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NOWHERE DENSE SUBSETS OF METRIC SPACES 
WITH APPLICATIONS TO STONE-CECH 

COMPACTIFICATIONS 

JACK R. PORTER AND R. GRANT WOODS 

Let X be a metric space. Assume either that X is locally compact or that 
X has no more than countably many isolated points. It is proved that if F 
is a nowhere dense subset of X, then it is regularly nowhere dense (in the 
sense of Katëtov) and hence is contained in the topological boundary of some 
regular-closed subset of X. This result is used to obtain new properties of 
the remote points of the Stone-Cech compactification of a metric space without 
isolated points. 

Let fiX denote the Stone-Cech compactification of the completely regular 
Hausdorff space X. Fine and Gillman [3] define a point p of 0X to be remote 
if p is not in the /3X-closure of a discrete subset of X. The problem of char
acterizing the remote points of PX when X is a metric space has occupied the 
attention of a number of mathematicians. Plank [8] characterizes the remote 
points of PX in terms of zero-sets of X; in this paper we characterize the 
remote points of PX in terms of regular-closed subsets of X. Mandelker [6, 
Theorem 11.2] characterizes a remote point p of /3R (where R is the space of 
real numbers) in terms of the unique s-ultrafilter converging to p; we extend 
this characterization to metric spaces without isolated points. 

We will use, except where stated, the notation and terminology of the 
Gillman-Jerison text [4]. In particular, bd A denotes the topological boundary 
of a subset A of a topological space X, and N denotes the set of positive 
integers (used as an index set). If p is a point of the metric space X and if 
e > 0, then S(p, e) will denote the set {% £ X: d(x, p) < e}. A subset A of 
a topological space is regular-closed if A = cl(int A). The family of all regular-
closed subsets of a space X is denoted by R{X). 

The authors wish to thank the referee for his useful suggestions. 

1. Metric space properties. For e > 0, a subset A of a metric space is 
e-discrete if for distinct points x and y of A, d(x, y) ^ e. Note that e-discrete 
subsets of metric spaces are closed. It is a consequence of Zorn's lemma that 
a metric space contains a maximal e-discrete subset for each e > 0; evidently 
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an e-discrete subset A is maximal if and only if S(y, e) P\ A ^ 0 for each 
point y of the metric space. 

1.1 LEMMA. Let A be a non-empty e-discrete subset of a metric space X, let 

0 < Ô < e/2, and let U = U {S(x, 8): x £ A). Then 

cl U = U {clS(x, <5): x Ç i | . 

Proof. Clearly, U {cl 5(x , ô): x £ A} Q cl U. Conversely, suppose p G cl U 
and pu t 7 = e — 25; then y > 0. If x and y are distinct points of A such t h a t 
S(£ , T / 2 ) H S(x, Ô) ^ 0 and 5 ( p , 7 /2 ) H S (y, ô) ^ 0, then d(x, y) < 7 + 
2<5 = e, which is a contradiction. T h u s as >̂ G cl £/, there exists a unique point 
a £ A such t ha t S(£ , 7 /2 ) C\ S (a, ô) 9e 0. Hence if V is any neighborhood of 
p, then F H 5(a , ô) ^ 0 so p G cl S (a, ô). 

Lemma 1.1 is false for 5 ^ e/2. T o show this, let 

X = {(x, x/n): x G R, 0 ^ x, w G N} 

with the metric d defined by: 

d((Xy x/n), (y, y/m)) = \x — y\ ii n = m 

— x -\- y \î n 7e m. 

Let ^ = {(1 + l/n, (1 + l/n)/n): n G N } . Then A is 2-discrete, bu t if 
V = U {S(x, 1): x G 4 } , then (0 ,0 ) G cl F - U {c\S(x, 1): x G A}. 

In [5], Ka të tov calls a subset F o f a topological space X regularly nowhere 
dense if cl F = cl F P\ cl W, where V and IF are disjoint open subsets of X. 
If a set is regularly nowhere dense then it is evidently a subset of the boundary 
of some regular-closed set. 

