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C H A R A C T E R I S T I C S U B G R O U P S O F RELATIVELY F R E E G R O U P S

ROGER M. BRYANT

A simple new proof is given of a result of Vaughan-Lee which implies that if G is
a relatively free nilpotent group of finite rank Jfc and nilpotency class c with c < k
then the characteristic subgroups of G are all fully invariant. It is proved that the
condition c < k can be weakened to c < * + p — 2 when G has p-power exponent
for some prime p. On the other hand it is shown that for each prime p there is a
2-generator relatively free p-group G which is nilpotent of class 2p such that the
centre of G is not fully invariant.

1. INTRODUCTION

For each positive integer k let Fk be the free group of rank k freely generated by
the set {xi, . . . , xt}- The following result was proved in [7].

THEOREM 1 . (Vaughan-Lee). If C is a characteristic subgroup of Fk which

contains the k th term 7k(Fk) of the lower central series of Fk then C is fully invariant.

One interesting consequence of this result is that every formation of finite nilpotent
groups is subgroup closed — see [6]. A simple proof of Theorem 1 is given in Section 2
below.

A corollary of Theorem 1 is that if G is a relatively free nilpotent group of finite
rank Jfe and nilpotency class c where c < k then every characteristic subgroup of G
is fully invariant. (See [5] for basic facts about relatively free groups.) The follow-
ing stronger result will be proved in Section 3 for the case where G has prime-power
exponent.

THEOREM 2 . Let p be a prime number and let G be a relatively free nilpotent
group of p-power exponent with finite rank k and nilpotency class c, where c < k+p—2.
Then every characteristic subgroup of G is fully invariant.

In the case where k = 2 and p = 2 Theorem 2 is the best possible result of its sort
because, as is well known, the relatively free group of rank 2 in the variety of groups of
exponent 4 and class 2 has a characteristic subgroup which is not fully invariant (see,
for example, [4, Section 9] and see also Section 6 below). I do not know how close
Theorem 2 is to being best possible in general, but some information can be obtained
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498 R.M. Bryant [2]

by module-theoretic methods. This is illustrated in Sections 4 - 6 . It is shown that

for each odd prime p there is a 2-generator relatively free p-group which is nilpotent

of class 2p - 1 and has a characteristic subgroup which is not fully invariant. The

following result will also be proved.

THEOREM 3 . For each prime p there is a 2-generator relatively tree p-group G
such thai G is nilpotent of class 1p and the centre of G is not fully invariant.

Similar examples of relatively free nilpotent groups of finite rank in which the
centre is not fully invariant may possibly be known in the "folk-lore". A non-nilpotent
example is certainly known; namely, the relatively free group of rank 2 in the variety
generated by the non-abelian group of order 6. In contrast, every relatively free group
of infinite rank has fully invariant centre.

2. PROOF OF THEOREM 1

If F is a free group on a given free generating set X and a; £ X we write Sx for
the "deletion" endomorphismof F defined by x6x = 1 and y6x = y for all y E X\{x}.
Furthermore, for all w £ F, w(l — 6X) denotes w(w6x)~ .

As shown in [7], Theorem 1 is an easy consequence of the following lemma (Lemma
1). We shall not repeat the deduction of Theorem 1 here but give a proof of the lemma
which avoids the complexity of the proof in [7].

LEMMA 1 . Let C be a characteristic subgroup of Fu which contains fk(Fk) and
let w£C. Then wSXi eC (1 ^ i ^ k).

PROOF: The result is trivial if k = 1, so we assume that k ^ 2. By symmetry, it
is enough to prove that w6Xh £ C. Write w = tc(zi, . . . , x*). Let F be the free group
freely generated by 2k elements xi, ..., xi,, yi, ••• ,yh and write Y — {j/i, . . . , y*}.
Let v be the element of F defined by

andlet t>* = v(l - 6VI){1 - 6yt) . . . ( l - S n ) .

Thus v* is the product, in some order, of elements Vg where 5 ranges over the

subsets of Y, e(S) = ( - 1 ) | S | and vs = v(U &,) • Also, by [5, 33.38 and 33.42],

Let £: F —* Fk be the homomorphism defined by Z{( = z; and y;£ = Z{ for all i.
Thus v*{ E fk{Fk) and so v*( 6 C. Also, v*{ is the product of the elements (t>sO'(5)-
We shall prove (i) vy£ = (w&xk)a w n e r e cc is an automorphism of F/,, and (ii) for all
S ^ Y, Vs{ — w0 where /3 is an automorphism of Fk (depending on S). It follows
that (t>sO'(5) € C for all S ^ Y; whence (w6.h)a E C and so w6Xh e C, as required.
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To prove (i) note that

VYC = W(X2XI, X S X 2 , ..., xkxk-i, 1 ) = (w6Xk)a

where a is the automorphism of Fk defined by Zfc<x = xk and x,-a = X{+iX{ for i < k.

