeable, from the instantaneous and time-averaged images, that
the majority of the red fountain fluid is transported to the base of the tank with the particles
and only a small fraction of fluid remains at or above the maximum height of the fountain.
This indicates that the particles do not completely separate from the fountain fluid and
some particles remain coupled with the fluid during the fountains descent. However as the
speed of the crossflow increases, P = 0.66, the fraction of fluid remaining at or above the
maximum height of the fountain increases and the fraction collapsing to the base of the
tank decreases. Furthermore as P > 1, we can see that only a very small fraction of the
fountain fluid is transported to the base of the tank and the majority of the fluid remains
at the maximum height of the fountain. This trend suggests that when U = 0.62 and the
speed of the crossflow is increased, the fraction of particles that completely separate from
the fountain fluid increases and therefore a larger fraction of fluid remains at a height
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Figure 7. Instantaneous and time-averaged experimental images of particle-laden fountains with U = 0.62
and (a) P = 0.13 (experiment 25), (b) P = 0.66 (experiment 27) and (c) P = 2.63 (experiment 29).

comparable to the maximum height of the fountain rather than being carried back down to
the base tank with the particles.

4.2. Quantitative results
As well as the qualitative observations presented above, we have measured the average
vertical speed of the descending particles, vm, and the average dispersal distances of the
particles, xd, as a function of U and P. Figure 8 displays the method and results of the
analysis carried out to determine the vertical speed of the descending particles. Panels (a-i)
and (a-ii) are synthetic time-series created by isolating a vertical line of pixels, in the
reference frame of the experimental tank, for a set of frames taken during an experiment.
In this image, the horizontal direction represents time and the vertical direction represents
the height of the tank. Each time-series records the rise and fall of the particle fountain
as it traverses past the line of pixels, and can be used to measure the vertical speed of the
descending particles as they settle to the base of the tank. The vertical speed is estimated
by calculating the gradient of the particle-streaks formed as the particles descend through
the tank, using a Hough transform (shown by the green and red lines). To measure the
average vertical speed of the descending particles, we created over 25 time-series for
each experiment that were equally spaced throughout the duration of the experiment and
sampled the whole width of the cloud of descending particles. We measured the vertical
speed of the particles at a height in the tank that is comparable to the height of the
nozzle and did not observe any systematic variation of our measurements throughout the
duration of the experiments. The average vertical speed of the particles, vm, is plotted in
figure 8(b,c) as a function of the dimensionless fall speed, U. Each data point is coloured
according to the value of the dimensionless crossflow speed, P, of the experiment. To
clearly demonstrate the varying dynamics as a function of the dimensionless fall speed, U,
and dimensionless crossflow speed, P, we use two independent scalings in figure 8(b,c).

In figure 8(b) we have scaled the measured vertical speed of the descending particles,
vm, with the modelled vertical speed of a single-phase fountain at the touchdown distance,
wd(x = xt) (3.11). We term this convective speed, vc. By scaling our measured data, vm,
with vc we can see that when U < 0.1, in the vertical direction the descending particles are
moving close to the vertical single-phase convective speed for all values of P. These data
corroborate our earlier observations that when U � 1, the particles remain well-mixed in
the fountain and the flow essentially behaves as a single-phase (regime I). As U increases
beyond 0.1, the measured vertical speed of the particles increases to values greater than
the vertical component of the single-phase convective speed, vc.
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Figure 8. Analysis of the vertical speed of the descending particles. (a) Synthetic vertical time-series taken
in the reference frame of the tank during an experiment where (i) U < 1 and (ii) U > 1. The superimposed
green and red lines indicate streaks highlighted when using a Hough transform to measure the vertical speed
of the descending particles. (b) The measured average vertical speed of the descending particles, vm, scaled
with the vertical speed of a single-phase fountain at the touchdown point, vc, as calculated from (3.11). (c) The
measured average vertical speed of the descending particles, vm, scaled with Stokes fall speed of the particles,
vs. Each data point is coloured as a function of the measured dimensionless crossflow speed, P.