1.2 LEMMA. In a metric space without isolated points, each nowhere dense 
subset is regularly nowhere dense. 

Proof. Le t X be a metric space without isolated points and F a nowhere 
dense subset of X. Since cl F is also nowhere dense, we may assume tha t F is 
closed in X. For each n G N, pu t Gn = {x G X : d(x, T7) < l / n } . Let ^4n be a 
maximal 1/w-discrete subset of Gn — Gw+i, and pu t A = U {̂ 4W: w G N } . 
I t easily follows tha t F = P\ {G„: n G N} and cl Gw+i Ç Gw for each n G N. 

W e now show tha t cl 4̂ — A = F. Since 

c l i = U {At: 1 ^ i S n\ U cl ( U {^f: i > «}) , 

i t follows t ha t cl A — A Ç cl Gw+i for each w G N ; hence cl 4̂ — yl Ç F. 
Conversely, let p G F and let e > 0. Choose k G N such tha t 1/& < e. Since 
5 ( £ , 1/k) Ç G* and since F is nowhere dense, there is an m ^ & such t h a t 
S(£ , 1/&) H (Gm+i — Gm) 7̂  0. As ^4m is a maximal 1/m-discrete subset of 
Gm — Gm+i and 1/ra ^ 1/&, it follows tha t a G S(p, 1/k) for some a G ^4W; 
thus £ G cl A. T h u s T7 = cl A — A as claimed since A C\ F = 0. 

W e next claim tha t A is a discrete subset of X. Let x G ^4W, and let 5 be the 
smallest of d(x, (X — Gn) \J cl Gw+2), d(x, An+i) and 1/w. I t is easily verified 
that S (x, ô) C\A = {x}. 
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Let V = X - cl A. Evidently F C\ V = 0; we now show that F C cl V. 
Let p £ F and let e > 0 be given. As ^ = cl A —A, there is n G N and 
a ^ An such that a Ç 5(^, e). As i is discrete and disjoint from F, there 
exists 5 > 0 such that S (a, <5) QS(p9 e),S(a, 6) C\ A = {a}, and£(a, <5) r\ F= 
0. Since a is not isolated, there exists b G S (a, 8) such that b 9^ a. Evidently 
be V, so F Ç cl V. 

Let i>n be a maximal 1/w-discrete subset of (Gn — Gn+\) C\ V, and let 
B = U {£n: » G N}. We claim that cl B - B = F. Since 

c l S = U {Bt: 1 ^ i ^ n) U cl (U { £ , : * > » } ) , 

then cl 5 - B C cl Gn+i for all w ^ N . Hence cl 5 - B Q F. Let p £ F. 
Since B C\ F = 0, it suffices to show that p £ cl B. Let e > 0 be given. There is 
n ^ N such that 1/n < e. Since F C cl F, there is an x G FP> S(/>, 1/2»). 
Since S(p, l/2n) C G2n, there exists k ^ 2n such that x £ Gk — Gk+\. As J3fc 

is a maximal 1/fe-discrete subset of Gk — Gk+i, there exists b G Bkr\S(x, 1/2»). 
Now 

d(p, 6) ^ d(£, x) + d(x, b) < 1/2» + 1/2» < e, 

so p G cl JS. Thus cl B — B = F. Essentially the same proof as used above 
to show that A is a discrete subset of X can be used to show that B is a discrete 
subset of X. Also note that 4 H cl 5 = 0 and B C\ Q\ A = 0 . 

Let £ G v4n for some » G N. Since A is discrete and A C\ cl 5 = 0, 
there exists <5(£) > 0 such that ô(£) < 1/», 5(p, $(£)) C J - C 1 5 , and 
S(p,ô(p))nA = {p}. Lete(p)=ô(p)/3, Wn = U {S(#>, e(p)): £ G ^ , } , a n d 
IF = U {Wn: n G N}. Define e(£) similarly for each £ G £n . Let J7n = 
U{S(£, e (/>)): £ G J3W} and Z7 = U { Un: » G N}. We now show that 

(1) cl IF = U {cl TFn: » G N} U F. 

