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Abstract. In a recent illuminating paper, June M. Parker [5] discussed Choquet
integral representations of comonotonic additive functionals and related concepts.
In our paper we provide a generalization of the Choquet integral and use this to
obtain an integral representation for comonotonic additive operators.

1. Introduction. The present paper was motivated by the desire of the author to
design a decision theory where the subjective measures of uncertainty (probabilities,
capacities, or even only increasing mappings de®ned on some set of events) may vary
with time. Instead of considering special function spaces it turned out that the main
results could be proved for quite general Riesz spaces. The main technical tool is an
``oldie'' from the beginning of the theory of Riesz spaces, namely Freudenthal's
spectral theorem.

Our paper may be considered as a follow-on to the one by June M. Parker [5].
All results in her interesting paper have Riesz space counterparts. As the arguments
are easily transferred we do not discuss the details. Before reading this paper the
interested reader is strongly recommended to consult [5] for additional motivation
and further details. Concepts from the theory of Riesz spaces which are not
explained in the present paper may be found in the excellent monograph by Lux-
emburg and Zaanen [4]. For the convenience of the reader we have completely
adopted their notation. In addition, a few basic de®nitions and properties from the
theory of Riesz spaces may be found in the appendix. Sometimes, for the sake of
clarity, minor additions have been made.

2. The generalized Choquet integral. LetL andM be Riesz spaces and denote the
set of all components of some nonzero e 2 L� by Ce. Recall that for any projection
band B we have PBe 2 Ce. Assume that the mapping ' : Ce !M has the properties

(i) '�0� � 0,
(ii) '�r1� � '�r2� if r1 � r2; r1; r2 2 Ce.

As in the real valued case it is easily veri®ed that every e-step element f has a

``layered'' representation f � Pn
k�1

�krk;�k 2 R; r1 � . . . � rn; rk 2 Ce and it makes

sense to de®ne

�'� f � � C

�
fd' �

Xn
k�1

�k'�rk�; �k � 0; r1 � . . . � rn; rk 2 Ce:

This operator may well be called generalized Choquet integral. As �' behaves
additively on the partial sums of layered representations it follows that �'� f � is
independent of the chosen layered representations of f.
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In order to de®ne the generalized Choquet integral for more general elements of
L we assume that L has the principal projection property whence Freudenthal's
spectral theorem applies. (See [4, p. 247 �.].)

Let 0 � f � �bÿ c�e for some nonzero e 2 L�; b; c 2 R� and assume that
' : f

er� :
�

� 2 R�g !M� satis®es (i) and (ii); remember that the f
er� are components

of e and f
er� � f

eR�e � eÿ f
ep�. (The set f

ep� : � 2 R�
� 	

is usually called the spectral
system of f with respect to e.) It is natural to de®ne lower and upper sums by

S��; f; '� �
Xn
k�1

�k'�fer�k� and �S��; f; '� �
Xn
k�1

�k'�fer�kÿ1 �

where �k :� ��k ÿ �kÿ1� for any partition �, 0 � �o < . . . < �n � b. Evidently, for
re®ning partitions, S��; f; '� is increasing and �S��; f; '� is decreasing.

Definition 2.1. Let L and M be Riesz spaces, and assume that L has the prin-
cipal projection property. Let f 2 L� and suppose that ' is de®ned on the com-
plementary components of the spectral system of f with respect to e (i.e.
' : f

er� : � 2 R�
� 	!M�) and satis®es (i) and (ii). The element q 2M is said to be

the generalized Choquet integral of f 2 L� with respect to ' and we write q � C
�
fd'

if, for some b; c 2 R� and e 2 L�, we have 0 � f � �bÿ c�e and to each " 2 R� there
exists a � 2 R� such that for any partition of �0; b� with j�j � � we have
qÿ S��; f; '� � "'�e� and �S��; f; '� ÿ ' � "'�e�, where j�j denotes the maximal sub-
interval length in the partition �.

In other words, our de®nition demands that q is the '�e�-uniform limit of
S��; f; '� and �S��; f; '� respectively as j�j ! 0.

In general the integral just de®ned need neither exist nor be unique. Therefore
we assume from now on that M is Archimedean. This makes the integral unique, if it
exists (cf. [4, p. 252]). Moreover we assume that for every e 2 L�, any e-uniform
Cauchy sequence has an e-uniform limit, i.e. M is uniformly complete. Observe that
the class of uniformly complete Archimedean Riesz spaces is su�ciently large for
almost all conceivable applications; e.g. every Dedekind �-complete Riesz space is
Archimedean and uniformly complete. For more information see [4, p. 276 �.].

Definition 2.2. Two elements f; g;2 L are called comonotonic if the set
f
er�;

g
e r� : � 2 R

� 	
forms a chain.

Theorem 2.3. Let L be a Riesz space possessing the principal projection property,
and let e be a ®xed nonzero element in L�. Denote by Ie the ideal generated by e.
Assume that ' takes values in a uniformly complete Archimedean Riesz space M. If '
is de®ned for all f

er�; f 2 Ie \ L�; � 2 R� and satis®es (i) and (ii), then we can de®ne
an operator �' : Ie \ L� !M by

�'� f � � C

�
fd':

�'��� is positive homogeneous increasing and additive for comonotonic elements.

