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Lossless contour coding using elastic curves in
multiview video plus depth
marco calemme, marco cagnazzo and beatrice pesquet-popescu

Multiview video plus depth is emerging as the most flexible format for three-dimensional video representation, as witnessed
by the current standardization efforts by ISO and ITU. In particular, in depth representation, arguably the most important
information lies in object contours. As a consequence, an interesting approach consists in performing a lossless coding of object
contours, possibly followed by a lossy coding of per-object depth values. In this context, we propose a new technique for lossless
coding of object contours, based on the elastic deformation of curves. Using the square-root velocity representation for the ele-
ments of the space of curves, we can model a continuous evolution of elastic deformations between two reference contour curves.
An elastically deformed version of the reference contours can be sent to the decoder with a reduced coding cost and used as side
information to improve the lossless coding of the actual contour. Experimental results on several multiview video sequences show
remarkable gains with respect to the reference techniques and to the state of the art.
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I . I NTRODUCT ION

The video-plus-depth representation for multiview video
sequences (MVDs) consists of several views of the same
scene with their associated depth information, which is
the distance from the camera for every point in the view.
The MVD representation allows functionalities like three-
dimensional (3D) television and free-viewpoint video [1–3],
but it generates large volumes of data that need to be com-
pressed for storage and transmission. As a consequence,
MVD compression has attracted a huge amount of research
effort in the last years, while ISO and ITU are jointly devel-
oping an MVD coding standard [4]. Compression should
exploit all kinds of statistical dependencies present in this
format: spatial, temporal, and inter-view, but also inter-
component dependencies, i.e. between color (or texture)
and depth data [5, 6].
We focus in particular on depth images compression

through contour-based coding means. The techniques
developed for texture images are not well suited for depth
images, since the latter have different properties and they
are not meant to be visualized but only used for render-
ing of virtual views. Objects within a depth map are usu-
ally arranged along planes in different perspectives; as a
consequence, there are areas of smoothly varying levels,
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separated by sharp edges corresponding to object bound-
aries. These characteristics call for an accurate encoding
of contour information. Some of the proposed approaches
include modeling the depth signal as a piecewise polyno-
mials (wedgelets and platelets [7]), where the smooth parts
are separated by the object contours. However, it is generally
recognized that a high-quality view rendering at the receiver
side is possible only by preserving the contour information
[8, 9], since distortions on edges during the encoding step
would cause a sensible degradation on the synthesized view
and on the 3D perception. In other words, a lossless or quasi
lossless coding of the contour is practically mandatory.
For these reasons, in this paper we focus on lossless cod-

ing of contours, and we target as natural application the
compression of depth maps. However, we observe that an
effective contour coding algorithm may prove beneficial to
other applications such as object-based image and video
coding. This promising coding framework has not been
able to replace traditional block-based approaches because,
among other things, lossless coding of contours was too
expensive [10], other causes being the absence of reliable
segmentation algorithms.
On the other hand, depth coding segmentation is eased

by the nature of the depth signal, and the extraction of the
contours can be achieved with specifically designed seg-
mentation techniques [11]. In conclusion, lossless contour
coding is very relevant in the context of depth map cod-
ing and it is the main focus of this paper. Moreover, it
has potential applications also for object-based coding of
natural video.
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The relevance of depth contour lossless coding has been
recognized in previous works. Gautier et al. [8] use JBIG
[12] to encode the object contours and a diffusion-based
inpainting algorithm to fill in the interior of the objects,
starting from a subsampled version of the image and the
boundary values. In [8], it is underlined the importance of
a lossless representation of contours for depth maps, even
though the problem of efficient lossless coding is not in
its scope: authors use JBIG when more adapted tools are
available, such as JBIG2 [13], chain coding [14] and differ-
ential chain coding [15, 16]. Recently the problem of con-
tour coding for depth maps has been explored by Daribo
et al. [17]: their method tries to predict the next edge direc-
tion within the context of previously transmitted symbols,
under the assumption that pixel boundaries exhibit a linear
trend. This approach allows us to achieve large improve-
ment with respect to the state of the art. However, even
this high-performing technique can be improved by con-
sidering better models for object contours and by exploiting
temporal correlation: these elements are at the basis of the
proposed technique [18].
Indeed, we achieve relevant results by using elastic defor-