Clearly, clWn C cl IF for each » G N. Since A Q W and T7 C cl A, it follows 
that U {cl Wn: » G N} VJ F Ç cl IF. Conversely, since 

(2) cl IF = U {cl Wt: 1 ^ i g 2n) U cl (U {IF,: i > 2»}) 

it follows that 

(3) cl TF - U {cl IF,: t £ N | ç cl G, 

for all » G N; for, if i > 2n, then x G Wt implies that d(x, p) < 1/i for 
some p £ A^ As At QGi, d(p, F) < 1/i, and so d(x, F) < 2/i < 1/n. It 
follows that cl (U {Wt: i > 2n}) Ç cl Gn, and (3) now follows from (2). 
As (3) holds for all » G N, we conclude that cl W - U {cl Wt: i G N} Ç F, 
and so cl IF C (J {cl IF,: i G N} U F. Thus (1) holds. A similar argument 
shows that 

(4) cl U = U { cl U,: Î Ç N | U F. 
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We now show that cl WC\ cl U = F. It suffices, in view of (1) and (4), to 
show that 

[U {cl Wn: ^ N | ] H [U {cl Un: n € N}] = 0. 

Assume that there is a point x Ç cl Wn C\ cl Um for n, m Ç N. By Lemma 1.1 
there is p £ An and g Ç 7>w such that x Ç cl S(£, e(£)) Pi cl S(q, e(g)). Now 

<*(£,g) ^ <*(£,*) + d ( g , x ) ^ €(p) + e(g) < max {$(£), ô(q)}, 

which is a contradiction. Thus F = cl W f~\ cl U. As the above argument also 
shows that U and PF are disjoint (open) subsets of X, it follows that F is 
regularly nowhere dense. 

1.3 COROLLARY. In a metric space without isolated points, each closed nowhere 
dense subset is the intersection of the closures of a countably infinite collection of 
pairwise disjoint open subsets. 

Proof. Throughout the proof, the notation introduced in the proof of Lemma 
1.2 is used. Let S\ = W, Ti = V, and let Cn be a maximal 1/w-discrete subset 
of (!Ti - B)C\ (Gn - G„+i). Put C = U {Cn: n G N} ; it follows (as in the 
proof that cl B — B = F in Lemma 1.2) that cl C — C = F. Also, disjoint 
open sets 5'2 containing B and Tr

2 containing C can be constructed with the 
property that cl S'2 H cl r 2 = F. Let S2 = S'2 H 7\ and T2 = r 2 H 7\ ; S2 

and r 2 are disjoint open sets. Since B Ç S2, C C T2, ^ Ç cl 5 , and 71 ÇI clC, 
then cl S2 P\ cl T2 = 7\ By induction we can obtain a family {Sn: n Ç N} of 
pairwise disjoint open sets satisfying F = D {cl Sn: n £ N}. 

We now generalize Lemma 1.2 in two different directions. 

1.4 LEMMA. Let X be a metric space with a dense set of countably many isolated 
points. Then every nowhere dense subset of X is regularly nowhere dense. 

Proof. Let 7 denote the set of isolated points of X. If F is a nowhere dense 
subset of X then F C\ I = 0. Our assumptions imply that X is separable (and 
hence second countable). Thus F is also separable. Let {pn: n 6 N} be a 
countable dense subset of F. We define, inductively, a subset {x(n, m): 
n, m Ç N and n ^ m\ of 7 as follows. 

(i) Choose x( l , 1) 6 7 such that d(x(l, 1), £i) < 1. 
(ii) Choose x(l, 2) and x(2, 2) G I such that x( l , 1), x( l , 2), and x(2, 2) 

are distinct and d(x(l, 2), pi) < 1/2, d(*(2, 2), £2) < 1/2. 
(iii) Suppose we have chosen a set {x(i,j): 1 ^ i ^ j ^ n) oî n(n + l ) / 2 

distinct points of 7 such that d (x (i, j) ,pi)< 1/j. As 7 is dense in X we can find 
a set {x(i, w + l ) : l ^ i ^ w + 1}, contained in7 — {x(i,j): 1 ^ i ^ j ^ »}, 
of w + 1 distinct points of 7 such that d(x(i,n + 1), £*) < l/(n + 1) for 
i = 1, . . . , n + 1. 