Proof. If the operator �' exists, then it is trivially positive homogeneous and
increasing. To prove its existence, let 0 � f � �bÿ c�e; b; c 2 R�, e 2 L�. For any
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partition � of �0; b�, 0 � �o < �1 < . . . < �n � b with maximal subinterval length j�j
we have

�S��; f; '� ÿ S��; f; '� � j�j
Xn
k�1
�'� fer�kÿ1 � ÿ '� fer�k�� � j�j�'� fer�o � ÿ '� fer�n�� � j�j'�e�:

The last two equalities follow from the fact that ' is increasing and the observations
ro � e, r�n � 0. This implies that for re®ning partitions �m with j�mj ! 0 the
sequence S��m; f; '� (as well as �S��m; f; '�� is e-uniform Cauchy. The assumptions on
M ensure that the limit exists and is unique, whence C

�
fd' exists for any f 2 Ie.

To verify that �' is additive for comonotonic elements f; g assume
0 � f� g � �bÿ c�e for some b; c 2 R�; e 2 L�. Then for any partition
0 � �o < �1 < . . . < �n � b the set f

er�0 ; . . . ; fer�n ;
g
er�0 ; . . . ; ger�n ;

f�g
e r�0 ; . . . ; f�ge r�n

� 	
forms a chain and we have

s��; f � � s��; g� �
Xn
k�1
� feR�kÿ1 ÿ f

eR�k �f�
Xn
k�1
�geR�kÿ1 ÿ g

eR�k�g � f� g

�
Xn
k�1
� f�ge R�kÿ1 ÿ f�g

e R�k�� f� g�

� s��; f� g� � j�je � s��; f � � s��; g� � 3j�je:
Therefore S��; f; '� � S��; g; '� � S��; f� g; '� � j�j'�e� � S��; f; '� � S��; g; '��
3j�j'�e�. The existence and uniqueness of the limits for j�j ! 0 now ensure the
comonotonic additivity of �'. &

Remark. Obviously, for unbounded elements arguments via e-uniform
approximation no longer hold. However, a spectral theorem for the unbounded case
can still be obtained in the sense of order convergence (cf. [4, p. 258 �.]). the corre-
sponding generalization of Theorem 2.3. is easy to obtain.

3. Integral representations of comonotone additive operators. Let L and M be
Riesz spaces. We are now interested in operators � : L!M which are positive
homogeneous, increasing and comonotonic additive, i.e. they satisfy

(i) ���f � � ��� f �; � 2 R�, f 2 L,
(ii) �� f � � ��g� if f � g; f, g 2 L,
(iii) �� f� g� � �� f � ���g� if f and g are comonotone.

Obviously, for any nonzero e 2 L� the restriction of � to Ce induces a mapping
'� : Ce !M on the components of e which is nonnegative and increasing. This
suggests the possibility to use Freudenthal's spectral theorem to obtain an integral
representation theorem similar to the one given by Greco [3] and Schmeidler [6] for
the real case. More general results obtained by di�erent tools may be found in a
forthcoming paper by Skala [7].

Theorem 3.1. Let L and M be two Riesz spaces where L has the principal pro-
jection property and M is Archimedean and uniformly complete. Let e be a nonzero
element in L� and let � : L!M have properties (i), (ii) and (iii). For any nonnegative
f in the ideal Ie generated by e the following holds:
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�� f � � C

�
fd'�; f 2 Ie \ L�:

Proof. Properties (i) and (ii) of � trivially imply that � is nonnegative, whence
'� : Ce !M is nonnegative and vanishes on the zero element. As � is increasing so
is '�. f 2 Ie \ L� implies that there are b; c 2 R� such that 0 � f � �bÿ c�e. For any
partition �; 0 � �0 < �1 < . . . < �n � b, de®ne upper and lower sums as before, i.e.

s��; f � �
Xn
k�1

�
k f
e
r�k and �s��; f � �

Xn
k�1

�
k f
e
r�kÿ1; �k � ��k ÿ �kÿ1�:

By Freudenthal's spectral theorem s��m; f � " f and �s��m; f � # f hold e-uniformly for
re®ning partitions �m, j�mj ! 0.

Observe that the f
er�k , k � 1; . . . ; n form a chain and belong to Ce. Hence

��s��; f �� �
Xn
k�1

�k'��fer�k � � S��; f; '��

and

���s��; f �� �
Xn
k�1

�k'��fer�kÿ1 � � �S��; f; '��

by the comonotonic additivity of �. As � is increasing, ��s��; f �� �
�� f � � ���s��; f �� and ���s��; f �� ÿ��s��; f �� � j�j'��r0� � j�j'��e�. Thus
��s��m; f �� " �� f � and ���s��m; f �� # �� f � hold '��e�-uniformly for re®ning parti-
tions �m, j�mj ! 0. By the assumptions on M this limit exists in M and is unique. &

Remark. For unbounded f we can no longer expect that f is the e-uniform limit
of both s��m; f � and �s��m; f �. However, a one sided approximation result is still
possible if we replace e-uniform convergence by order convergence.

