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Abstract

This is the first of three papers (the others by the first author alone) which determine all varieties of
nilpotent groups of class (at most) four. The initial step is to reduce the problem to two cases: varieties
whose free groups have no elements of order 2, and varieties whose free groups have no nontrivial
elements of odd order. The varieties of the first kind form a distributive lattice with respect to order
by inclusion (which is not a sublattice in the lattice of all group varieties). We give an embedding of
this lattice in the direct product of six copies of the lattice which consist of 0 (as largest element) and
the odd positive integers ordered by divisibility. The six integer parameters so associated with a variety
directly match a (finite) defining set of laws for the variety. We also show that the varieties of the
second kind do form a sublattice in the lattice of all varieties. That (nondistributive) sublattice will be
treated, in a similarly conclusive manner, in the subsequent papers of this series.

1980 Mathematics subject classification (Amer. Math. Soc): 20 E 10.

1. Introduction

This is a report on the first and easy half of a project aimed at determining all
varieties of nilpotent groups of class (at most) four. The initial step is to reduce
the problem to two cases: varieties whose free groups have no nontrivial elements
of odd order, dealt with in the first author's thesis [3] and in subsequent papers of
this series, and varieties whose free groups have no elements of order 2, de-
termined here. The main result is that the latter varieties form a distributive
lattice (with respect to order by inclusion: this is not a sublattice of the lattice of
all varieties of nilpotent groups of class at most 4) which may be given as follows.
Let fi denote the set consisting of 0 and the odd positive integers partially ordered
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60 Patrick Fitzpatrick and L. G. Kovacs [2]

by divisibility (with the convention that 0 is the largest element of R). Clearly, fi is
a distributive lattice, with joins and meets being least common multiples and
greatest common divisors. Consider the sublattice of the direct product of six
copies of Q which consists of all the (a, b, c, d,e, / ) such that

b divides a,
c is d or 3d and divides b,
d is a common multiple of e and/ , and
if 3 divides a then 3d also divides a.

This sublattice is isomorphic to the lattice of all varieties of nilpotent groups of
class at most 4 whose free groups have no elements of order 2; namely,
(a, b, c, d,e, f) corresponds to the variety defined by the following laws:

xi = \xux2\b = [*i> X2> XAC = [*i> X2> X\Y

= [xux2, x 2 , x{]
e =[[xu x2], [x3, x4]]

f

\_X\, X2, Xj, X^\ — L-*i> X2, X-j, XQ, X$\ — 1.

(All incompletely bracketed commutators are to be read as "left-normed": that is,
[x,, x2, x3] — [[JC,, x2], x3], and so on.)

All varieties of nilpotent groups of class at most 3 were known at least fifteen
years ago (Jonsson [9], Remeslennikov [15]). A particularly sharp result of Gupta
and Newman [4] on commutator laws led then, among other things, to Brisley's
conclusive work [1], [2] on varieties of metabelian /^-groups of class at most/> + 1,
from which we derive the metabelian part of our result. On the other hand,
varieties of nilpotent p-groups of class at most p — 1 have an elaborate theory,
with the first significant result of Thrall [16] almost forty years old. The first
comprehensive treatment in print is Kljacko's [10]. (He also asserted, without
proof, the distributivity of the lattice of all varieties of 3-groups of class at most 4:
this is, of course, confirmed by our present results.) Only a small part of this
theory is relevant in detail here, although that is used rather heavily: Section 2 of
the exposition [11].

There is also a parallel theory for torsionfree varieties of nilpotent groups (that
is, varieties whose free groups are torsionfree), developed by Newman and the
second author in 1968 but not published until recently [11], [12]. We need the
fact, which must have been widely known for quite some time though the only
reference seems to be [12], that there are precisely seven torsionfree varieties of
nilpotent groups of class at most 4. Six of them are obvious to pick: in the
notation of Hanna Neumann's book [13], they are ©, 91, 9? 2, 9?3, 2t2 D 9?4, and
9? 4 itself. The seventh was called @3 but left without defining laws in [12]; it was
(also) identified there as the variety generated by the torsionfree groups of
5R(

3
2) n 314. Since then, it has come to our attention that the unpublished thesis
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131 Varieties of nilpotent groups of class four I 61

[14] of Pentony contains a statement (pages 45-46, proof largely suppressed) to
the effect that this variety is defined by the laws corresponding to our
(0,0,0,0,1,0). Let 2ft, say, denote the variety defined by these laws. Clearly,
314 > 3ft s* 9?(