mation of curves [19] to provide more effective context
information for encoding the current curve: after comput-
ing the portion of the deformed curve corresponding to the
current symbol, we use the shape of this deformed curve
and the past samples of the encoded curve to estimate the
most probable direction of the contour. This direction is
in turn used to parametrize the probability distribution of
the next symbol in the curve representation. Finally, this
symbol is encodedwith a context-based arithmetic encoder.
Experimental results show remarkable rate reductions with
respect to standards (about −65% with respect to JBIG2),
to commonly used algorithms (about−20%with respect to
arithmetic coding plus differential chain coding), and to the
state-of-the-art method in [17] (about −6.5%). We observe
that this use of the elastic deformation tool is quite dif-
ferent from what it was proposed in the past. The only
previous paper using elastic curves (ECs) in compression is
[18]. However, in that paper, ECs are used in the context of
distributed video coding, in order to improve the motion-
compensated fusion of background and foreground objects,
while here it is used for the lossless coding of contours.
The outline of the paper is as follows. We first intro-

duce basic notions on elastic deformations of curves and
the basics of arithmetic edge coding using the method of
[17] in Section II. The proposed technique is then described
in Section III, experimental results and conclusions are
presented in Sections IV and V, respectively.

I I . BACKGROUND NOT IONS

A) Elastic curves
Srivastava et al. [19] introduced a framework to model
a continuous evolution of elastic deformations between
two reference curves. The referred technique interpolates

between shapes and makes the intermediary curves retain
the global shape structure and the important local features
such as corners and bends.
In order to achieve this behavior, a variable speed param-

eterization is used, specifically square-root velocity (SRV),
so that it is possible to bend one shape into another as well
as stretch or compress a certain part of it. Let us introduce
some notation. We call p the curve defining the shape, and
t ∈ [0, 1] the curve parameter, leading to:

p : [0, 1] → (x, y) ∈ R
2, (1)

where (x, y) are the coordinates of each point in the contour.
Then, p is represented in the SRV space by q :

q : [0, 1] → (x, y) ∈ R
2, (2)

q(t) = ṗ√|| ṗ|| , (3)

where || · || is the Euclidean norm in R
2 and ṗ = dp

dt . This
transformation is reversible (up to a translation): the curve
p can reversely be obtained from q by:

p(t) =
∫ t

0
q(s )||q(s )||ds . (4)

Introducing the SRV representation is very interesting
because it can be shown that the simple L2 metric in this
space corresponds to an “elastic” metric for the original
curve space [20], i.e. a metric that measures the amount of
“stretching” and “bending” between two curves, indepen-
dently from a translation, scale, rotation, and parametriza-
tion. Moreover, using the SRV it is also relatively easy to
compute the geodesic between the two curves: according to
the interpretation of the elastic metric, this geodesic con-
sists in a continuous set of deformations that transforms
one curve into another with a minimum amount of stretch-
ing and blending, and independently from their absolute
position, scale, rotation, and parametrization [19]. Classical
applications of elastic deformations of curves are related to
shape matching and shape recognition. An example of the
geodesic connecting two curves is shown in Fig. 1. We show
in black two contours extracted (with the Canny edge detec-
tor) from the depth of the video sequence “ballet”. These
depths correspond to the views 1 and 8, at time instant
2. In red we show the extracted contours of intermediary
views, whereas in dashed blue we show a sampling of the
elastic geodesic computed between the two extreme curves:
it is evident that the elastic deformations along the geodesic
reproduce very well the deformations related to a change of
viewpoint. Similar results where obtained in the temporal
domain: elastic deformations are able to represent the tem-
poral deformation of an object contours, given the initial
and final shapes.
These observations lead us to conceive a lossless coding

technique for object contours: supposing that the encoder
and the decoder share a representation of the initial and
final shapes, they can reproduce the exactly same geodesic
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Fig. 1. Geodesic path of elastic deformations b̃s from the curve i0 to i1 (in dashed blue lines). b3 is one of the contours bt extracted from the intermediate frames
between the two reference ones, a good matching EC b̃0.2 along the path is highlighted.