To prove (ii), suppose S ^ Y and, for t = 1, . . . , k, write m = 1 if y; G S and

fti = 0 if yt ^ 51. Thus vs£ = w/3 where /? is the endomorphism of Ft defined by

**/? = aBi~M1 ...x^"*1* and Xif) = Xj+ixf* for i < k. We 6hall show that ^ is an

automorphism of Fk. By the Hopf property of Ft (see [5, 41.52]) it is sufficient to

show that /? is surjective. Thus it is sufficient to show that Xi, ..., xk all belong to

the subgroup (xi/3, . . . , x/,0) •

Let d be the smallest positive integer such that yd $ S. If d < k then xdfi — z<j+i,

Xd+\P = X d + t x ^ 1 , • • •, Z k - i / J = XkXk-'i1, a n d s o x d + 1 , . . . , x k G ( x i ^ , . . . , x h 0 ) .

But Zik/9 = xdxd~*d+1 ... xi~M* . Hence xd G (xi/?, . . . , x t /3) . If d > 1 then x j - ^ =

= x 2 x i , and so x<j_i, . . . , xx G (xi/3, . . . , x4/3). D

3. P R O O F OF T H E O R E M 2

Let G be as in the statement of the theorem and let {a i , . . . , a*} be a free gen-

erating set for G. The result is trivial if k = 1 or c = 0, so we assume that Jfc ̂  2 and

c ^ 1. Let $ be the Frattini subgroup of G. Since G is a finite p-group, G / $ is an

elementary abelian group of order pk and an endomorphism 0 of G is an automorphism

if and only if { ( a i 0 ) $ , . . . , (a/k0)$} is a basis of G / $ .

Let C be a characteristic subgroup of G. Let u (x i , . . . , x t ) be an element of

Fk such that u(a i , . . . , a*) € C, and let gi, ..., gt 6 <?• It suffices to show that
M(Si> •••»9k) G C . Let r be the rank of {gi$, . . . , £ * $ ) . Then, for some subset

R of { 1 , . . . , Jb} of cardinality r, (^1$, . . . , gr*$) = ( ^ $ : t G iZ). Suppose that

r ^ 0, let <r be a permutation of {1 , . . . , jfc} such that {1 , . . . , r } = Rtr, and let

u ( o i , . . . , a t ) = w ( o 1 < 7 ) . . . , a k < T ) = u ( a l t . . . , a k ) < r * ,

where a* is an automorphism of G. Thus u(a i , . . . , a*) G C. Also, «(ffi, . . . , <7i) =

« ( « i a - i i •••>^*<7-») a11*1) b y choice of a, {g\a-i*,•••, Jr.,-1 * ) = <5i$. • • • , » * * ) •

Thus (by considering u instead of u ) we may reduce to the case where R = { 1 , . . . , r } .

Hence there are elements i r + i ( x i , . . . , xr),..., <*(xi, . . . , x r ) of FP and ele-

ments fr+i, ..., fk of $ such that gt = <<(yi, . . . , gr)fi (r + 1 < t < fc). Since

{ j r i $ , . . . , <7r$} is contained in a basis of G / $ , there is an automorphism 6 of G

such that a,-0 = g,- (1 ^ t < r ) . It is enough to prove that u(g\, ..., gk)8~x G C. But

..., Or)hk)
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where hi = frO'1 6 * (r + 1 ^ i «$ Jfc). Let

w ( x i , . . . , a s * ) = w ( * i , . . . , x r , t r + i ( * i , • • - , x r ) x r + i , . . . , < * ( « ! , . . . , x T ) x k ) .

Thus we wish to prove that i»(ai, . . . , a,, hr+1, . . . , /»*) G C. Note that w(ai, . . . , oj)

= v(ai , . . . , <H)T where T is an automorphism of G. Thus w(ai, . . . , a/,) G C and it

is enough to prove the following lemma, which also covers the case where r = 0. The

proof is a modification of the proof of Lemma 1.

