CHARACTERISTIC SUBGROUPS OF RELATIVELY FREE GROUPS

Roger M. Bryant

Abstract

A simple new proof is given of a result of Vaughan-Lee which implies that if G is a relatively free nilpotent group of finite rank \boldsymbol{k} and nilpotency class c with $c<k$ then the characteristic subgroups of G are all fully invariant. It is proved that the condition $c<k$ can be weakened to $c<k+p-2$ when G has p-power exponent for some prime p. On the other hand it is shown that for each prime p there is a 2 -generator relatively free p-group G which is nilpotent of class $2 p$ such that the centre of G is not fully invariant.

1. Introduction

For each positive integer k let F_{k} be the free group of rank k freely generated by the set $\left\{x_{1}, \ldots, x_{k}\right\}$. The following result was proved in [7].

Theorem 1. (Vaughan-Lee). If C is a characteristic subgroup of F_{k} which contains the k th term $\gamma_{k}\left(F_{k}\right)$ of the lower central series of F_{k} then C is fully invariant.

One interesting consequence of this result is that every formation of finite nilpotent groups is subgroup closed - see [6]. A simple proof of Theorem 1 is given in Section 2 below.

A corollary of Theorem 1 is that if G is a relatively free nilpotent group of finite rank k and nilpotency class c where $c<k$ then every characteristic subgroup of G is fully invariant. (See [5] for basic facts about relatively free groups.) The following stronger result will be proved in Section 3 for the case where G has prime-power exponent.

Theorem 2. Let p be a prime number and let G be a relatively free nilpotent group of p-power exponent with finite rank k and nilpotency class c, where $c<k+p-2$. Then every characteristic subgroup of G is fully invariant.

In the case where $k=2$ and $p=2$ Theorem 2 is the best possible result of its sort because, as is well known, the relatively free group of rank 2 in the variety of groups of exponent 4 and class 2 has a characteristic subgroup which is not fully invariant (see, for example, [4, Section 9] and see also Section 6 below). I do not know how close Theorem 2 is to being best possible in general, but some information can be obtained

[^0]Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/92 \$A2.00+0.00.
by module-theoretic methods. This is illustrated in Sections 4-6. It is shown that for each odd prime p there is a 2 -generator relatively free p-group which is nilpotent of class $2 p-1$ and has a characteristic subgroup which is not fully invariant. The following result will also be proved.

Theorem 3. For each prime p there is a 2-generator relatively free p-group G such that G is nilpotent of class $2 p$ and the centre of G is not fully invariant.

Similar examples of relatively free nilpotent groups of finite rank in which the centre is not fully invariant may possibly be known in the "folk-lore". A non-nilpotent example is certainly known; namely, the relatively free group of rank 2 in the variety generated by the non-abelian group of order 6. In contrast, every relatively free group of infinite rank has fully invariant centre.

2. Proof of Theorem 1

If F is a free group on a given free generating set X and $x \in X$ we write δ_{x} for the "deletion" endomorphism of F defined by $x \delta_{x}=1$ and $y \delta_{x}=y$ for all $y \in X \backslash\{x\}$. Furthermore, for all $w \in F, w\left(1-\delta_{x}\right)$ denotes $w\left(w \delta_{x}\right)^{-1}$.

As shown in [7], Theorem 1 is an easy consequence of the following lemma (Lemma 1). We shall not repeat the deduction of Theorem 1 here but give a proof of the lemma which avoids the complexity of the proof in [7].

Lemma 1. Let C be a characteristic subgroup of F_{k} which contains $\gamma_{k}\left(F_{k}\right)$ and let $w \in C$. Then $w \delta_{x_{i}} \in C(1 \leqslant i \leqslant k)$.

Proof: The result is trivial if $k=1$, so we assume that $k \geqslant 2$. By symmetry, it is enough to prove that $w \delta_{\boldsymbol{x}_{k}} \in C$. Write $w=w\left(x_{1}, \ldots, x_{k}\right)$. Let F be the free group freely generated by $2 k$ elements $x_{1}, \ldots, x_{k}, y_{1}, \ldots, y_{k}$ and write $Y=\left\{y_{1}, \ldots, y_{k}\right\}$. Let v be the element of F defined by
and let

$$
v=w\left(x_{2} x_{1} y_{1}^{-1}, x_{3} x_{2} y_{2}^{-1}, \ldots, x_{k} x_{k-1} y_{k-1}^{-1}, y_{1} y_{2} \ldots y_{k}\right)
$$

Thus \boldsymbol{v}^{*} is the product, in some order, of elements $\boldsymbol{v}_{S}^{s(S)}$ where S ranges over the subsets of $Y, \varepsilon(S)=(-1)^{|S|}$ and $v_{S}=v\left(\prod_{y \in S} \delta_{y}\right)$. Also, by [5, 33.38 and 33.42], $\boldsymbol{v}^{*} \in \boldsymbol{\gamma}_{\boldsymbol{k}}(\boldsymbol{F})$.