Fig. 2. Differential chain code: the arrows represent the symbols of the differ-
ential chain code if the previous symbol is “Up”. We can code the contour of the
object, from the starting point, as: “Up-Left”, 2, −1, 0, 3, −1, −1, 3, −1, 2, 0, 1, 0.

path between them. Then, the decoder will conveniently
decide which point of the geodesic (one of the blue curves
in Fig. 1) shall be used as context information to encode
an intermediary contour (one of the red curve in the same
figure). The encoder will only have to send a value s � ∈
[0, 1] to identify this curve. If this curve is actually simi-
lar to the one to be encoded, it is possible to exploit this
information to improve the lossless coding of the latter.
However, how to do this is not obvious, and the solu-
tion to this problem is one of the main contributions of
this paper.

B) Lossless contour coding
Various techniques have been developed to represent and
code the boundaries of objects, like polygon approximation
[21] or chain coding [14]. The latter is the most common
method to losslessly encode boundary pixels. A chain code
follows the contour of an object and encodes the direction
of the next boundary pixel with respect to the current one.
Since an object tends to have a quite regular contour it is
usually more convenient to code the change of direction
with respect to the previous one, thus leading to differen-
tial chain codes. An example of differential chain coding of
the 8-connected contour of an object is given in Fig. 2. The
sequence of symbols produced by a chain code is fed into

an entropic encoder, such as a variable length encoder or an
arithmetic encoder, possibly using contexts to improve its
performance [22].
Recently Daribo et al. [17] introduced a new technique

aimed at the lossless coding of edges that resulted to be
the best among the others. However, it is conceived in a
block-based coding environment, we retain it as a base to
develop our contour-based coding technique. Their main
idea is that contours of a physical object possess geometrical
structures that can be exploited to predict the direction of
the next symbol, given a window of consecutive previous
samples. A chain code is used to represent a contour, and
each symbol is encoded with an arithmetic encoder that
uses a probability distribution adaptively computed using
the previous symbols. The probability distribution is cen-
tered around the estimated most probable direction, which
in turn is obtained using linear regression (LR) on a suitable
window of previous samples: the underlying assumption is
that contours exhibit linear trends. The prediction of direc-
tions and the assignment of the probability values can be
reproduced at the decoder, provided that some parameter
is transmitted as side information.
This method has much better performance than other

popular techniques [17], but further improvements are pos-
sible. On the one hand, the LR can be replaced with a more
effective estimator for the direction of the next symbol.
On the other hand, the encoding algorithm does not take
advantage from temporal correlation of contours and the
prediction of the most probable direction cannot cope with
sudden changes of direction.
Our proposed method uses temporal correlation of con-

tours by producing an elastic estimation of the current
curve; this curve is subsequently employed for improving
the statistical model of the current symbol of the chain
code, resulting in a remarkable improvement of the coding
rate. The two reference curves used to produce the elastic
deformation are encoded using our improved version of the
technique described by Daribo et al. [17].
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I I I . PROPOSED TECHN IQUE

We propose a technique for encoding the contour of an
object in a single view video sequence, in a multiview set
of images or in an MVD, and in any context where two
reference curves are available. The targeted application is
depth coding in MVD applications, and this for two rea-
sons: first, contour information is extremely important for
depth, and its lossless representation is necessary for obtain-
ing a good subjective quality for synthesized views; second,
extracting contours from a depth map is relatively easy,
since they are typically made up of smooth regions sep-
arated by sharp discontinuities. However, in this paper,
we do not investigate the contour extraction from depth
images, but uniquely their lossless coding; moreover, we
point out that our method can also be applied on contours
extracted fromnatural videos, aswe show in the experimen-
tal results. In this last case, contours are typically extracted
from precise segmentation maps: our method efficiently
encodes both contours automatically extracted from depths
and contours obtained by segmentation.
As already mentioned, our method apply to the case