3
2) n S ? 4 > @3, so one can indeed conclude that 2TC = 9?(

3
2) D 9?4 =

©3 provided one knows that 2ft is torsionfree: but it is just this point which
Pentony left without any hint of a proof. We show here (as 2.5) that the
Gupta-Newman result (loc. cit.) quickly yields that the free groups of 2ft have no
nontrivial elements of odd order; then (c/. Lemma 5.1 in the second paper of this
series) Lemma 3.2 of [3] gives (via the appropriate version of the Magnus-Witt
argument elaborated in Section 3 of [11]) that these groups have no elements of
order 2 either. This (confirms Pentony's claim and) establishes that 9?3

2) n 914 is
torsionfree and is defined by the laws corresponding to (0,0,0,0,1,0): a much
more satisfactory identification of the seventh torsionfree subvariety of 9? 4 than
those given in [12].

We are greatly indebted to Dr M. F. Newman for a continuing exchange of
ideas, over many years, on the background to this work.

2. Sylow decomposition

It is well known that each subvariety of SSI 4 is defined by its 4-variable laws (see
34.15 and 34.34 in [13]), and that therefore our task is equivalent to finding all
fully invariant subgroups in the rank 4 free group F of 9?4. This is the setting we
shall work in throughout the paper.

For each fully invariant subgroup U of F, write

UQ/U for the set of elements of finite order in F/U,

U2/U for the set of elements of 2-power order in F/U, and

Ur/U for the set of elements of odd order in F/U.

As F/U is finitely generated and nilpotent, UJU is a finite subgroup for each / in
{0,2,2'}, and Ut is obviously fully invariant in F. It is immediate that

2.1. U2 n U2, = U and U2Ur = Uo,

while

2.2. (U,)i = Ut and (UJj = Uo whenever i ¥=j.

Moreover,

2.3. (U n V\ =UiC\Vi; in particular, if U < V then Ut < Vt.
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Here (U D F),- < If- n F, is obvious; the converse inclusion holds because
w G Ul : D Vt means that wm G U and w" G V for suitable integers m, «, and then
w*" G U fi F. We also need

2.4.

Again, (f/F), < ( L ^ ) , is obvious. To see the converse, note that UyjUV is a
subgroup generated by elements of finite (or 2-power, or odd) orders in the
nilpotent group F/UV, and hence consists of such elements.

Now let A denote the lattice of all fully invariant subgroups of F, and put
A, = {U E A\Ui = U}. Thus for instance A2 consists of the 2-isolated fully
invariant subgroups: that is, of the fully invariant U such that F/U has no
elements of order 2. Each A, is partially ordered by inclusion, and is a lattice with
respect to this partial order: by 2.2 and 2.3, the meet of U and F in A, is just
U n F, while their join in A, is (f/F),. Thus A, is a sublattice of A if and only if
(f/F), — UV for all U, Vin A,: we shall see in 2.6 that this is the case when / is 2'
but not when / is 0 or 2.

Consider the following diagram of maps.

U H

U A -

Ur A2,

W h

-> Ar

•> Wn

By 2.2, the diagram commutes and all four maps are surjective. By 2.3 and 2.4, all
the maps are lattice-homomorphisms. (Consequently, the A, are modular, because
A is.) We therefore also have a lattice-homomorphism of A into the direct
product lattice A2 X A2< given by Uv-> (U2, U2.). The first statement of 2.1
implies that this homomorphism is an embedding. If (F, W) lies in its image then
Fo = Wo by the commutativity of the diagram; conversely, if (F, W) G A2 X A r

and Fo = Wo then 2.2 and 2.3 show that (F, W) is the image of V n W wad hence
lies in the image of A. (In technical terms: A is the subdirect product of A2 and
A 2- defined by the pullback diagram above.) Thus if we know A2 -> Ao and
A2- -> Ao, we can reconstruct A. In this sense, the study of all fully invariant
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[5] Varieties of nilpotent groups of class four I 63

subgroups is reduced to the separate studies of the 2-isolated fully invariant
subgroups and the 2'-isolated fully invariant subgroups.