LEMMA 2 . With G as in the statement of Theorem 2, let {au ...,ak} be

a free generating set for G, let C be a characteristic subgroup of G, and let

w(xi, ..., Xk) be an element of Fk such that w(a i , . . . , a*) G C. Then, for all

r G {0 , 1, . . . , Jb} and all fcr+i, . . . , hi, G $ (where $ is the Frattini subgroup of

G), t»(oi , . . . . O r , fcr+i, . . . , At) belongs <o C .

PROOF: AS before we may assume that k ^ 2 and c ^ 1. The result is trivially

true if r = k. Thus, using downward induction on r , we may assume that r < k

and the result is true when r is replaced by r + 1. Let F be the free group freely

generated by a set { x i , . . . , x*} U Y where Y consists of the k + p — 2 elements

V\, • • • , yr, Vr+i> • • • > Vr+i »!/r+2, • • •, Jfk • Let £: .F -» G be the homomorphism de-

fined by X{{ = Oi for all i, y<£ = «» for all » ^ r + l , and yj.̂ ?!^ = Or+i for all J-

Let a be the automorphism of G denned by 0,-a = o~i+\O\ (1 ̂  t ^ r) and diet = <n

(r + 1 ^ i < A:), and write ftj = A;a (r + 1 ^ ii ̂  k). Choose elements ur+\, ..., u* of

( x i , . . . , Xk) such that u^£ = h't (r + 1 ̂  i ^ fc). Let w be the element of F defined

by

V = W ^X2X1y,1, . . . , Xr+iXry1, yi . . . yry^+1 • • • y^x^Vr+i • • • yttlf+i, «r+2,

and let v* = v( \\ (1 — ^ y ) ) where the elements of Y are taken in some arbitrary

order. Thus, by [5, 33.38 and 33.42], v* G 7 t + p - 2 ( F ) , and so v*( € yk+p-2(G) = i1}-

In particular, v*£ G C. For each subset 5 of Y let vs = vl J[ Sy I. As in the proof of
v»es y

L e m m a 1 , i t s u f f i c e s t o p r o v e ( i ) vy( = w ( a i , . . . , a , . , / i r - f i , . . . , A f c ) a , a n d ( i i ) f o r a l l

To prove (i) note that

vY( = «;(a2a1 , . . . , a P + 1 o r , fcj^i, . . . , h'k) =w(ai, ...,Or, Ar+i, . . . , hk)a,

as required. To prove (ii), suppose S ^ Y, write
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and, for * 6 {1, . . . , r, r + 2, . . . , * } , write /ij = 1 if y« € 5 and /*,- = 0 if y< £ 5.
Thus t>5£ = tu(6i, . . . , 6*) where &i = aaoj*1, . . . , br = a r + 1 < r ,

br+i = h'r+J, ..., bk = h'k. It is enough to prove that ( 6 i $ , . . . , 6r+i$) has rank r + 1,
for then there is an automorphism 0 of G such that Oi/3 = bi ( l ^ t ^ r + 1) which
gives

and so vs£ G C by the inductive hypothesis.

Suppose first that {yi, . . . , yr} Q S. Then

(&i, . . . , 6P+i) = (o2oi, . . . , a r + io r , aj+i~"ar »

and either /*; = 0 for some i £ {r + 2, ..., k} or 0 ^ v < p — 1. It follows easily that
(&i$, . . . , 6r+i$) has rank r + 1.

Suppose finally that {j/i, . . . , yr} is not contained in 5 and let N — (or+2, . . . , a»)$
It suffices to show that (btN, ..., br+iN) has rank r + 1. But

(61JV, . . . . fcr+iJV) = (o,o«JV, . . . . OH-ioTiV, a}-"1 . . .oJ-^f l^l - 'JV)

where /x< = 0 for some i g {1 r } . By the method of Lemma 1 we can show that
OiN, . . . , <ir+iN all belong to (biN, ..., 6r+1AT), and this gives the required result.

4. ENDOMORPHISMS AND MODULES

In the remainder of the paper we describe the construction of some relatively free
p-groups with characteristic subgroups which are not fully invariant.