Hence for each positive integer n we have a sequence Sn of distinct points 
{x(n, i): i ^ n) with limit pn. Note that d(y, £n) < \/n for each 3/ G 5n and 
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n G N. PutGi = {x(n, 2m): n,m £ Nand 2m ^ n) and G2 = [x(n, 2m + 1): 
n,m G N and 2m + 1 ^ n\. We now claim that cl G\ = G\\J cl 7\ 
Since pn G cl Gi for each n G N and (pn)neN is dense in F, it follows that 
Gi U cl F Ç cl Gi. Conversely, if x G cl Gi — Gh choose a sequence {ay.j G N} 
of points of Gi that converges to x. There are two possibilities. First, 
there may exist n G N such that aj G Sn for infinitely many values of j . 
It immediately follows that x = pn and so x G F. Second, for each n G N 
there may be only finitely many j for which aj G 5n. If so, let e > 0. Then 
d(a;-, x) < e/2 for infinitely many values of j , so we can find k and n in N 
such that d(ak, x) < e/2, afc G 5W, and 1/w < e/2. Then 

^(^, />n) < d(x, ax) + d(afc, ^ ) < e/2 + l/n < e. 

It follows that x G cl {pn: n G N} = cl / .̂ Thus cl Gi = Gi U cl T7 as claimed. 
A similar argument shows that cl G2 = G2 \J cl T7, and so cl F = cl Gi Pi cl G2. 
Thus F is regularly nowhere dense, as Gi and G2 are disjoint open sets. Note 
also that cl F = cl G\ — Gi = cl G2 — G2. 

1.5 THEOREM. Let X be a metric space. If either 
(i) X has no more than countably many isolated points, or 

(ii) X is locally compact, 
then every nowhere dense subset of X is regularly nowhere dense. 

Proof. Let F be a nowhere dense subset of X. First assume that X has no 
more than countably many isolated points. As before, denote the set of 
isolated points of X by I. Evidently cl[X — cl I] has no isolated points. 
Now cl F r\ c\[X — cl 7] is a nowhere dense subset of cl[X — cl / ] ; for, if 
not, there exists W open in X such that 0 ^ W C\ c\[X - cl I] C cl F. 
Then 0 ^ W C\ (X — cl I) Q cl F, which contradicts the fact that 
int(cl F) = 0. Thus by Lemma 1.2 there exist disjoint open subsets Uf and 
V of c\[X - cl I] such that 

cl F H c\[X - c\I] = cl Z7' H cl V. 

Put Î7 = E/7 C\ \X - cl 7] and V = F r n [X - cl / ] . Then £/ and F are 
open in X and it follows from [4, 0.12] that 

(5) cl F C\ d[X - cl I] = cl U H cl F. 

It follows from the proof of Lemma 1.4 that there exist disjoint subsets T and 
IF of I such that 

(6) cl F r\ cl 7 = cl T - T = cl IF - W. 

As F Pi cl 7 = 0, we have 

ci r n ci F ç ci r - r ç ci F; 
similarly, cl U H cl IF C cl F. Thus it follows from (5) and (6) that 

cl F = cl (TU U) r\d (V^J W), 

https://doi.org/10.4153/CJM-1972-057-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-057-3


NOWHERE DENSE SUBSETS 627 

and of course T\J U and VU W are disjoint. Hence F is a regularly nowhere 
dense subset of X. 

Now assume that X is locally compact. As every metric space is paracompact 
(see, for example, [1, Theorem 9.5.3]), X is a locally compact, paracompact 
space. Hence X is a free union of a family {Xa: a G 2} of locally compact, 
c-compact metric spaces (see [1, Theorem 11.7.3]). Each Xa has at most 
countably many isolated points. If F is a nowhere dense subset of X, it follows 
from the above argument that for each a £ 2 there exist disjoint open subsets 
Ua and Va of Xa such that 

dXFnXa = d X a Ua r \ dXa Va. 

Put U«€S Ua = U and Uaçs K* = F. Then £7 and V are disjoint open 
subsets of X and clxi7 = clx U Pi cl^F. Thus T7 is regularly nowhere dense. 