The role a fully invariant subgroup U plays in the lattice A is not the only
thing, perhaps not even the most important thing, we want to know about it. We
are certainly interested, for instance, in finding a finite defining set for U (that is,
a finite subset of which it is the fully invariant subgroup closure), for such a set
(with the class 4 law adjoined) will give a finite basis for the laws of the
corresponding variety. Our reduction gives U in terms of U2 and Ur, as U2 D Ur;
and, in general, there is no known procedure for obtaining a defining set for the
intersection V n W of two fully invariant subgroups from defining sets of V and
W. So it is relevant to observe that there is such a procedure when (V,W) G A2

X A2., Vo = Wo, provided we have upper estimates for the (odd) exponent of
VQ/V and the (2-power) exponent of WQ/W. Namely, suppose that the subsets R
and S define v and W, respectively, and that V0/VG^Bn (with n odd) and
Wo/W G 23 2*. Let U be the fully invariant subgroup closure of the set T defined
by

T= [r2k\r &R) U { i " | 5 G S } .

As V2, = (V2)r = Vo = Wo = (W2,)2 = W2 (by 2.2 and the assumptions on V,
W), the indices of V and W in this subgroup are coprime, so VW = Vo= Wo. It
follows that Vo/V D W= (V/V D W) X (W/V n W) and V/V n W s, Wo/W
e 992*, W/Vn Ws Vo/V e 99„. Hence T C V D W, so U < V n JK On the
other hand, the elements of /? have 2-power orders modulo U, so V/U is
generated by (endomorphic images of) elements of 2-power order in the finitely
generated nilpotent group F/U, and therefore V/U has 2-power order. Similarly,
W/U has odd order. Thus (V/U) C\ (W/U) = 1, that is, V (1 W = U. This
proves that 71 defines K n W. Note that if R and 5 are finite, so is T.

Our aim in the rest of the paper is therefore to determine the lattice A2 of all
2-isolated fully invariant subgroups Fof F; to identify, for each V, its "isolator"
Vo; to give a finite defining set for each V and an upper estimate for the exponent
of V^V.

Before we embark on this task, there are two other points to settle: the claim
made in the introduction concerning Ao, and the assertion earlier in this section
that of the A, only A2, is a sublattice of A. Six members of Ao are well known: F
itself, the commutator subgroup F\ the other nontrivial terms of the lower central
series, namely yi2(F) which we rarely have to refer to, and 9fJ3(i

r) which we need
frequently and denote by N to save writing too much; the second commutator
subgroup F"\ and the trivial subgroup 1. Let {x, y, z, t) be a free generating set
of F, and M the fully invariant subgroup defined by the (left-normed) commuta-
tor [y, x, x, y]\ we know from [12] that Mo is the seventh and last member of Ao,
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with Mo< N and Mo D F" — 1. A result of Gupta and Newman [4] may be
applied to F/MF", and yields that N/MF" has exponent dividing 4: that is,
N4 < MF" (where N4 is the subgroup of the abelian group N consisting of the
fourth powers of the elements of N). Thus Af0

4 ^ MF" D Mo = M(F" D Mo) =
M (where we have used the modularity of A). It follows that Mr = M. By (cf.
Lemma 5.1 in the second paper of this series) Lemma 3.2 of [3], read via an
obvious adaptation of Section 3 of [11], we have that Mr is isolated: thus

M = M2 = M2, = Mo.

This settles the first point.
From this discussion, we also need (MF'% - (MF")2 = N and (MF")2. =

MF" towards the second point. As further preparation, we establish that MF" ¥=
N. The (standard) wreath product of a group of order 2 by an elementary abelian
group of order 8 is a well-known example: a 4-generator metabelian group which
is nilpotent of class precisely 4, in which all 2-generator subgroups have class at
most 3 (compare 34.54 of [13]). Thus F does have homomorphisms onto this
group, and the kernel of such a homomorphism must contain MF" but cannot
contain N. We are now ready to prove the following.