Let p be a prime number and k a positive integer, Jb > 2. Define subgroups \c(Fk)
of Fi, for each positive integer c by Ai(F*) = Fj and

Ae+,(Ffc) = \e{Fk)
p[\e(Fh), Fh)

(see [2, VIII.1.4 and VHI.1.5]). Thus each Xc(Fk) is a fully invariant subgroup of Fk,
\c+i{Fk) C \c(Fk) and Ac(JF1i)/Ac+i(i;4) is a finite elementary abelian p-group. We
write Ue = \c{Fk)/\c+i(Fh) and regard Uc as a vector space over the field GF(p) of
p elements. Furthermore, we write U = U\ . Thus V has dimension Jfc.

For each c let End (Uc) be the set of all linear transformations of Uc. It is usual to
regard End (Uc) as a ring, but for our purposes here the additive structure of End (Uc)
is irrelevant and we simply regard End({7c) as a monoid under the operation of com-
position of functions. As usual we write GL(Ue) for the group of invertible elements
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of End({7e). Every endomorphism of Fi, induces on Uc an element of End (17,.). Since
Fk is free, each element £ of End (17) is induced by some endomorphism of F/,. This
endomorphism induces an element of End(Uc) which, by [2, VIII. 1.7a], depends only
upon C and n o* o n the choice of endomorphism of Fk. Thus we obtain a monoid
homomorphism End(U) —> End(?7c) and, by restriction, a group homomorphism
GL(U) —> GL(17C). Hence Ue may be regarded as a module for End (If) and GL(U).

Note that Fk/\e+i(Fk) is a finite relatively free p-group of rank k and nilpotency
class at most c. (We shall see below that it has class exactly c.) Furthermore, Ue is
a central subgroup of Fk/\e+i{Fk)- Suppose that V is a subgroup of Uc. Then it is
straightforward to verify that V is fully invariant as a subgroup of Fk/\c+i(Fk) if and
only if it is an End([/)-submodule of Uc and V is characteristic in Fk/Xc+i(Fk) if
and only if it is a GL (f7)-submodule of Ue. Thus we shall investigate the submodule
structure of Ue •

Let A be the free associative algebra (without identity element) over GF (p) on
the free generating set {xi , . . . , * * } . Thus A = A\ © J4J © . . . where, for each c, Ae

is the subspace of A spanned by all monomials of degree c in x\, ..., x*. We identify
U with A\ in the obvious way. Thus A\ is an End(I/)-module. Since A is free, the
action of End (17) on A\ can be extended to A so that each element of End ({7) acts as
an algebra endomorphism of A. Under this action A is an End ({7)-module and each
Ae is a submodule.

The associative algebra A also carries the structure of a Lie algebra over GF (p),
the Lie multiplication being the "commutator" operation defined by [v, w] = vw — wv
for all v, w G A. Let L be the Lie subalgebra generated by {zi , . . . , z* } . Then, as
is well known, L is a free Lie algebra on {xi, . . . , zjt} (see [3, Theorem 5.9]). Also
L = L\ © 2/a @... where Le = L f) Ae for all c, and, in particular, L\ = A\ = U. It is
easy to verify that L and the Lc are End({7)-submodules of A.

The submodule structure of Uc is closely related to that of L. In explaining the
connection we shall follow the presentation in [1]: see [1] for references to original
sources.

For each positive integer c there is a certain group homomorphism <f>c: Ac(iit) —>
A (with A regarded as a group under addition). In the case where p is odd these
homomorphisms are determined by the following properties:

Xi<f>l = Xi (1 < t < k), f<i>c+1 = f<f>e,

a n d [/, g](f>e+i = [f<f>e, 9<t>\],

for all c ^ 1, / G Ae(F*) and g G Ai(.Ffc) = Fk. For p = 2 the only difference is in the
formula for fp(f>c+i with c = 1: this becomes
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The kernel of <j>c is equal to Ac+i(Fjk) for all p, c (see [1]). Thus <f>e induces a vector

space monomorphism <f>e: Uc —• A. As noted in [1], <f>c is a GL({7)-module monomor-

phism, and a similar proof shows that <f>c is in fact an End({/)-module monomorphism.

For p ^ 2 the image of <j>c is easily calculated to be L\ + ... + Le: thus Ue is isomor-
phic to L\ + . . . + Lc as End (i/)-module. In the case p = 2, let E be the subspace
of A\ + A2 spanned by the elements Xj + x\ (1 ^ ii ^ k) and [XJ, z ; ] (1 < i < j ^ k).

Then the image of <f>\ is L\, the image of <j>2 is E, and, for c ^ 3, the image of <£c is
£ + i s + . . . + Lc. Thus Uc is again determined up to isomorphism.