Let $\xi: F \rightarrow F_{k}$ be the homomorphism defined by $x_{i} \xi=x_{i}$ and $y_{i} \xi=x_{i}$ for all i. Thus $v^{*} \xi \in \gamma_{k}\left(F_{k}\right)$ and so $v^{*} \xi \in C$. Also, $v^{*} \xi$ is the product of the elements $\left(v_{S} \xi\right)^{c(S)}$. We shall prove (i) $v_{Y} \xi=\left(w \delta_{x_{k}}\right) \alpha$ where α is an automorphism of F_{k}, and (ii) for all $S \neq Y, v_{S} \xi=w \beta$ where β is an automorphism of $F_{\boldsymbol{k}}$ (depending on S). It follows that $\left(v_{S} \xi\right)^{\varepsilon(S)} \in C$ for all $S \neq Y$; whence $\left(w \delta_{x_{k}}\right) \alpha \in C$ and so $w \delta_{x_{k}} \in C$, as required.

To prove (i) note that

$$
v_{Y} \xi=w\left(x_{2} x_{1}, x_{3} x_{2}, \ldots, x_{k} x_{k-1}, 1\right)=\left(w \delta_{z_{k}}\right) \alpha
$$

where α is the automorphism of F_{k} defined by $x_{k} \alpha=x_{k}$ and $x_{i} \alpha=x_{i+1} x_{i}$ for $i<k$. To prove (ii), suppose $S \neq Y$ and, for $i=1, \ldots, k$, write $\mu_{i}=1$ if $y_{i} \in S$ and $\mu_{i}=0$ if $y_{i} \notin S$. Thus $v_{s} \xi=w \beta$ where β is the endomorphism of F_{k} defined by $x_{k} \beta=x_{1}^{1-\mu_{1}} \ldots x_{k}^{1-\mu_{k}}$ and $x_{i} \beta=x_{i+1} x_{i}^{\mu_{i}}$ for $i<k$. We shall show that β is an automorphism of F_{k}. By the Hopf property of F_{k} (see [5, 41.52]) it is sufficient to show that β is surjective. Thus it is sufficient to show that x_{1}, \ldots, x_{k} all belong to the subgroup $\left\langle x_{1} \beta, \ldots, x_{k} \beta\right\rangle$.

Let d be the smallest positive integer such that $y_{d} \notin S$. If $d<k$ then $x_{d} \beta=x_{d+1}$, $x_{d+1} \beta=x_{d+2} x_{d+1}^{\mu_{d+1}}, \ldots, x_{k-1} \beta=x_{k} x_{k-1}^{\mu_{k-1}}$, and so $x_{d+1}, \ldots, x_{k} \in\left\langle x_{1} \beta, \ldots, x_{k} \beta\right\rangle$. But $x_{k} \beta=x_{d} x_{d+1}^{1-\mu_{d+1}} \ldots x_{k}^{1-\mu_{k}}$. Hence $x_{d} \in\left\langle x_{1} \beta, \ldots, x_{k} \beta\right\rangle$. If $d>1$ then $x_{d-1} \beta=$ $x_{d} x_{d-1}, \ldots, x_{1} \beta=x_{2} x_{1}$, and so $x_{d-1}, \ldots, x_{1} \in\left\langle x_{1} \beta, \ldots, x_{k} \beta\right\rangle$.

3. Proof of Theorem 2

Let G be as in the statement of the theorem and let $\left\{a_{1}, \ldots, a_{k}\right\}$ be a free generating set for G. The result is trivial if $k=1$ or $c=0$, so we assume that $k \geqslant 2$ and $c \geqslant 1$. Let Φ be the Frattini subgroup of G. Since G is a finite p-group, G / Φ is an elementary abelian group of order p^{k} and an endomorphism θ of G is an automorphism if and only if $\left\{\left(a_{1} \theta\right) \Phi, \ldots,\left(a_{k} \theta\right) \Phi\right\}$ is a basis of G / Φ.

Let C be a characteristic subgroup of G. Let $u\left(x_{1}, \ldots, x_{k}\right)$ be an element of F_{k} such that $u\left(a_{1}, \ldots, a_{k}\right) \in C$, and let $g_{1}, \ldots, g_{k} \in G$. It suffices to show that $u\left(g_{1}, \ldots, g_{k}\right) \in C$. Let r be the rank of $\left\langle g_{1} \Phi, \ldots, g_{k} \Phi\right\rangle$. Then, for some subset R of $\{1, \ldots, k\}$ of cardinality $r,\left\langle g_{1} \Phi, \ldots, g_{k} \Phi\right\rangle=\left\langle g_{i} \Phi: i \in R\right\rangle$. Suppose that $r \neq 0$, let σ be a permutation of $\{1, \ldots, k\}$ such that $\{1, \ldots, r\}=R \sigma$, and let $\tilde{u}\left(x_{1}, \ldots, x_{k}\right)=u\left(x_{1 \sigma}, \ldots, x_{k \sigma}\right)$. Then

$$
\tilde{u}\left(a_{1}, \ldots, a_{k}\right)=u\left(a_{1 \sigma}, \ldots, a_{k \sigma}\right)=u\left(a_{1}, \ldots, a_{k}\right) \sigma^{*}
$$

where σ^{*} is an automorphism of G. Thus $\tilde{u}\left(a_{1}, \ldots, a_{k}\right) \in C$. Also, $u\left(g_{1}, \ldots, g_{k}\right)=$ $\tilde{u}\left(g_{1 \sigma^{-1}}, \ldots, g_{k \sigma^{-1}}\right)$ and, by choice of $\sigma,\left\langle g_{1 \sigma^{-1}} \Phi, \ldots, g_{r \sigma^{-1}} \Phi\right\rangle=\left\langle g_{1} \Phi, \ldots, g_{k} \Phi\right\rangle$. Thus (by considering \tilde{u} instead of u) we may reduce to the case where $R=\{1, \ldots, r\}$.