2.5. For U,VG A, we have (UV)i ¥= UV if and only if i ¥= 2' and either Uo = M,
Vo = F" or Uo = F", Vo = M.

Suppose first that Uo and Vo satisfy one of the alternative conditions: then
UV*i U0V0 = MF". By 2.4, we have (UV)0 = (U0V0)0 = N. As the nontrivial
2-group N/MF" is a factor group of (UV)0/UV, neither (UV)0/UV nor
(UV)2/UV can be trivial. On the other hand, if also U,V G A2, then by 2.2 we
have Uo = U2, Vo - V2, so 2.4 yields (UV)2 = (U2V2)2 = (U0V0)2 = (MF")2 = N
= (UV)0; thus (UV)0/UVis a 2-group and (UV)2, = UV. If Uo and Vo do not
satisfy either condition, then they are comparable; for, on inspecting the seven
elements of Ao one finds that M, F" is the only incomparable pair. Say, Uo < Vo.
Then (UV)0 = (U0V0)0 = Vo by 2.4 and 2.2; thus (UV)0/UV is a factor group of
VQ/V. Now V E. A, gives that (UV)0/UV is trivial or a 2'-group or a 2-group,
according as / is 0 or 2 or 2', so that also UV G A,-, that is, (UV)i = UV. This
completes the proof of 2.5.

A moment's reflection shows that this, with (MF")0 — N — (MF")2. settles
everything: A2, is, but A2 is not, a sublattice of A; while Ao is a sublattice of A2.
but not of A, nor of A2-
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3. Distributiviry

The aim of this section is to prove that A2 is distributive. It is this fact, more
than anything else, which makes the description of A 2 so much easier than the
case of A2. dealt with in [3].

Since F' is of class 2, it is easy to see that for each odd prime power pk the
93 ̂ -subgroup of any subgroup A of F' is just the set of all pkth powers of
elements of A; accordingly, we shall denote it by Ap instead of the more
cumbersome ^8pk(A). The situation for Fitself is not quite so simple: there we do,
emphatically, distinguish between the set of pk th powers denoted by Fpk and the
subgroup %5pk(F) they generate. Our first preliminary result shows that even this
distinction is irrelevant when the odd prime p is not 3, and provides a (neces-
sarily) weaker but for our purposes adequate variant when p = 3.

3.1. Ifp is a prime andp > 3, then %pk(F) = Fp\ while 933*+,(F) C F3".

PROOF. The first statement holds not only for F but for every nilpotent group
of class less than p, and is familiar in the context of regular /^-groups. We shall
only sketch a proof for the less familiar second claim. To this end we temporarily
abandon F and work in an infinite rank free group G of 9t4, freely generated by
xx, x2, For k > 0, put

u - Y Y \Y r l<3*+l-')/2M2 — XXX2\XX, X2\

The Hall-Petrescu Identities (III.9.4 in Huppert [8]) readily yield that there is an
element v2 in %12(G) for which

->*+! -iA+1 ik+\ ?k
x \ X2 — "2 V2 •

Induction on n rapidly establishes the existence of elements un in G and vn in
312(G) such that

•ik+ I ->k+ 1 -ik+ I -iA+1 -,k
X \ X2 •••Xn = K V3

n .

As the subgroup of G generated by u\ and vn has class at most 2, a straightfor-
ward calculation within that subgroup then yields

3*+l 3*+l 3*+1 / 3 f 3 K 3 * - ! ) / 2 ^ 3

X\ X2 Xn — \UnVnYUn> Vn\ ) »

and this proves our claim.

One more piece of folklore before we can start in earnest: Up is an odd prime
then there is no fully invariant subgroup of F strictly between F" and (F")p. This
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is proved for p = 3 in the (unpublished part of the) thesis [5] of Harris (pages

73-74) by an argument which works equally well when/? > 3. Forp > 3 it can, of

course, also be extracted from the classification of varieties of groups of exponent

p and class less than p, in which context one relies on the fact that even the

automorphism group of F acts irreducibly on F"/(F")P, as a quotient of

GL(4, p).

It follows then that if / is an odd integer and p is a prime divisor of / , there is

no fully invariant subgroup of F strictly between (F")f/p and {F")f. We take this

one step further.

3.2. / / V G A 2 and 1 < V< F" then V = (F")f for some odd positive integer/.

PROOF. Since 1 < F < F", also 1 < Vo =£ F"; as F" is minimal in Ao, we have
Vo = F". By 2.2, the assumption V G A2 gives Vo = (V2)2, = Vr, so V has odd
index in F". Let/denote the (exact) exponent of F"/V. If V/(F")f is non trivial,
it has an element of some odd prime order/;. As F" is free abelian, all elements of
order p in F"/(F")f lie in (F")f/p/(F")f, so (F")f <VD (F")f/p < (F")f/p. By
the preceding discussion this implies that V D {F")f/p = (F")f/p, so V > (F")f/p:
contrary to the choice o f /as the exact exponent of F"/V. Therefore V/(F")f

must be trivial.

A similar argument will give us the following.