In figure 8(c) we have scaled the measured vertical speed of the descending particles,
vm, with the Stokes fall speed of the particles, vs. This data shows that for U � 1 the
particles are moving at vertical speeds that are much greater than their Stokes fall speed,
and from figure 8(b) we know that this speed is comparable to the vertical component of
the single-phase convective speed of the fountain, vc. However as U increases beyond 1
we see that in the vertical direction the particles descend at a speed close to their Stokes
fall speed, which suggests that the particles have separated from the flow and are settling
through the water column (regime III). We have shown how these two scalings help reveal
the dynamics of the two end-member regimes, in which either the particles remain well
mixed in the flow and the fountain behaves essentially as a single-phase (regime I) or the
particles completely separate from the fluid and settle through the water column at their
Stokes fall speed (regime III). In addition, this data also helps to demonstrate the effect
of varying crossflow speed on the separation dynamics of the particles. For example, by
examining the results of vm/vc when U = 0.62 (red-dashed box in figure 8b) we see that
for slow crossflow speed (P < 1, dark blue data point) the measured vertical speed of the
particles is close to the vertical component of the single-phase convective speed at the
touchdown distance, vc, indicating that the particles remain coupled with the fountain
fluid. However as the speed of the crossflow increases (green/yellow data points) the
measured vertical speed of the particles increases to speeds significantly greater than the
vertical component of the single-phase convective speed, vc. By looking at the same data
in figure 8(c) (red-dashed box), we see that for faster crossflow speeds (green/yellow data
points) the measured vertical speed tends towards the Stokes fall speed of the particles,
suggesting that the particles separate from the fluid and settle through the water column.
This data verifies our observations in § 4.1, that although the particle size is kept constant,
particles in a fountain in a faster crossflow speed tend to separate more completely than
the particles in a fountain in a slower crossflow speed.

It is also of interest to measure the average dispersal distance of the particles, xd, from
the source. We define xd as the horizontal distance from the source to the centre of mass
of the descending particle cloud at the height of the nozzle (schematics in figure 6). Once
again to highlight the varying dynamics of the particle fountains as a function of U and P,
we present the measured dispersal distance scaled with two independent length-scales in
figure 9(a,b) and have coloured each data point according to the corresponding value of P.
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Figure 9. (a) The dispersal distance of the particles scaled with the distance to the peak of the fountain, xp
(3.8a–c), as a function of dimensionless fall speed of the particles, U. The black solid line represents the
touchdown distance of a single-phase fountain as calculated from (3.9). (b) The dispersal distance of the
particles scaled with the dispersal distance of a particle that separates from the peak of fountain and settles
through the water column, xs (4.1), as a function of dimensionless fall speed of the particles, U. The dotted
line represents the dispersal distance a particle that separates from the flow during the ascent of the fountain at
the point at which w = vs. Each data point is coloured as a function of the measured dimensionless crossflow
speed, P.

Figure 9(a) displays the average dispersal distance of the particles scaled with the
horizontal distance to the peak of a single-phase fountain, xp (3.8a–c). These data show
that for U < 0.1, the average dispersal distance of the particles corresponds to the
touchdown distance of a single-phase fountain, calculated from (3.6) and (3.9), for all
values of P. As U increases beyond 0.1, we see that the dispersal distance of the particles
decreases at a rate that is dependent on the crossflow speed, P. The decrease in the particle
dispersal distance is due to the separation of particles from the flow and subsequent settling
of those particles through the water column. For small values of P (dark blue points), xd
starts to decrease in the region U ∼ 1, which is in contrast to large values of P where we
observe a decrease in the particle dispersal distance as U ∼ 0.2. This suggests that in the
experiments with faster crossflow speeds, the particles begin to separate from the flow at
smaller values of U. This observation is consistent with the data presented in figure 8,
where we show that the speed of the descending particles is strongly dependent on the
crossflow speed P.

To gain further insight into the separation and dispersal of the particles, we can consider
the path a particle may follow in this flow. We have shown that as U � 1, the particles
remain well-mixed in the fountain and follow the path of a single-phase fountain in a
crossflow. Our qualitative and quantitative observations suggest that as U increases beyond
0.1, particles separate from the fountain during either the ascent or descent phase of the
flow and settle at their Stokes fall speed through the water column. As a characteristic
length scale for the horizontal distance travelled by a particle that separates from the
fountain fluid, we may consider the case in which a particle remains coupled to the fountain
fluid to the peak of the fountain, distance xp from the source and height zp above the
source, and then separates from the flow and settles to the base of the tank at the Stokes
fall speed of the particle, vs. Assuming that the particle is always moving at the speed of
the crossflow, ua, in the horizontal direction, the distance travelled by the particle from the
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source is given by

xs = xp + zpua

vs
. (4.1)