Hence there are elements $t_{r+1}\left(x_{1}, \ldots, x_{r}\right), \ldots, t_{k}\left(x_{1}, \ldots, x_{r}\right)$ of F_{r} and elements f_{r+1}, \ldots, f_{k} of Φ such that $g_{i}=t_{i}\left(g_{1}, \ldots, g_{r}\right) f_{i}(r+1 \leqslant i \leqslant k)$. Since $\left\{g_{1} \Phi, \ldots, g_{r} \Phi\right\}$ is contained in a basis of G / Φ, there is an automorphism θ of G such that $a_{i} \theta=g_{i}(1 \leqslant i \leqslant r)$. It is enough to prove that $u\left(g_{1}, \ldots, g_{k}\right) \theta^{-1} \in C$. But

$$
u\left(g_{1}, \ldots, g_{k}\right) \theta^{-1}=u\left(a_{1}, \ldots, a_{r}, t_{r+1}\left(a_{1}, \ldots, a_{r}\right) h_{r+1}, \ldots, t_{k}\left(a_{1}, \ldots, a_{r}\right) h_{k}\right)
$$

where $h_{i}=f_{i} \theta^{-1} \in \Phi(r+1 \leqslant i \leqslant k)$. Let

$$
w\left(x_{1}, \ldots, x_{k}\right)=u\left(x_{1}, \ldots, x_{r}, t_{r+1}\left(x_{1}, \ldots, x_{r}\right) x_{r+1}, \ldots, t_{k}\left(x_{1}, \ldots, x_{r}\right) x_{k}\right) .
$$

Thus we wish to prove that $w\left(a_{1}, \ldots, a_{r}, h_{r+1}, \ldots, h_{k}\right) \in C$. Note that $w\left(a_{1}, \ldots, a_{k}\right)$ $=u\left(a_{1}, \ldots, a_{k}\right) \tau$ where τ is an automorphism of G. Thus $w\left(a_{1}, \ldots, a_{k}\right) \in C$ and it is enough to prove the following lemma, which also covers the case where $r=0$. The proof is a modification of the proof of Lemma 1.

Lemma 2. With G as in the statement of Theorem 2, let $\left\{a_{1}, \ldots, a_{k}\right\}$ be a free generating set for G, let C be a characteristic subgroup of G, and let $w\left(x_{1}, \ldots, x_{k}\right)$ be an element of F_{k} such that $w\left(a_{1}, \ldots, a_{k}\right) \in C$. Then, for all $r \in\{0,1, \ldots, k\}$ and all $h_{r+1}, \ldots, h_{k} \in \Phi$ (where Φ is the Frattini subgroup of $G), w\left(a_{1}, \ldots, a_{r}, h_{r+1}, \ldots, h_{k}\right)$ belongs to C.

Proof: As before we may assume that $k \geqslant 2$ and $c \geqslant 1$. The result is trivially true if $r=k$. Thus, using downward induction on r, we may assume that $r<k$ and the result is true when r is replaced by $r+1$. Let F be the free group freely generated by a set $\left\{x_{1}, \ldots, x_{k}\right\} \cup Y$ where Y consists of the $k+p-2$ elements $y_{1}, \ldots, y_{r}, y_{r+1}^{(1)}, \ldots, y_{r+1}^{(p-1)}, y_{r+2}, \ldots, y_{k}$. Let $\xi: F \rightarrow G$ be the homomorphism defined by $x_{i} \xi=a_{i}$ for all $i, y_{i} \xi=a_{i}$ for all $i \neq r+1$, and $y_{r+1}^{(j)} \xi=a_{r+1}$ for all j. Let α be the automorphism of G defined by $a_{i} \alpha=a_{i+1} a_{i}(1 \leqslant i \leqslant r)$ and $a_{i} \alpha=a_{i}$ $(r+1 \leqslant i \leqslant k)$, and write $h_{i}^{\prime}=h_{i} \alpha(r+1 \leqslant i \leqslant k)$. Choose elements u_{r+1}, \ldots, u_{k} of $\left\langle x_{1}, \ldots, x_{k}\right\rangle$ such that $u_{i} \xi=h_{i}^{\prime}(r+1 \leqslant i \leqslant k)$. Let v be the element of F defined by
$v=w\left(x_{2} x_{1} y_{1}^{-1}, \ldots, x_{r+1} x_{r} y_{r}^{-1}, y_{1} \ldots y_{r} y_{r+1}^{(1)} \ldots y_{r+1}^{(p-1)} y_{r+2} \ldots y_{k} u_{r+1}, u_{r+2}, \ldots, u_{k}\right)$
and let $v^{*}=v\left(\prod_{y \in Y}\left(1-\delta_{y}\right)\right)$ where the elements of Y are taken in some arbitrary order. Thus, by $[5,33.38$ and 33.42$], v^{*} \in \gamma_{k+p-2}(F)$, and so $v^{*} \xi \in \gamma_{k+p-2}(G)=\{1\}$. In particular, $v^{*} \xi \in C$. For each subset S of Y let $v_{S}=v\left(\prod_{y \in S} \delta_{\nu}\right)$. As in the proof of Lemma 1, it suffices to prove (i) $v_{Y} \xi=w\left(a_{1}, \ldots, a_{r}, h_{r+1}, \ldots, h_{k}\right) \alpha$, and (ii) for all $S \neq Y, v_{S} \boldsymbol{\xi} \in C$.