3.3. IfVGA2 and F" < V «s N then V = NeF" for some odd positive integer e.

P R O O F . All we need to establish is that if p is an odd prime then there is no

fully invariant subgroup of F strictly between NPF" and N. As F/N is torsionfree,

3.1 ensures that %pi(F) (1N<NP, so by the modular law S8pi{F)NpF" HN =

NpF". Put H = F/^Bp2(F)NpF". The natural homomorphism of F onto H would

map a fully invariant subgroup V strictly between NPF" and N to a fully

invariant subgroup of H strictly between 1 and ? J 3 ( / / ) . However, H is a free

group of a variety of metabelian />-groups of class at most 4, with 313(H) of

exponent p, so one can read off Brisley's classification of such varieties (from [1]

if p > 3, from [2] if p = 3) that no fully invariant subgroup of H can lie strictly

between 1 and 913(H). This completes the proof.

We shall need much more detail from Brisley in the end, but this much will

suffice in this section. Before we start on the proof of the distributivity of A 2 , we

must recall a little more of the structure of N. Of course, N is free abelian on the

basis consisting of the basic commutators of weight 4 (formed with respect to the

https://doi.org/10.1017/S1446788700024770 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024770


[9] Varieties of nilpotent groups of class four I 67

ordered free generating set {x, y, z, t) of F, say); by Witt's Formula, there are 60
of these. Direct inspection shows that precisely 15 of them are not left-normed:
those he in F". In fact they (freely) generate F": for, by a theorem of Magnus
(36.32 in Neumann's [13]), the cosets of the other 45 form a free abelian basis of
N/F".

We are now ready to prove the distributivity of A2, along the lines of Section 2
of [11]. The reader is invited to check that the arguments described there can be
adapted to prove that if U, V £ A2 then the sublattice of A2 generated by U, V,
and N, is distributive: so A 2 is a subdirect product of its sublattices

{WGA2\W> N) and {WGA2\W<N}.

The first of these is also a sublattice of A (on account of 2.6), and so dual to a
sublattice of the lattice of all varieties of nilpotent groups of class at most 3:
hence it is distributive. It remains to prove the distributivity of the second lattice.
To this end, it is sufficient to show that if U, V G A2 and U,V^N then the
sublattice of A2 generated by U, V, and F", is distributive. Indeed, once this is
established we can argue that {W E. A2\W < N) is a subdirect product of
[W G A21 W < F") and {W £ A2 | F" < W < N), and 3.2, 3.3 show that each
of these is dual to the distributive lattice B described in the introduction. Imitate
Section 2 of [11] once more: if the sublattice generated by U, V, F" in
{W G A21 W^ N) were not distributive, one could deduce that F" and N/F"
had (End F)-admissible, nontrivial, 2-torsionfree sections which were (End F)-
isomorphic. This is impossible: for, by 3.2 each nontrivial, (End F)-admissible
section of F" is the direct product of 15 pairwise isomorphic cyclic groups, while
by 3.3 the same holds for N/F" with 45 in place of 15. This completes the proof
of the distributivity of A2.

4. Meetirreducibles

Since F is a finitely generated nilpotent group, it has no infinite properly
ascending chains of subgroups. As in any distributive lattice with such a chain
condition, each element of A2 has a unique expression as an irredundant meet of
meetirreducible elements; and, indeed, the lattice can be reconstructed from the
poset of its meetirreducible elements. The aim of this section is to determine that
poset for A2.

If V e A 2 and Vo/V is not a />-group for any prime p, then V has a proper
meet decomposition V= D Vp with ^ , / F t h e nontrivial Sylow/7-subgroups of
Vo/V. If F0/Khas exponent/?* (> 1) for some (odd) prime/? then one sees from
3.1 that %pi,+i(F) n Vo < %pi,(V0) < V and so the modular law gives a meet
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decomposition V — Vo (1 %5pt+>(F)V which is proper unless %5pk+>(F)V — V or,
equivalently, VQ = F. Thus the meetirreducibles of A2 outside Ao all have
prime-power index in F. Those which contain F" correspond to joinirreducible
varieties of metabelian /^-groups of class at most 4, and hence are known from
Brisley's work (see especially the summing up in the first paragraph of page 61 of
[2], from which it is an elementary exercise to identify them).