In figure 9(b) we have scaled the average particle dispersal distance, xd, with this length
scale. For U � 1, the average dispersal distance follows the single-phase touchdown
distance and is significantly smaller than the ballistic trajectory, xs. As U ∼ 1, we see that
for slow crossflow speed (blue points) the dispersal distance tends to xs, which suggests
that particle separation occurs near to the peak of fountain. However, as P increases (light
green/yellow points), we see that the dispersal distance tends to xs around U = 0.6, but
then shows a rapid decrease as U continues to increase. We have shown that when U ∼ 1
particles settle at their Stokes fall speed, and therefore the decrease in the particle dispersal
distance must be a result of the particles separating from the fountain prior to reaching
the peak of the fountain. As a simple estimate of the point of particle separation during
the ascent of the fountain, using (3.10) (figure 10), we find the location at which the
magnitude of the vertical velocity of the fountain is equal to the Stokes fall speed of a
particle, |wu| = vs. Then following the above method, we assume that the particle remains
well coupled to the fountain fluid until the condition |wu| = vs is met, at which point the
particle settles through the water column at its Stokes fall speed to the base of the tank.
We have included this estimate of the dispersal distance in figure 9(b) (dotted line) using
an average current speed from our experiments when P > 1.5. This condition acts a lower
limit for the dispersal of particles that may separate during the ascent of the fountain.
These data show that for P > 1.5, the data tend to this estimate. However, the bulk of the
particles are dispersed further from the source.

5. Discussion

5.1. Regime diagram
In § 4, we have presented a set of qualitative and quantitative observations and introduced
three distinct regimes to describe the dynamics of particle fountains in a crossflow.
In regime I, when the dimensionless fall speed of the particles is small, U � 1, we
show that the particles remain well coupled to the fountain fluid and the flow behaves
essentially as a single-phase fountain. Our quantitative data in this regime are consistent
with estimates from models of single-phase fountains in a crossflow, as described in § 3.2.
In regime II, we observe the separation of some particles during the descent of the fountain
which leads to a reduction in the dispersal distance of the particles. Finally, in regime III,
when the fall speed of the particles is comparable to characteristic fountain speed U > 1,
we show that the particles separate from the flow during the ascent of the fountain, which
significantly reduces the dispersal distance of the particles.

Using our observations, we have shown that these regimes are not only a function of
the dimensionless fall speed of the particles, U, but also a function of the dimensionless
crossflow speed, P. The quantitative data presented in § 4.2 (figures 8 and 9) reveal that as
the speed of the crossflow increases, particles of a smaller size separate from the fountain
fluid and settle at their Stokes fall speed through the water column rather than remaining
coupled to the fountain fluid. To justify this finding, in figure 10 we present the magnitude
of the vertical speed of a single-phase fountain for three different crossflow speeds as
calculated from (3.10) and (3.11). Although these are theoretical curves, the model leads
to centreline and radius profiles that provide a good fit to our experimental data, and this
suggests that this model is an appropriate approximation for our experiments. These curves
show that the vertical speed in the fountain decreases as the crossflow speed increases.
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Figure 10. The magnitude of the vertical velocity along the fountain for three different crossflow speeds.

By considering a parcel of fluid in a single-phase fountain that follows the path given by
(3.6) and (3.9), the total vertical distance travelled by this parcel of fluid is

2zp ∼
(

hmh2
f

)1/3
. (5.1)

The total horizontal distance travelled by this parcel of fluid is given by the touchdown
distance, xt, which is found by substituting zd = 0 into (3.9), and we find that

xt ∼
h2

f

hm
. (5.2)