To prove (i) note that

$$
v_{Y} \xi=w\left(a_{2} a_{1}, \ldots, a_{r+1} a_{r}, h_{r+1}^{\prime}, \ldots, h_{k}^{\prime}\right)=w\left(a_{1}, \ldots, a_{r}, h_{r+1}, \ldots, h_{h}\right) \alpha
$$

as required. To prove (ii), suppose $S \neq Y$, write

$$
\nu=\left|\left\{y_{r+1}^{(1)}, \ldots, y_{r+1}^{(p-1)}\right\} \cap S\right|
$$

and, for $i \in\{1, \ldots, r, r+2, \ldots, k\}$, write $\mu_{i}=1$ if $y_{i} \in S$ and $\mu_{i}=0$ if $y_{i} \notin S$. Thus $v_{S} \xi=w\left(b_{1}, \ldots, b_{k}\right)$ where $b_{1}=a_{2} a_{1}^{\mu_{1}}, \ldots, b_{r}=a_{r+1} a_{r}^{\mu_{r}}$,

$$
b_{r+1}=a_{1}^{1-\mu_{1}} \ldots a_{r}^{1-\mu_{r}} a_{r+1}^{p-1-\nu} a_{r+2}^{1-\mu_{r+2}} \ldots a_{h}^{1-\mu_{k}} h_{r+1}^{\prime}
$$

$b_{r+2}=h_{r+2}^{\prime}, \ldots, b_{k}=h_{k}^{\prime}$. It is enough to prove that $\left\langle b_{1} \Phi, \ldots, b_{r+1} \Phi\right\rangle$ has rank $r+1$, for then there is an automorphism β of G such that $a_{i} \beta=b_{i}(1 \leqslant i \leqslant r+1)$ which gives

$$
v_{S} \xi=w\left(a_{1}, \ldots, a_{r+1}, h_{r+2}^{\prime} \beta^{-1}, \ldots, h_{k}^{\prime} \beta^{-1}\right) \beta
$$

and so $v_{S} \xi \in C$ by the inductive hypothesis.
Suppose first that $\left\{y_{1}, \ldots, y_{r}\right\} \subseteq S$. Then

$$
\left\langle b_{1}, \ldots, b_{r+1}\right\rangle=\left\langle a_{2} a_{1}, \ldots, a_{r+1} a_{r}, a_{r+1}^{p-1-\nu} a_{r+2}^{1-\mu_{r+2}} \ldots a_{k}^{1-\mu_{k}} h_{r+1}^{\prime}\right\rangle
$$

and either $\mu_{i}=0$ for some $i \in\{r+2, \ldots, k\}$ or $0 \leqslant \nu<p-1$. It follows easily that $\left\langle b_{1} \Phi, \ldots, b_{r+1} \Phi\right\rangle$ has rank $r+1$.

Suppose finally that $\left\{y_{1}, \ldots, y_{r}\right\}$ is not contained in S and let $N=\left\langle a_{r+2}, \ldots, a_{k}\right\rangle \Phi$. It suffices to show that $\left(b_{1} N, \ldots, b_{r+1} N\right\rangle$ has rank $r+1$. But

$$
\left\langle b_{1} N, \ldots, b_{r+1} N\right\rangle=\left\langle a_{2} a_{1}^{\mu_{1}} N, \ldots, a_{r+1} a_{r}^{\mu_{r}} N, a_{1}^{1-\mu_{1}} \ldots a_{r}^{1-\mu_{r}} a_{r+1}^{p-1-\nu} N\right\rangle
$$

where $\mu_{i}=0$ for some $i \in\{1, \ldots, r\}$. By the method of Lemma 1 we can show that $a_{1} N, \ldots, a_{r+1} N$ all belong to $\left\langle b_{1} N, \ldots, b_{r+1} N\right\rangle$, and this gives the required result.

4. Endomorphisms and modules

In the remainder of the paper we describe the construction of some relatively free p-groups with characteristic subgroups which are not fully invariant.

Let p be a prime number and k a positive integer, $k \geqslant 2$. Define subgroups $\lambda_{c}\left(F_{k}\right)$ of F_{k} for each positive integer c by $\lambda_{1}\left(F_{k}\right)=F_{k}$ and

$$
\lambda_{c+1}\left(F_{k}\right)=\lambda_{c}\left(F_{k}\right)^{P}\left[\lambda_{c}\left(F_{k}\right), F_{k}\right]
$$

(see [2, VIII.1.4 and VIII.1.5]). Thus each $\lambda_{c}\left(F_{k}\right)$ is a fully invariant subgroup of F_{k}, $\lambda_{c+1}\left(F_{k}\right) \subseteq \lambda_{c}\left(F_{k}\right)$ and $\lambda_{c}\left(F_{k}\right) / \lambda_{c+1}\left(F_{k}\right)$ is a finite elementary abelian p-group. We write $U_{c}=\lambda_{c}\left(F_{k}\right) / \lambda_{c+1}\left(F_{k}\right)$ and regard U_{c} as a vector space over the field $G F(p)$ of p elements. Furthermore, we write $U=U_{1}$. Thus U has dimension k.