Thus we have narrowed down the real task of this section to the consideration
of meetirreducibles V of prime-power index in F, with V 4s F". For each odd
prime power pk (=£ 1), put

{f if* = 3,

We shall prove that

4.1. each B(pk)M is meetirreducible, with

4.2.B(pk)MD F" = (F"y\

and conversely: if V is a meetirreducible with prime-power index in F and

V^ F", by 3.2 we have V n F" - {F")pk for some odd prime power pk, and
then

4.3. V= B(pk)M.

We shall use modularity (Dedekind's Law) so frequently that we must do so
without reference. Occasionally we appeal to the distributivity of A2, without
formally writing joins in A2: in those cases the relevant joins are simply products,
because 2.6 applies favourably.

Let us start with the proof of 4.2. As F/F' is torsionfree, 3.1 yields that
B(pk)M n F' = (F')pkM (regardless of whether/? = 3 oxp > 3). Since F'/F" is
torsionfree, (F')pk n F" = (F")p\ Using also the distributivity of A2, we can
then argue that

B(P
k)M n F" = B(pk)M n F' n F" = (F')pkM n F"

= [{F')pk n F"][M n F"] = {F")p\

Next we prove 4.3, but this takes much longer; for the duration of this proof,
write simply B for B{pk) where/?* is defined by V n F" = (F")p\ The distribu-
tivity of A2, together with 4.2, gives that

VBM n VF" = V(BM D F") = V(F")pk = V.
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As VF" > V and V is meetirreducible, we must have VBM = V: that is,

4.4. V ̂  BM.

Assume for the moment that

4.5. V^BN.

We have seen that N/MF" is a 2-group, while (by the definition of B) F/BMF"
is of odd order, so we must have TV «s BMF" and hence TV = (B D N)MF".
Therefore, by 4.4,

F n J V = F n ( 5 f l N)MF" = (Bf1 N)M(V n F") = ( f in N)M(F")pk,

so 4.2 gives that V n N = (B n N)M. Thus if 4.5 is true then using 4.4 again, we
get

V= Vn BN= B(V DN) = B(B (1 N)M = BM,

and this is what we are trying to establish.
The proof of 4.5 proceeds by contradiction. Suppose it is false; then, by 4.4, we

have VN > BN. Now, VN and BN are verbal subgroups of F corresponding to
varieties of nilpotent groups of class at most 3, and all such varieties are well
known. In particular, the variety corresponding to BN is joinirreducible, and its
unique maximal subvariety is defined by the extra law [x2, xv xl]

p = 1. It
follows that [y, x, x]p — vw for some v in V and w in N. Consider the
endomorphisms a and § of F which leave x, z, and t unchanged whileya = [z, y]
and yS — 1. Note that a and S agree on TV: for a basic commutator of weight four
is mapped to 1 or left fixed by a depending only on whether y does or does not
occur among its entries, and the same is true for S. We have that (USXH'S) = 1,
for [y, x, x]8 = 1; hence

[z, y, x, x]p = (vw)a — (va)(wa) = (va)(wS) = (va)(v8) £ V.

On the other hand,

[y, x,x,z]p =[vw,z]-[v,z]GV.

Since the fully invariant subgroup closure of [z, y, x, x] and [y, x, x, z] in F is TV
(Heineken [6]; III.6.9 in Huppert [8]), it follows that TV'*'"' < V. This contradicts
V n F" = (F")p\ and thereby completes the proofs of 4.5 and 4.3.

We have left the proof of 4.1 to the last. Consider the expression of B(pk)M as
a meet of meetirreducibles K(l) , . . . , V(n). Then (F")p" - B(pk)M D F " =
fl(K(/) n F"). By 3.2, the fully invariant subgroup of Fbetween (F")pk and F "
form a chain, so we must be able to choosey so that V(j) D F" = (F")p . Then
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V{j) is a meetirreducible which is not isolated, hence by the introductory
discussion of this section it must have prime-power index in F; as it does not
contain F", 4.3 applies to it: hence V(j) = B(pk)M. This completes the proof of
4.1.

All that remains is to add in the meetirreducible from Ao and the meetirreduc-
ibles one obtains from Brisley (loc. cit.). The result is that A2 has precisely the
following meetirreducible elements:

F, F, SS12{F), N, F", M,

S&pk{F)F', %pk{F)3t2{F), %p*{F)N withp>3,k>\,
<i8pk{F)F", Sdpk(F)M with/? > 3, A: > 1, and

Obviously, two of these subgroups are comparable if and only if that is directly
visible from the way we have written them.