Clearly 7c(Jit) C Xe(Ft) for all c. It is easy to prove by induction on c that
"fc{Fk)<f>c = Le for all c. Hence "fc(Fk) is not contained in \e+i(Fk) and the group
**/Ac+i(iifc) has class exactly c.

In the remainder of this paper we take k = 2 and write z as an abbreviation for the
element [xif x2] of L. Thus z spans L2- Note that, for all ( e End (If), z( = de t« )z .
Commutators in L will be written with a left-normed convention. Also, we shall need
to use the well known fact that if v and w are elements of L such that [v, w] = 0 and
to ^ 0 then v is a scalar multiple of w. This follows, for example, from [3, Theorem
5.10]. We shall now consider separately the cases where p is odd (Section 5) and p = 2
(Section 6).

5. ODD CHARACTERISTIC

Suppose that Jb = 2 and p is odd. We shall first show that L\ + . . • + Liv-\
has a GL({/)-submodule which is not an End (t/)-submodule. Let s\ and »i be the
elements of L3p-i defined by «i = [zi, z, . . . , z] and «2 = [*2, z, ..., z\. (Here and
subsequently z, ..., z will denote a sequence of p — 1 copies of z.) Let V be the
subspace of L\ + L2p-i spanned by Xi + s\ and x3 + s2 ; that is, V = (xi + «i, x2 + *i) •
Note that, for ( € GL(tf) and i = 1, 2,

It follows that V is a GL([/)-8ubmodule of L\ + . . . + L2p-i isomorphic to L\. But
V is not an End({/)-submodule because if tf is the element of End (U) which sat-
isfies x\i) = X\ and xjt; = 0 on A\ then (asi + ai)rj = x\ £ V. Thus U2p-\ has
a GL (£/)-submodule which is not an End (IZ)-submodule, and so the relatively free
group F2/X2p(F2) has a characteristic subgroup which is not fully invariant. As proved
in Section 4, F2/\2p(F2) has class 2p - 1. D

We now move towards the proof of Theorem 3 (in the case where p is odd). Let
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'1, *2» *s» '4 be the elements of L2p defined by

<! = [* i , z , ..., z , x2] = [ « i , X3}, t2 = [ x 2 , z , ..., z , x i ] = [a2, x i ] ,

, . . . , Z, X i ] = [ « l , * l ] , <4 = [ X 2 , 2 , . . . , Z , X 2 ] = [S3, X2}.

LEMMA 3 . Tie eiements t j , t2, <j and i4 are linearly independent,

(ti, *2, h, U) n [£2j,-i, xi] = (*2, is)

and (*!, <2, <s, U) 0

PROOF: We work inside 4̂ and use the fact that the monomials of A form a basis
of A. Let 6: A —» A be the linear transformation which fixes (x2xi)p~ x\x\ and

~ but maps all other monomials to 0. Then it is straightforward to verify
that

and ~

But clearly v$ = 0 for all v G [L2p-i, xi]. It follows that <i and f4 are linearly
independent and

(tuU)n[L2p.ux1] = {0}.

Similarly, t2 and tj are linearly independent and

The result follows. D

Let W = {z + ilt -z + <2, <s, <4> • Then it is easy to verify that W is an End(U)-
submodule of L2 + L2p. Furthermore, the following result holds.

LEMMA 4 . V = {« e L : [v, xi\ G W tor i = 1, 2 } .

PROOF: Clearly [v, xt] G W and [v, x2] G W for all v G V. Conversely, let v be
an element of L such that [v, xx] G W and [v, x2] G W. We shall prove that t; G V.

Write v = vi +v2 + ... where Vj G Lj for all j . Then, for j $ {1, 2p - 1} ,
[VJ, xi] = 0 and [VJ, x2] = 0. Hence VJ = 0 for all j $ {1, 2p - 1} . Thus t; G
Li + L2p-i.

L e t {si,...,sn} b e a n y b a s i s for L 2 p - \ w h e r e s \ = [xi,z,...,z] a n d
a2 = [x2, z, ..., z] as before. If w G L2p-\ and [10, Xi] = 0 then w = 0. Thus
[•»i, zi]» • • • > [*n, *i] axe linearly independent elements of L2p. Since v £ L\ + L2p-i
we can write

+ p2x2 + i/i«i + . . . + vnan
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where plt / t j , i/i, . . . , vn G GF(p) . Thus

[v, n] = - / i j « + «/i[«i,a;i] + . . . + i/n[«n, xi] G W.