For each c let End $\left(U_{c}\right)$ be the set of all linear transformations of U_{c}. It is usual to regard End $\left(U_{c}\right)$ as a ring, but for our purposes here the additive structure of End (U_{c}) is irrelevant and we simply regard End $\left(U_{c}\right)$ as a monoid under the operation of composition of functions. As usual we write $\mathrm{GL}\left(U_{c}\right)$ for the group of invertible elements
of End $\left(U_{c}\right)$. Every endomorphism of F_{k} induces on U_{c} an element of End $\left(U_{c}\right)$. Since F_{k} is free, each element ζ of $\operatorname{End}(U)$ is induced by some endomorphism of F_{k}. This endomorphism induces an element of End $\left(U_{c}\right)$ which, by [2, VIII.1.7a], depends only upon ζ and not on the choice of endomorphism of F_{k}. Thus we obtain a monoid homomorphism End $(U) \longrightarrow$ End $\left(U_{c}\right)$ and, by restriction, a group homomorphism $\mathbf{G L}(U) \longrightarrow \mathrm{GL}\left(U_{c}\right)$. Hence U_{c} may be regarded as a module for End (U) and $\mathbf{G L}(U)$.

Note that $F_{k} / \lambda_{c+1}\left(F_{k}\right)$ is a finite relatively free p-group of rank k and nilpotency class at most c. (We shall see below that it has class exactly c.) Furthermore, U_{c} is a central subgroup of $F_{k} / \lambda_{c+1}\left(F_{k}\right)$. Suppose that V is a subgroup of U_{c}. Then it is straightforward to verify that V is fully invariant as a subgroup of $F_{k} / \lambda_{c+1}\left(F_{k}\right)$ if and only if it is an End (U)-submodule of U_{c} and V is characteristic in $F_{k} / \lambda_{c+1}\left(F_{k}\right)$ if and only if it is a GL (U)-submodule of U_{c}. Thus we shall investigate the submodule structure of U_{c}.

Let A be the free associative algebra (without identity element) over GF (p) on the free generating set $\left\{x_{1}, \ldots, x_{k}\right\}$. Thus $A=A_{1} \oplus A_{2} \oplus \ldots$ where, for each c, A_{c} is the subspace of A spanned by all monomials of degree c in x_{1}, \ldots, x_{k}. We identify U with A_{1} in the obvious way. Thus A_{1} is an End (U)-module. Since A is free, the action of $\operatorname{End}(U)$ on A_{1} can be extended to A so that each element of $\operatorname{End}(U)$ acts as an algebra endomorphism of A. Under this action A is an End (U)-module and each A_{c} is a submodule.

The associative algebra A also carries the structure of a Lie algebra over GF (p), the Lie multiplication being the "commutator" operation defined by $[\boldsymbol{v}, \boldsymbol{w}]=\boldsymbol{v} \boldsymbol{w}-\boldsymbol{w v}$ for all $v, w \in A$. Let L be the Lie subalgebra generated by $\left\{x_{1}, \ldots, x_{k}\right\}$. Then, as is well known, L is a free Lie algebra on $\left\{x_{1}, \ldots, x_{k}\right\}$ (see [3, Theorem 5.9]). Also $L=L_{1} \oplus L_{2} \oplus \ldots$ where $L_{c}=L \cap A_{c}$ for all c, and, in particular, $L_{1}=A_{1}=U$. It is easy to verify that L and the L_{c} are $\operatorname{End}(U)$-submodules of A.

The submodule structure of U_{c} is closely related to that of L. In explaining the connection we shall follow the presentation in [1]: see [1] for references to original sources.

For each positive integer c there is a certain group homomorphism $\phi_{c}: \lambda_{c}\left(F_{k}\right) \rightarrow$ A (with A regarded as a group under addition). In the case where p is odd these homomorphisms are determined by the following properties:
and

$$
x_{i} \phi_{1}=x_{i}(1 \leqslant i \leqslant k), \quad f^{p} \phi_{c+1}=f \phi_{c}
$$

for all $c \geqslant 1, f \in \lambda_{c}\left(F_{k}\right)$ and $g \in \lambda_{1}\left(F_{k}\right)=F_{k}$. For $p=2$ the only difference is in the formula for $f^{p} \phi_{c+1}$ with $c=1$: this becomes

$$
f^{2} \phi_{2}=f \phi_{1}+\left(f \phi_{1}\right)^{2}
$$

for all $f \in \lambda_{1}\left(F_{k}\right)$.
The kernel of ϕ_{c} is equal to $\lambda_{c+1}\left(F_{k}\right)$ for all p, c (see [1]). Thus ϕ_{c} induces a vector space monomorphism $\tilde{\phi}_{c}: U_{c} \rightarrow A$. As noted in [1], $\tilde{\phi}_{c}$ is a GL (U)-module monomorphism, and a similar proof shows that $\tilde{\phi}_{c}$ is in fact an End (U)-module monomorphism. For $p \neq 2$ the image of $\tilde{\phi}_{c}$ is easily calculated to be $L_{1}+\ldots+L_{c}$: thus U_{c} is isomorphic to $L_{1}+\ldots+L_{c}$ as $\operatorname{End}(U)$-module. In the case $p=2$, let E be the subspace of $A_{1}+A_{2}$ spanned by the elements $x_{i}+x_{i}^{2}(1 \leqslant i \leqslant k)$ and $\left[x_{i}, x_{j}\right](1 \leqslant i<j \leqslant k)$. Then the image of $\tilde{\phi}_{1}$ is L_{1}, the image of $\tilde{\phi}_{2}$ is E, and, for $c \geqslant 3$, the image of $\tilde{\phi}_{c}$ is $E+L_{s}+\ldots+L_{c}$. Thus U_{c} is again determined up to isomorphism.