1.6 COROLLARY. Let F be a closed nowhere dense subset of a metric space X. 
If either 

(i) X has no more than countably many isolated points, or 
(ii) X is locally compact, 

then F can be written as the intersection of the closures of a countably infinite 
family of pairwise disjoint open subsets of X. 

Proof. If X has a dense, countably infinite set of isolated points, a simple 
modification of the proof of Lemma 1.4 gives the desired result. Now, making 
use of Corollary 1.3, proceed exactly as in the proof of Theorem 1.5. 

1.7 Remarks. (1) Mandelker, in [7, Theorem 2.3], proved Lemma 1.2 for 
the special case in which X is the real line. 

(2) Theorem 1.5 does not hold for more general classes of topological spaces. 
As an example, let 9Î denote the countable discrete space. Then /39Î is ex-
tremally disconnected so R(fi3l) consists of the open-and-closed subsets of 
pm (see [4, Iff and 6M]). Thus if .4 G i?(#R), then b d ^ = 0. Up 6 #R - Wt 

then {p} is a closed nowhere dense subset of /3%l, but {p} is not regularly 
nowhere dense. Obviously any nondiscrete extremally disconnected space 
will yield a similar type of counterexample. 

(3) The authors do not know if every nowhere dense subset of an arbitrary 
metric space is regularly nowhere dense. 

2. Properties of the remote points of 0X. 

2.1 Definition. Let X be a completely regular Hausdorff space. A point 
p G $X is called a remote point of fiX if p is not in the |SX-closure of any 
discrete subspace of X. 

Remote points were first defined and studied by Fine and Gillman [3], 
who proved that if the continuum hypothesis is assumed, then the set of 
remote points of j3R(/3Q) is dense in @R — R(/3Q — 0 ) (R denotes the space 
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of reals, 0 the space of rationals), Let T(fiX) denote the set of remote points 
of PX. If A is closed in X, let A* = clpxA - X (in particular, (3X - X = X*). 
Plank [8] has given the following characterization of T(fiX). 

2.2 THEOREM [8, 5.3 and 5.5]. Let X be a metric space without isolated points, 
and let Z(X) denote the family of zero-sets of X. Then 

TifiX) = n ix* - bdx*z*: z e z(x)\ 
= n {x*- (bdxz)*:zez(x)j. 

Assume the continuum hypothesis. If X is separable, then T(J$X) is dense in X*. 

Let X be a completely regular Hausdorff space. It is well-known (see, for 
example, [9, p. 66]) that R(X) is a complete Boolean algebra under the follow
ing operations: 

(l)WaAa = dx[\JaAa]; 
(2) AaAa = clx[intx Ha Aa]; 
(3) A' = dx(X — A) (Af denotes the Boolean-algebraic complement of A). 

The following result is a portion of [10, 2.3, 2.7, 2.11]. 

2.3 THEOREM. Let X be a metric space. Then: 
(i) The map A —> A* is a Boolean algebra homomorphism from R(X) into 

R(X*). 
(ii) (bdxA)* = bdx*A*for each A £ R(X). 

Let [R(X)]* denote the image of R(X) under the above homomorphism. 
We can now obtain our characterization of T(fiX). 

2.4 THEOREM. Let X be a metric space without isolated points, and let p £ X*. 
Then p 6 T(J3X) if and only if p is not the X*-boundary of any member of the 
Boolean subalgebra [R(X)]* of R(X*). 

Proof. Every closed subset of X is a zero-set of X, so 

{bdxA: A £ RÇX)} ç {bdxA: Z G Z(X)}. 

Thus by Theorems 2.2 and 2.3 (ii) it follows that 

T(px) ç n \x* - (bdxAy: A e R(X)} 
= n {X* - bdx*A*: A e R(X)}. 

Conversely, by Lemma 1.2 if Z £ Z(X), then there exists A £ R(X) such that 
bdxZ C bdxA. It immediately follows from Theorems 2.2 and 2.3 that 

H {X* - bdx*^*: A e R(X)} C TtfX), 

and our theorem is proved. 