It follows that

vi[a!, xi] + ... + un[sny xi] € (<i, t j , <s, <4> n [Ir2p_i, z i ] .

But, by Lemma 3,

(<1, <2, *S, *4> 0 [Irjp,!, Zj] = ([«!, Xi], [*2, *l]).

Thus t/j = 0 for j > 2 and we can write

v — y.xx\ + fi2x2 + fi«i + v2a2.

Hence

[v, Xi] = -/*2* + •'lfs + v2t2 = {y2 - m)z + vita + u2(-z + <2)

and so (i^ — /i2)z G W. But, by Lemma 3, z £ W. Thus I/J = p2. Similarly, by
consideration of [v, x2], V\ = p\. Thus

as required.
We shall now make use of the properties of the maps <f>c given in Section 4. Let

M be the inverse image of V under <f>2p-i and let N be the inverse image of W under
<fop. Thus

Since W is an End(l7)-8ubmodule of i i + . . . + X2pi N/X2p+i(F2) is a fully invariant
subgroup of F2/X2p+i(F2), and so N is a fully invariant subgroup of F2. Let G =
F2/N. Then G is a 2-generator relatively free p-group which is nilpotent of class at
most 2p. But

Thus ^72,(^2) ^ JV and G has class exactly 2p.
Since V is not an End(I/)-submodule of L\ + ... + -tjp-i, Af/Ajp(Fj) is not a

fully invariant subgroup of -F2/A2p(.Fj). Thus M/7V is not a fully invariant subgroup
of G. To complete the proof of Theorem 3 (in the case where p is odd) we shall prove
that Z{G) = M/N.

Let / G M. Then ffap-i G V and so, by Lemma4, [/fop-i, *<] G W for t = 1, 2.
Thus [/, xi]4>2j, G W and so [/, x<] 6 TV for i = 1, 2. Thus Af/TV C Z(G).

Conversely, suppose that / G F2 and [/, X{] G TV for t = 1, 2. We first prove by
induction on c that / G M F 2 ) for c = 1, . . . , 2 p - 1. Clearly / G Xi{F2). Suppose
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/ G AC(F2) where c < 2 p - 1. Then, since N C AC+2(F2), [/, Xi]<j>e+1 = 0 for i = 1, 2,
and so [/&., as,-] = 0 for » = 1, 2. Thus f<f>c = 0 and so / e Ae+i(F2). Therefore
/ G A2p_i(F2) and we can apply the map <j>2p-i. Thus, for t = 1, 2,

By Lemma 4 it follows that / # 2 p - i G V. Thus / € M. Consequently Z(G) C M/N
and so Z(G) = M/JV as required. D

6. CHARACTERISTIC 2

Suppose that k = 2 and p = 2. Let F, be as defined in Section 4: thus E is

the image of <f>2. It is easily verified that the subspace of E spanned by the elements
x\ + x\ + z and sc2 + x\ + z is a GL(£/)-submodule but not an End({/)-submodule.
Thus F2/As(F2) has a characteristic subgroup which is not fully invariant — this is the
example referred to in Section 1. But it does not seem possible to use this example to
create a 2-generator relatively free 2-group of class 3 whose centre is not fully invariant.
It seems necessary to go to a group of class 4. Thus we prove Theorem 3 in the case
p = 2. The proof is similar to that for p odd, but rather easier. We omit some of the
details.

Let V(2) be the subspace of E + L$ spanned by the elements x\ + x\ + z + [z, x\]
and as2 + x\ + z + [z, x2] • It is easily verified that V(2) is a GL (l7)-submodule but not
an End (C/)-submodule.

Let W(2) be the subspace of E + Zj + L± spanned by

[z, xi] + [z, xi, xi], [z, x2] + [z, x2, *a],

and
z + [z, zi] + [z, x2] + [z, asi, x2).

It is easily verified that W(2) ig &11 End(J7)-submodule. Furthermore, it can be proved
that

Vw = {v G E + Ls : [v, xt] G Ww for t = 1, 2}.

Let M(2) be the inverse image of V(2) under fa and let 7V(j) be the inverse image
of W(j) under ^4. Then F2/N(2) is a 2-generator relatively free 2-group of nilpotency
class 4 with centre M(2)/iV(2), which is not fully invariant.
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