Clearly $\gamma_{c}\left(F_{k}\right) \subseteq \lambda_{c}\left(F_{k}\right)$ for all c. It is easy to prove by induction on c that $\gamma_{c}\left(F_{k}\right) \phi_{c}=L_{c}$ for all c. Hence $\gamma_{c}\left(F_{k}\right)$ is not contained in $\lambda_{c+1}\left(F_{k}\right)$ and the group $F_{k} / \lambda_{c+1}\left(F_{k}\right)$ has class exactly c.

In the remainder of this paper we take $k=2$ and write z as an abbreviation for the element $\left[x_{1}, x_{2}\right]$ of L. Thus z spans L_{2}. Note that, for all $\zeta \in \operatorname{End}(U), z \zeta=\operatorname{det}(\zeta) z$. Commutators in L will be written with a left-normed convention. Also, we shall need to use the well known fact that if v and w are elements of L such that $[v, w]=0$ and $\boldsymbol{w} \neq 0$ then v is a scalar multiple of \boldsymbol{w}. This follows, for example, from [3, Theorem 5.10]. We shall now consider separately the cases where p is odd (Section 5) and $p=2$ (Section 6).

5. Odd CHARACTERISTIC

Suppose that $k=2$ and p is odd. We shall first show that $L_{1}+\ldots+L_{2 p-1}$ has a GL (U)-submodule which is not an End (U)-submodule. Let s_{1} and s_{2} be the elements of $L_{2 p-1}$ defined by $s_{1}=\left[x_{1}, z, \ldots, z\right]$ and $s_{2}=\left[x_{2}, z, \ldots, z\right]$. (Here and subsequently z, \ldots, z will denote a sequence of $p-1$ copies of z.) Let V be the subspace of $L_{1}+L_{2 p-1}$ spanned by $x_{1}+s_{1}$ and $x_{2}+s_{2}$; that is, $V=\left\langle x_{1}+s_{1}, x_{2}+s_{2}\right\rangle$. Note that, for $\zeta \in G L(U)$ and $i=1,2$,

$$
s_{i} \zeta=(\operatorname{det}(\zeta))^{p-1}\left[x_{i} \zeta, z, \ldots, z\right]=\left[x_{i} \zeta, z, \ldots, z\right]
$$

It follows that V is a $\mathrm{GL}(U)$-submodule of $L_{1}+\ldots+L_{2 p-1}$ isomorphic to L_{1}. But V is not an End (U)-submodule because if η is the element of End (U) which satisfies $x_{1} \eta=x_{1}$ and $x_{2} \eta=0$ on A_{1} then $\left(x_{1}+s_{1}\right) \eta=x_{1} \notin V$. Thus $U_{2 p-1}$ has a GL (U)-submodule which is not an End (U)-submodule, and so the relatively free group $F_{2} / \lambda_{2 p}\left(F_{2}\right)$ has a characteristic subgroup which is not fully invariant. As proved in Section 4, $F_{2} / \lambda_{2 p}\left(F_{2}\right)$ has class $2 p-1$.

We now move towards the proof of Theorem 3 (in the case where p is odd). Let
$t_{1}, t_{2}, t_{3}, t_{4}$ be the elements of $L_{2 p}$ defined by

$$
\begin{aligned}
t_{1} & =\left[x_{1}, z, \ldots, z, x_{2}\right]=\left[s_{1}, x_{2}\right], \\
t_{2} & =\left[x_{2}, z, \ldots, z, x_{1}\right]=\left[s_{2}, x_{1}\right], \\
t_{3} & =\left[x_{1}, z, \ldots, z, x_{1}\right]=\left[s_{1}, x_{1}\right], \\
t_{4} & =\left[x_{2}, z, \ldots, z, x_{2}\right]=\left[s_{2}, x_{2}\right] .
\end{aligned}
$$

LEMMA 3. The elements t_{1}, t_{2}, t_{3} and t_{4} are linearly independent,
and

$$
\begin{aligned}
& \left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle \cap\left[L_{2 p-1}, x_{1}\right]=\left\langle t_{2}, t_{3}\right\rangle \\
& \left\langle t_{1}, t_{2}, t_{3}, t_{4}\right\rangle \cap\left[L_{2 p-1}, x_{2}\right]=\left\langle t_{1}, t_{4}\right\rangle .
\end{aligned}
$$

Proof: We work inside A and use the fact that the monomials of A form a basis of A. Let $\theta: A \rightarrow A$ be the linear transformation which fixes $\left(x_{2} x_{1}\right)^{p-2} x_{1}^{2} x_{2}^{2}$ and $x_{2}^{3} x_{1}\left(x_{1} x_{2}\right)^{p-2}$ but maps all other monomials to 0 . Then it is straightforward to verify that
and

$$
\begin{gathered}
t_{1} \theta=(p-1)\left(x_{2} x_{1}\right)^{p-2} x_{1}^{2} x_{2}^{2} \\
t_{4} \theta=x_{2}^{3} x_{1}\left(x_{1} x_{2}\right)^{p-2} .
\end{gathered}
$$

But clearly $v \theta=0$ for all $v \in\left[L_{2 p-1}, x_{1}\right]$. It follows that t_{1} and t_{4} are linearly independent and

$$
\left\langle t_{1}, t_{4}\right\rangle \cap\left[L_{2 p-1}, x_{1}\right]=\{0\}
$$

Similarly, t_{2} and t_{3} are linearly independent and

$$
\left\langle t_{2}, t_{3}\right\rangle \cap\left[L_{2 p-1}, x_{2}\right]=\{0\} .
$$

The result follows.
Let $W=\left\langle z+t_{1},-z+t_{2}, t_{3}, t_{4}\right\rangle$. Then it is easy to verify that W is an End (U) submodule of $L_{2}+L_{2 p}$. Furthermore, the following result holds.