5. Conclusion

Our final task is to prove the main result stated in the introduction. Note that
this result will achieve the aims we set in Section 2. For, if V £ A2 and we change
to 1 each nonzero entry of the corresponding (a, b, c, d, e, / ) , we get another
admissible set of parameters; the subgroup U corresponding to this lies in Ao,
and the exponent of U/V divides the product of the original nonzero parameters:
so Vo is this U, and we do have an estimate on the exponent of Vo/ V.

We shall make use of a simple fact from lattice theory (see, for instance,
Section 21 of Hermes [7]): in a distributive lattice which satisfies the ascending
chain condition, each element can be written in one and only one way as the meet
of pairwise incomparable meetirreducibles.

To fit our context, let 0 denote the dual of £2, and A the dual of the sublattice
of fi6 described in the introduction: thus A is a sublattice of B6, and we shall
never refer to 0 or fi6 again. Define <p: B6 -» A by (a, b, c, d,e, f)<p = U where
U is the fully invariant subgroup of F generated as such by x", [y, x]b, [y, x, z]c,
[y, x, x]d, [y, x, x, y]e, [[t, z], [y, x]]f, and [t, x, y, z]ef. What we have to prove
amounts to the claim that restriction of <p yields a lattice-isomorphism A -» A2. In
fact, we shall also obtain the inverse of this lattice-isomorphism. Define ^:
A2 -> a6, U\-* Uxp- (a, b, c, d, e, f) by choosing a as the order of xU in F/U
(or as 0 if that order is infinite), b as the order of [y, x]U in F/U, and so on. Our
full claim is that \p maps A2 (lattice) isomorphically onto A, and \p<p is the identity
map on A2.
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The first step of the proof is to note that by its definition <p is a poset-homo-
morphism, and that \p is even a meet-homomorphism (as the order of an element
of Fmodulo U C\ Vis the least common multiple of its orders modulo U and V).

The second step is to check that B6<p C A2; that is, that if (a, b, c, d, e, /)<p =
U then U2 = U. This is done case by case, according to which is the first (if any)
nonzero entry in (a, b, c, d, e, / ) . Take, for instance, the case a = b = c = 0¥=d,
when [y, x, x]d e U < 912(

F)- L e t A/u b e t h e f u l ly invariant subgroup of F/U
defined by [y, x, x]U: since this element has odd order (dividing d), \A/U\ is
odd. On the other hand, 9f2(.F)/y4 n a s exponent dividing 3, so | 9?2(.F)/£/| ' s

odd, and hence t / £ A 2 . The other cases are very much easier; we leave them to
the reader.

Henceforth we may, and shall, regard <p as a map from S 6 to A2.
For the third step, note that g<p\p > g for all g in 06 , simply by the definitions

of <p and \j/, and that Utyy < U for all U in A2. The second claim needs only that
Me(F")f^U implies Nef < U: this holds because (MF")ef ^ Me{F"Y so
N/Me(F")f has exponent dividing 4ef (recall JV4 < MF") while N/N n U has
no element of order 2. Thus (Utp)<p\p > U\p by the first comment, while
(U>p(p)\p *= U\f/ by the second comment and the order-preserving nature of \p: so
we have that

Let F denote the set of the meetirreducible elements of A2 (listed at the end of
the previous section). Our fourth step is to prove that T\p C A and <//<p acts
identically on T. For the V in F with F/V of prime-power order and F > F",
which we took from Brisley's work, this has (at least implicitly) been done by
Brisley. For the V in T n Ao, this is simply a matter of inspection. For the other
V in T, we know from 4.3 that V = B(pk)M; put Vrp = (a, b, c, d, e, / ) . Direct
from the definitions of B{pk) and 4>, we see that

J(3*+1,3*,3*,3M,3*) if/, = 3,

\(pk,Pk,Pk,Pk,l,pk) i f / » > 3 .

Thus e = 1; from 4.2, we know that f — pk. As to the other parameters, use that ^
respects order, that B(pk)N > V, and that [B(pk)N]ip is known from Brisley (or
indeed from the facts on varieties of nilpotent groups of class at most 3); and
conclude that the inequality displayed above is in fact an equality. It is then
immediate that V\j/ E A and V-tyy = V.

The fifth step is left to the reader: determine all the meetirreducibles in A, and
verify that the set they form is precisely T\p.