Using (3.1), the vertical speed in the fountain is given by

w = dz
dx

ua (5.3)

and, therefore, the average vertical speed of a parcel of fluid in the fountain is

|w| = 2zp

xt
ua ∼

( |B0|2
M0

)1/3

u−1/3
a (5.4)

and, hence, we find that the vertical speed in the fountain, |w|, is proportional to u−1/3
a ,

where ua is the speed of the crossflow.
For a particle to separate from the fountain fluid, we assume that the Stokes fall speed

of that particle must exceed the magnitude of the vertical speed of the fountain, vs > |w|.
This assumption can be applied to particles that separate from the fountain during both the
upflow and downflow regions of the fountain. Given that |w| ∼ u−1/3

a , the critical value of
U at which vs > |w| and particle separation occurs scales as u−1/3

a . Therefore, we expect
that the critical values of the dimensionless fall speed, Uc, that delineate regimes I and II,
at which particles separate during the downflow region of the fountain, and regimes II and
III, at which particles separate during the upflow region of the fountain, depends on P−1/3.
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Figure 11. (a) Regime diagram displaying the separation regimes for particle-laden fountains in a crossflow
showing the effect of the dimensionless crossflow speed, P, and the dimensionless fall speed of particles, U, on
the dynamics of the flows. The diagonal dashed lines represent the transition between each separation regime
and scale as U ∼ P−1/3, the horizontal solid lines represent the morphological regimes described in § 3.1.

To summarise the combined effects of both the dimensionless fall speed of the particles,
U, and dimensionless crossflow speed, P, on the dynamics of particle-laden fountains, we
now present the qualitative results of our experiments using a regime diagram (figure 11).
Each experiment is represented by a point at its corresponding value of P and U, and
coloured according to the separation regime observed for that experiment (§ 4.1). We have
also included the qualitative regimes, as defined in § 3.1, to describe the effect of the
crossflow on the morphology of the fountain. The separation of particles in the fountain
is dependent on the particle size and, hence, fall speed of the particles. We see that in
the region 0.1 < U < 1.0, there is a transition in dynamics from a regime in which no
particles separate from the flow (regime I), to a regime in which particles separate on
the downflow (regime II) and finally particles separate during the ascent of the fountain
(regime III). It is also evident from our regime diagram, and previous descriptions, that
the point at which the particles separate from the fountain is also dependent on the speed
of the crossflow. As described previously, we expect that the value of U at which particles
separate from the flow scales as P−1/3, therefore we have used this relationship to define
the transitions between each regime in figure 11.

5.2. Application
Given the frequent appearance of particle-laden flows in the natural environment, the
present work provides useful insight into the dynamics of these complex multiphase flows
and how they interact with the ambient environment. Of particular interest is the evolution
of deep-submarine explosive volcanic eruptions. In these eruptions, a mass flux of hot
fragmented magma issues from a volcanic vent and mixes with a significant mass of cold
seawater. After sufficient mixing, this flow becomes negatively buoyant and behaves as a
multiphase fountain, consisting of a size distribution of pyroclasts and warm water, and the
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Figure 12. Regime diagram showing the effect of deep-ocean currents, ua, and pyroclast diameter, dp, on the
dynamics of deep-submarine eruption. The following source conditions were used in the model presented in
Newland et al. (2022) to simulate the conditions found at the Havre eruption of 2012 (Murch et al. 2020):
vent depth = 1 km, vent radius = 3 m, initial velocity = 5 m s−1, magma density = 2200 kg m−3 and magma
temperature = 850 ◦C. The coloured boxes represent the range of measured pyroclast sizes and current speeds
at the Havre 2012 eruption (Murch et al. 2020), the Axial Seamount and Gakkel Ridge (Barreyre, Soule &
Sohn 2011), at which the deposits of deep-submarine eruptions have been studied.

subsequent dynamics of the flow will be affected by the conditions of the ambient water
column, such as ocean currents (Head & Wilson 2003; Cas & Simmons 2018; Newland
et al. 2022).