Lemma 4. $V=\left\{v \in L:\left[v, x_{i}\right] \in W\right.$ for $\left.i=1,2\right\}$.
Proof: Clearly $\left[v, x_{1}\right] \in W$ and $\left[v, x_{2}\right] \in W$ for all $v \in V$. Conversely, let v be an element of L such that $\left[v, x_{1}\right] \in W$ and $\left[v, x_{2}\right] \in W$. We shall prove that $v \in V$.

Write $v=v_{1}+v_{2}+\ldots$ where $v_{j} \in L_{j}$ for all j. Then, for $j \notin\{1,2 p-1\}$, $\left[v_{j}, x_{1}\right]=0$ and $\left[v_{j}, x_{2}\right]=0$. Hence $v_{j}=0$ for all $j \notin\{1,2 p-1\}$. Thus $v \in$ $L_{1}+L_{2 p-1}$.

Let $\left\{s_{1}, \ldots, s_{n}\right\}$ be any basis for $L_{2 p-1}$ where $s_{1}=\left[x_{1}, z, \ldots, z\right]$ and $s_{2}=\left[x_{2}, z, \ldots, z\right]$ as before. If $w \in L_{2 p-1}$ and $\left[w, x_{1}\right]=0$ then $w=0$. Thus $\left[s_{1}, x_{1}\right], \ldots,\left[s_{n}, x_{1}\right]$ are linearly independent elements of $L_{2 p}$. Since $v \in L_{1}+L_{2 p-1}$ we can write

$$
v=\mu_{1} x_{1}+\mu_{2} x_{2}+\nu_{1} s_{1}+\ldots+\nu_{n} s_{n}
$$

where $\mu_{1}, \mu_{2}, \nu_{1}, \ldots, \nu_{n} \in \operatorname{GF}(p)$. Thus

$$
\left[v, x_{1}\right]=-\mu_{2} z+\nu_{1}\left[s_{1}, x_{1}\right]+\ldots+\nu_{n}\left[s_{n}, x_{1}\right] \in W
$$

It follows that

$$
\nu_{1}\left[s_{1}, x_{1}\right]+\ldots+\nu_{n}\left[s_{n}, x_{1}\right] \in\left(t_{1}, t_{2}, t_{3}, t_{4}\right) \cap\left[L_{2 p-1}, x_{1}\right]
$$

But, by Lemma 3,

$$
\left\langle t_{1}, t_{2}, t_{3}, t_{4}\right) \cap\left[L_{2 p-1}, x_{1}\right]=\left\langle\left[s_{1}, x_{1}\right],\left[s_{2}, x_{1}\right]\right\rangle .
$$

Thus $\nu_{j}=0$ for $j>2$ and we can write

$$
v=\mu_{1} x_{1}+\mu_{2} x_{2}+\nu_{1} s_{1}+\nu_{2} s_{2}
$$

Hence

$$
\left[v, x_{1}\right]=-\mu_{2} z+\nu_{1} t_{3}+\nu_{2} t_{2}=\left(\nu_{2}-\mu_{2}\right) z+\nu_{1} t_{3}+\nu_{2}\left(-z+t_{2}\right)
$$

and so $\left(\nu_{2}-\mu_{2}\right) z \in W$. But, by Lemma 3, $z \notin W$. Thus $\nu_{2}=\mu_{2}$. Similarly, by consideration of $\left[v, x_{2}\right], \nu_{1}=\mu_{1}$. Thus

$$
v=\mu_{1}\left(x_{1}+s_{1}\right)+\mu_{2}\left(x_{2}+s_{2}\right) \in V
$$

as required.
We shall now make use of the properties of the maps ϕ_{c} given in Section 4. Let M be the inverse image of V under $\phi_{2 p-1}$ and let N be the inverse image of W under $\phi_{2 p}$. Thus

$$
\lambda_{2 p+1}\left(F_{2}\right) \subseteq N \subseteq \lambda_{2 p}\left(F_{2}\right) \subseteq M \subseteq \lambda_{2 p-1}\left(F_{2}\right)
$$

Since W is an End (U)-submodule of $L_{1}+\ldots+L_{2 p}, N / \lambda_{2 p+1}\left(F_{2}\right)$ is a fully invariant subgroup of $F_{2} / \lambda_{2 p+1}\left(F_{2}\right)$, and so N is a fully invariant subgroup of F_{2}. Let $G=$ F_{2} / N. Then G is a 2 -generator relatively free p-group which is nilpotent of class at most $2 p$. But

$$
\left(N \gamma_{2 p}\left(F_{2}\right)\right) \phi_{2 p}=W+L_{2 p} \neq W=N \phi_{2 p}
$$

Thus $N \gamma_{2 p}\left(F_{2}\right) \neq N$ and G has class exactly $2 p$.
Since V is not an $\operatorname{End}(U)$-submodule of $L_{1}+\ldots+L_{2 p-1}, M / \lambda_{2 p}\left(F_{2}\right)$ is not a fully invariant subgroup of $F_{2} / \lambda_{2 p}\left(F_{2}\right)$. Thus M / N is not a fully invariant subgroup of G. To complete the proof of Theorem 3 (in the case where p is odd) we shall prove that $Z(G)=M / N$.