The proof of the main result can now be completed quickly. Since Tip generates
A as a meet-semilattice and ^ is a meet-homomorphism, A2>// = A. Since <p and *p
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are poset-homomorphisms and yp<p is the identity map on F, their restrictions to
Tip and F are poset-isomorphisms. If we can establish that ipq> is the identity map,
the same argument will now give that ip and the restriction of <p to A are
poset-isomorphisms, and it is well known that all poset-isomorphisms of lattices
are lattice-isomorphisms.

For the final step, suppose that Uxpcp ¥= U for some U in A2: all we have to do
is to show that this leads to a contradiction. Write Uxj/q) = D,. K(i) and U —
n W{j) with the V(i) pairwise incomparable elements of F, and the W(j) also
pairwise incomparable elements of F. As Uipy ¥= U, the set of the V(i) is not the
set of the W(j). Since \p acts as poset-isomorphism from F to the set of
meetirreducibles in A, the V(i)$ form a set of pairwise incomparable meetirreduc-
ible elements in A, and the W(j)\p form a different set of pairwise incomparable
meetirreducible elements. Yet, because \p is a meet-homomorphism and

U*= Pi

This contradicts the uniqueness of expressions as meets of pairwise incomparable
meetirreducibles in A (which obviously satisfies the ascending chain condition),
and so completes the proof.

References

[1] Warren Brisley, 'On varieties of metabelian/7-groups and their laws', / . Austral. Math. Soc. 1
(1967), 64-80.

[2] Warren Brisley, 'Varieties of metabelian^-groups of classp,p + V,J. Austral. Math. Soc. 12
(1971), 53-62.

[3] Patrick Fitzpatrick, Varieties of nilpotent groups of class at most four (Ph.D. thesis. Australian
National University, Canberra, 1980).

[4] N. D. Gupta and M. F. Newman, 'On metabelian groups', J. Austral. Math. Soc. 6 (1966),
362-368.

[5] L. F. Harris, Varieties and section closed classes of groups (Ph.D. thesis, Australian National
University, Canberra, 1973).

[6] Hermann Heineken, 'Uber ein Levisches Nilpotenzkriterium', Arch. Math. (Basel) 12 (1961).
176-178.

[7] Hans Hermes, Einfuhrung in die Verbandstheorie (Die Grundlehren der mathematischen
Wissenschaften, 73. Springer-Verlag, Berlin, Gottingen, Heidelberg, 1955).

[8] B. Huppert, Endliche Gruppen I (Die Grundlehren der mathematischen Wissenschaften, 134.
Springer-Verlag, Berlin, Heidelberg, New York, 1967).

[9] Bjarni Jonsson, 'Varieties of groups of nilpotency three', Notices Amer. Math. Soc. 13 (1966),
488.

[10] A. A. Kljacko, 'Varieties of />-groups of small class' (Russian), Ordered Sets and Lattices No. 1,
31-42 (Izdat. Saratov. Univ., Saratov, 1971).

[11] L. G. Kovacs, 'Varieties of nilpotent groups of small class', Topics in algebra, Proc. 18th SRI,
[edited by M. F. Newman] (Lecture Notes in Mathematics, 697, pp. 205-229. Springer-Verlag,
Berlin, Heidelberg, New York, 1978).

https://doi.org/10.1017/S1446788700024770 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024770


[ is] Varieties of nilpotent groups of class four I 73

[12] L. G. Kovacs, 'The thirty-nine varieties', TheMath. Scientist 4 (1979), 113-128.
[13] Hanna Neumann, Varieties of Groups (Ergebnisse der Mathematik und ihrer Grenzgebiete, 37.

Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[14] Paul Pentony, Laws in torsion free nilpotent varieties (Ph.D. thesis, Australian National

University, Canberra, 1970). See also: Abstract, Bull. Austral. Math. Soc. 5 (197), 283-284.
[15] V. N. Remeslennikov, 'Two remarks on 3-step nilpotent groups' (Russian), Algebra i Logika

Sem. 4 (1965), no. 2, 59-65.
[16] Robert M. Thrall, 'A note on a theorem by Witt', Bull. Amer. Math. Soc. 47 (1941), 303-308.

Department of Mathematics
Institute of Advanced Studies
Australian National University
Canberra, ACT
Australia

First author's current address:
Department of Mathematics
University College
Cork
Ireland

https://doi.org/10.1017/S1446788700024770 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700024770