We can utilise the model presented in Newland et al. (2022) to calculate the conditions of
an eruption column as it transitions to a negatively buoyant flow and, using the framework
presented in this paper, we can describe how the magnitude of ocean currents and the
size of pyroclasts may affect the eruption dynamics. In figure 12, using similar source
conditions as presented in Murch et al. (2020), we illustrate how an eruption of similar
size to the explosive stage of the 2012 eruption of the Havre Volcano may be affected
by ambient currents. The coloured boxes represent the range of measured current speeds
and pyroclast diameters for the Havre Volcano (Murch, White & Carey 2019; Murch et al.
2020) and, for comparison, the Axial Seamount (Barreyre et al. 2011) and Gakkel Ridge
(Sohn et al. 2008; Pontbriand et al. 2012). To estimate the fall speed of the pyroclasts with
varying diameter we follow the method of Ferguson & Church (2004) and Barreyre et al.
(2011) and assume that the pyroclasts have a simplified spherical shape. This figure shows
that the range of measured currents in the vicinity of the Havre Volcano are strong enough
to lead to significant deflection of the eruption column and, owing to the size of pyroclasts
observed, our regime diagram suggests that particle separation may play a critical role in
defining the structure of the flow. As shown in § 4.2, this may lead to reduced dispersal
distance of pyroclasts from the source. However, for an eruption of similar size at either
the Axial Seamount or Gakkel Ridge, our work suggests that the dynamics of the flow
would not be measurably altered.
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It is important to note that, due to the technical and financial difficulties associated with
studying the deposits of deep-submarine eruptions, the availability of comprehensive data
sets is poor. Therefore, we expect that, given significant variations in the source conditions
of eruptions such as vent depth and mass eruption rate, the dynamics explored in this study
will be observed in the deep ocean and that the framework we have developed may help to
interpret the deposits found on the seafloor.

6. Conclusions

In this work, we have presented a novel set of experiments that investigate the dynamics
of particle-laden fountains in a uniform crossflow. We build a regime diagram to describe
the effect of the dimensionless crossflow speed, P, and the dimensionless particle fall
speed, U, on the structure and dynamics of these complex multiphase flows. By varying the
dimensionless fall speed, U, of the particles we have identified three regimes that describe
the dynamics of these flows. In regime I when U < 0.1, we find that the particles remain
coupled to the fountain fluid and flow behaves essentially as a single-phase fountain in a
crossflow. In the transitional regime II as 0.1 < U < 1.0, we observe that particles separate
from the flow during the descent of the fountain. Finally, in regime III when U > 1.0, the
particles fall out of the flow during the ascent of the fountain and settle through the water
column at a speed close to their Stokes fall speed. We have presented quantitative data
on the dispersal distances and descent speed of particles and use a model of single-phase
fountains in a crossflow (Chu 1975) to help describe the separation of particles from the
fountain fluid. We have found that the critical value of U at which particle separation
dominates the dynamics of the flow depends on the crossflow speed, such that Uc ∼ P−1/3.
Finally, we have contextualised our study by using it as a framework to help interpret the
deposits of deep-submarine explosive eruptions.
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Appendix. Comparison of fountain centreline estimates

To estimate the time-averaged centre of mass of a fountain, we follow the approach of
James et al. (2022) who estimated the centre of mass of buoyant plumes in a crossflow
by fitting Gaussian curves to vertical profiles of dye concentration along the length of
the plume. In our experiments, we observe that as the fountain moves downstream and
the horizontal flow speed downstream rapidly adjusts to the current speed, the vertical
speed in the fountain becomes relatively small and therefore we expect that the centre and
radius of the fountain can be tracked based on a vertical line through the flow. We test this
assumption by tracking the radius and centreline of the flow along lines normal to the axis
of the fountain, and compare these with the values of the radius and centreline as obtained
from a vertical line through the fountain. For a typical example, we show the difference
between these two approaches for a fountain with P = 0.96 in figure 13(a,b). In (c) we
show a comparison of the two centreline measurements using these approaches, where it
may be seen that there is very little difference between the two measurements. Finally, in
(d) we show the root-mean-square errors between the measurement of the centreline as a
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Figure 13. Time-averaged images from an experiment in which P = 0.96 with the measured centreline and
radius superimposed, where a Gaussian has been fit to (a) the vertical concentration profiles and (b) the normal
concentration profiles as shown by the black solid lines. (c) Comparison of the centreline measurements for
vertical and normal Gaussian fits. (d) The root-mean-square error (RMSE) of the centreline estimates from the
Gaussian fits to the vertical and normal concentration profiles for the single-phase fountains when P > 0.5, as
a function of the dimensionless crossflow speed, P.

function of the distance downstream for the two approaches and we see there is very little
difference between the results of these methods.

The Gaussian fits provide a good estimate of the centreline and radius for distances
at least 1–2 cm beyond the source; however, directly above the source, the concentration
profiles do not represent a Gaussian distribution. Therefore, we carry out a linear
interpolation from the final readings of the centreline and radius to the nozzle location,
represented by the dotted red and black lines near the source in figure 13(a,b).
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