Let $f \in M$. Then $f \phi_{2 p-1} \in V$ and so, by Lemma 4, $\left[f \phi_{2 p-1}, x_{i}\right] \in W$ for $i=1,2$. Thus $\left[f, x_{i}\right] \phi_{2 p} \in W$ and so $\left[f, x_{i}\right] \in N$ for $i=1,2$. Thus $M / N \subseteq Z(G)$.

Conversely, suppose that $f \in F_{2}$ and $\left[f, x_{i}\right] \in N$ for $i=1,2$. We first prove by induction on c that $f \in \lambda_{c}\left(F_{2}\right)$ for $c=1, \ldots, 2 p-1$. Clearly $f \in \lambda_{1}\left(F_{2}\right)$. Suppose
$f \in \lambda_{c}\left(F_{2}\right)$ where $c<2 p-1$. Then, since $N \subseteq \lambda_{c+2}\left(F_{2}\right),\left[f, x_{i}\right] \phi_{c+1}=0$ for $i=1,2$, and so $\left[f \phi_{c}, x_{i}\right]=0$ for $i=1,2$. Thus $f \phi_{c}=0$ and so $f \in \lambda_{c+1}\left(F_{2}\right)$. Therefore $f \in \lambda_{2 p-1}\left(F_{2}\right)$ and we can apply the map $\phi_{2 p-1}$. Thus, for $i=1,2$,

$$
\left[f \phi_{2 p-1}, x_{i}\right]=\left[f, x_{i}\right] \phi_{2 p} \in W
$$

By Lemma 4 it follows that $f \phi_{2 p-1} \in V$. Thus $f \in M$. Consequently $Z(G) \subseteq M / N$ and so $Z(G)=M / N$ as required.

6. Characteristic 2

Suppose that $k=2$ and $p=2$. Let E be as defined in Section 4: thus E is the image of $\tilde{\phi}_{2}$. It is easily verified that the subspace of E spanned by the elements $x_{1}+x_{1}^{2}+z$ and $x_{2}+x_{2}^{2}+z$ is a $G L(U)$-submodule but not an End (U)-submodule. Thus $F_{2} / \lambda_{3}\left(F_{2}\right)$ has a characteristic subgroup which is not fully invariant - this is the example referred to in Section 1. But it does not seem possible to use this example to create a 2-generator relatively free 2 -group of class 3 whose centre is not fully invariant. It seems necessary to go to a group of class 4. Thus we prove Theorem 3 in the case $p=2$. The proof is similar to that for p odd, but rather easier. We omit some of the details.

Let $V_{(2)}$ be the subspace of $E+L_{3}$ spanned by the elements $x_{1}+x_{1}^{2}+z+\left[z, x_{1}\right]$ and $x_{2}+x_{2}^{2}+z+\left[z, x_{2}\right]$. It is easily verified that $V_{(2)}$ is a $G L(U)$-submodule but not an End (U)-submodule.

Let $W_{(2)}$ be the subspace of $E+L_{3}+L_{4}$ spanned by

$$
\left[z, x_{1}\right]+\left[z, x_{1}, x_{1}\right], \quad\left[z, x_{2}\right]+\left[z, x_{2}, x_{2}\right]
$$

and

$$
z+\left[z, x_{1}\right]+\left[z, x_{2}\right]+\left[z, x_{1}, x_{2}\right] .
$$

It is easily verified that $W_{(2)}$ is an End (U)-submodule. Furthermore, it can be proved that

$$
V_{(2)}=\left\{v \in E+L_{3}:\left[v, x_{i}\right] \in W_{(2)} \text { for } i=1,2\right\}
$$

Let $M_{(2)}$ be the inverse image of $V_{(2)}$ under ϕ_{3} and let $N_{(2)}$ be the inverse image of $W_{(2)}$ under ϕ_{4}. Then $F_{2} / N_{(2)}$ is a 2-generator relatively free 2-group of nilpotency class 4 with centre $M_{(2)} / N_{(2)}$, which is not fully invariant.

References

[1] R.M. Bryant and L.G. Kovács, 'Lie representations and groups of prime power order', J. London Math. Soc. (2) 17 (1978), 415-421.
[2] B. Huppert and N. Blackburn, Finite groups II (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
[3] W. Magnus, A. Karrass and D. Solitar, Combinatorial group theory (Interscience, New York, 1966).
[4] B.H. Neumann and H. Neumann, 'Zwei Klassen charakteristischer Untergruppen und ihre Faktorgruppen', Math. Nachr. 4 (1951), 106-125.
[5] H. Neumann, Varieties of groups (Springer-Verlag, Berlin, Heidelberg, New York, 1967).
[6] P.M. Neumann, 'A note on formations of finite nilpotent groups', Bull. London Math. Soc. 2 (1970), 91.
[7] M.R. Vaughan-Lee, 'Characteristic subgroups of free groups', Bull. London Math. Soc. 2 (1970), 87-90.

Department of Mathematics
University of Manchester Institute of Science and Technology
Manchester M60 1QD
United Kingdom

[^0]: Received 4 December 1991