2.5 Remark. The characterization of T(J3X) given in Theorem 2.4 is similar 
to a characterization of the set of P-points of X* if X is locally compact and 
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realcompact (P-points are discussed in [4, 4L et seq.]). For such an X it is 
known that Z(X*) Ç R(X*) (see [2, 3.1]). It follows easily that the P-points 
of X* are precisely those points of X* that are not on the X*-boundary of any 
member of the Boolean subalgebra of R(X*) generated by Z(X*). 

Let X be a nowhere locally compact, separable metric space (for example, 
the rationals or the irrationals). We can use Theorems 2.2 and 2.4 to give a 
characterization of T(fiX) that depends only on the topology of X* and not 
on the topology of X, despite the fact that T(J3X) is defined in terms of the 
topology of X. 

2.6 THEOREM. Let X be a nowhere locally compact, separable metric space. 
If the continuum hypothesis is assumed, then T(f$X) can be characterized as the 
largest extremally disconnected dense sub space of X*. 

Proof. If the continuum hypothesis is assumed, then by Theorem 2.2 T(/3X) is 
dense in X*. It is proved in [10, 4.5] that our assumptions about X imply that 
T(fiX) is extremally disconnected. Let p G X* — T(/3X), and let £ be a 
dense subspace of X* that contains p. By Theorem 2.4 there exists A G R(X) 
such that p G bdx*A*. As E is dense in X*, E Pi intx*A* and E — A* are 
disjoint nonempty open subsets of E. Since A* G R(X*) (see Theorem 2.3), it 
follows from the fact that E is dense in X* that p G c\E(E f~\ intx*^4*) P 
clE(E — A*). Thus E contains two disjoint nonempty open subsets whose 
^-closures are not disjoint. It follows that E is not extremally disconnected, 
and the theorem is proved. 

If X is not assumed to be nowhere locally compact, then Theorem 2.6 may 
fail; see [10, 4.6]. 

Finally, we generalize a result due to Mandelker [7]. Recall that Mandelker 
calls a s-filter Ĵ ~ on X round if for every Z G ^ there is W G ^ and a cozero-
set 5 of X such that W C S Ç Z (see [7, p. 1]). The following result is due 
to Mandelker; see [6, Theorems 4.5 and 8.1]. 

2.7 THEOREM. A prime z-filter on a perfectly normal, Hausdorff space is 
nonminimal if and only if it has a nowhere dense member. 

The following result generalizes [7, Theorem 2.4]. The method of proof 
is essentially the same as that employed in [7, Theorems 2.3 and 2.4]. If 
p G f$X,s/(p) will denote the unique s-ultrafilter on X that converges to p. 

2.8 THEOREM. Let X be a metric space without isolated points. Then a prime 
z-filter éP on X is round if and only if & = s/(p) for some p G T(fiX). 

Proof. Let SP be round. Suppose that 8P is strictly contained in the prime 
s-filter i2. As i2 is nonminimal, by Theorem 2.7 we can choose F G 21 such 
that in t x P = 0. By Lemma 1.2 there exists A G R(X) such that F C bdx^4 = 
bdx(clx(X — ^4)). Now A \J c\x(X — A) = X, so as every closed subset 
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of a metric space is a zero-set it follows from the fact that 0* is prime that 
either A Ç & or dx(X - A) € &\ say A G 0. Now h<ixA Ç ^ as F € <g 
and i7 C bdx^4- As & is round there exists G Ç ^ such that G C in t x ^ . Thus 
«2 contains the disjoint zero-sets G and bdxA, which is a contradiction. Thus 
£P is a 2-ultrafilter, and since it is round it contains no nowhere dense set. 
Hence by Theorem 2.2 & = s$(p) for some remote point p. 

Conversely, let p 6 TffiX) and let Z G j / ( p ) . Then bdxZ & sf (p) by 
Theorem 2.2. As s/(p) is a s-ultrafilter, there exists F£s/(p) such that 
F H bdxZ = 0. Hence F C\ Z Ç, s/(p) a n d F H Z Ç intxZ C Z. Thus J / ( £ ) 
is round, since every open subset of a metric space is a cozero-set. 
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