As an immediate consequence we essentially obtain Greco's [3] version of
Shmeidler's [6] representation theorem.

Corollary 3.2. Suppose that IF is a �-algebra of subsets of some set X and
denote by L1�X; IF� the sup-norm closure of the ®nite step functions. Each functional
� : L1� �X; IF� ! R� which is positively homogeneous, increasing, and comonotonic
additive has an integral representation, i.e.

�� f � � C

�
fd'� :� R

�sup f

0

��1 f��f g�d�; f 2 L1� �X; IF�;

where R
�
denotes the Riemann integral.

Proof. It is well known that L1�X; IF� is Dedekind �-complete for any �-algebra
IF, and therefore Freudenthal's spectral theorem applies. Take the constant 1 function
as e and observe that the components of e are just the characteristic functions 1A,
A 2 IF. Then '��A� � ��1A�, A 2 IF. &
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4. The subadditivity theorem. Let L be a Riesz space possessing the principal
projection property. Assume that for some nonzero e 2 L� the mapping
' : Ce!M� takes values in a uniformly complete Archimedean Riesz space M
and satis®es (i) and (ii). It is an easy exercise to verify that if C

� � f� g�d' � C
�
fd'

�C � gd', f, g 2 Ie \ L�, then ' must be submodular on Ce. The converse is slightly
more di�cult to prove. The real valued version of this result dates back to Choquet [1].
For a detailed history and additional references the reader should consult Denneberg [2].

Theorem 4.1. Let L be a Riesz space possessing the principal projection property
and let e 2 L� be some nonzero element. Assume that the Riesz space M is Archime-
dean and uniformly complete and that ' : Ce !M has the following properties:

(i) '�0� � 0,
(ii) '�r1� � '�r2� if r1 � r2; r1; r2 2 Ce,
(iii) '�r1 _ r2� � '�r1 ^ r2� � '�r1� � '�r2�; r1; r2 2 Ce:

Then

C

�
� f� g�d' � C

�
fd'� C

�
gd' for all f; g 2 Ie \ I�:

Proof. Let f; g 2 Ie \ I�. By assumption there exist b; c 2 R� such that
0 � f� g � �bÿ c�e. Freudenthal's spectral theorem ensures that

S��m; f � " f and S��m; g� " g

hold e-uniformly for any sequence of re®ning partitions �m with j�mj ! 0. We may
restrict the points of the partitions to the rational numbers (cf. also [4, p. 261]).
Therefore, by the properties of C

� ���, it su�ces to prove C
� � f� g�d' �

C
�
fd'� C

�
gd' for elements of the ``layered'' type

f �
Xm
i�1

f
eri; g �

Xm
i�1

g
eri;where f

eri;
g
e ri 2 Ce:

In the ®rst step assume f �Pm
i�1

f
eri and g � g

e r1. We remember that Ce is a Boolean

algebra. By the submodularity of ' we get

'� fer1 _ g
e r1� � '� fer1 ^ g

e r1� � � fer1� � '�ger1�:

As f
eri � f

e ri�1 obviously f
eri�1 ^ �feri ^ g

e r1� � f
e ri�1 ^ g

e r1 holds. Hence again by the
submodularity of ',

'�feri�1 _ �feri ^ g
e r1�� � '�feri�1 ^ g

e r1� � '�feri�1� � '�feri ^ g
e r1�:

Observing that f
erm�1 � 0, the summation of the inequalities results in

C

�
� f�g

e r1�d' � C

�
fd'� C

�
g
er1d':

Repeating this argument for g
eri; i � 2, ®nally gives the desired result. &
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5. Appendix. In order to make the paper more self contained we give here a
brief survey of some basic de®nitions and properties from the theory of Riesz spaces.
For more details the reader is urged to consult the monograph by Luxemburg and
Zaanen [4].

Definition 5.1. A Riesz space is an ordered vector space L with the property
that for any pair f; g 2 L their in®mum and supremum exists in L. Obviously, every
function space with the pointwise ordering is a Riesz space.

Definition 5.2. We call an element f 2 L� a component of e 2 L� if
f ^ �eÿ f � � 0.

Definition 5.3. The band Bf generated by a single element f 2 L is called a
principal band. L is said to have the principal projection property if every principal
band in L is a projection band.

The following implications were proved in [4].

Dedekind complete
! Dedekind �-complete!
! projection property !principal projection property!Archimedean.

Definition 5.4. Let f 2 L and e 2 L� be given. For any real �, the component of
e in the principal projection band generated by ��eÿ f �� is denoted by f

ep�, or p� in
short, and the system f

ep� : � 2 R
� 	

is called the spectral system of f with respect to e.

Freudenthal's spectral theorem Let L be a Riesz space with the principal
projection property and let 0 6� e 2 L�. For any f in the principal ideal Ie generated by
e there exist sequences �sm�m2N and ��sm�m2N of e-step elements such that sm " f and
�sm # f hold e-uniformly. Replacing e-uniform convergence by order convergence there
exists a one sided generalization for any f 2 Be.
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