where we have a set of contours related to the same object,
be them representing the temporal evolution of the object
borders or their deformation related to the change of view-
point: the example in Fig. 1 refers to the latter case. However,
without loosing generality, we consider the following use
case. We have a set of K ≥ 3 contours (K = 8 in Fig. 1). We
refer to the parametric representation of the first contour
as i0[n] = (xi0 [n], yi0 [n]), with n ∈ {1, 2, . . . , Ni0}; likewise,
i1[n] with n ∈ {1, 2, . . . , Ni1} is the parametric representa-
tion of the last contour, and bt[n] with n ∈ {1, 2, . . . , Nt}
the one of the generic t-th intermediate curve, with t ∈
{1, . . . , K − 1}. We propose an “intra method” (i.e. with-
out temporal prediction) to encode i0 and i1, and a “bidi-
rectional method” (i.e. with prediction from two already
encoded curves) for the curves bt . We will refer to the intra-
coded contours as “I-contours” and to the K − 2 interme-
diate contours, to which our prediction-based method is
aimed, as “B-contours”.
Indeed, the I-contours are supposed to be available at the

encoder and at the decoder before the B-contours in order
to develop a predictionmethod to code the latter. To encode
the I-contours i0 and i1 we propose a small yet effective
modification to the technique described in [17]. The differ-
ence between the modified and the original version lies in
the predictor for the direction of the next symbol, as shown
in Section IIIB.
Let us now describe the proposed method for the B-

contours, the basic idea is independent from the value of
K and from the structure of dependencies (or, borrowing
the terms from the classical hybrid video coding paradigm,
from theGOP structure).More precisely, in order to encode
bt , we consider the geodesic path between i0 and i1. The
elastic deformation tool allows us to easily generate any
intermediate curve on the geodesic (dashed blue curves in
Fig. 1), simply by specifying a position parameter s ∈ [0, 1].
Let us refer to b̃s [n] the parametric representation of a curve

on the geodesic. We observe that b̃0 = i0 and b̃1 = i1. Since
i0 and i1 are available at the encoder and the decoder, they
both can produce the same curve b̃s , for any s , and use it
as side information for the lossless encoding of bt . Intu-
ition suggests that the encoder and the decoder could agree
in using s = t

K−1 as the position on the geodesic used to
predict bt . However, as we will show in the experimental
section, a significant coding gain can be obtained if we let
the encoder select a suitable value for s , let it be s �, and
use it for the encoding. Of course, s � should be transmit-
ted to the decoder using a suitable number of bits. The
choice of s � and the number of coding bits will be discussed
in the experimental section. Likewise, the problem of the
optimal “GOP structure” will be discussed in Section IVD.
In the rest of the current section, in order to simplify the
discussion, we will consider a simple IBIBIB. . . configura-
tion. This is equivalent to having K = 3: in other words,
we encode an object contour knowing the previous and
the future curves. The proposed method can however be
applied to any value of K without major modifications.
Other coding structures are shown in the experimental part
at Section IVD.
In the rest of this section, we will explain how to select a

suitable part of the EC b̃s to be used as context to encode the
current edge symbol; how to use this information to deter-
mine the most probable direction for the next symbol on
the contour; and which side information needs to be sent
to the decoder such that it can replicate the same behavior
as the encoder.

A) Correspondence function
In this subsection, we consider the encoding of a single
curve bt using the elastic representation b̃s � , with s � suit-
ably selected by the encoder. For the encoding of i0 and i1

we do not use the elastic deformation.
The curves are sampled respectively on Nb and Nb̃

points. To simplify the notation, we will drop the subscript
t and s � where this does not give rise to ambiguities.
To use the suitable portion of the synthetic curve b̃

as side information to code the current point on b, it is
essential to have a function that associates each point of
b to the corresponding point of b̃. This function is gen-
erated at the encoder and has to be transmitted to the
decoder.
In order to establish an association between the two

curves, we use dynamic time warping (DTW) [23]. First,
it is needed to establish a feature space F for the curves:
a distance in this space will then be used to create the DTW
function. Since we want to link the parts of the curve that
have the same characteristics in terms of lobes, spikes and
such, we used the direction of the tangent vector as fea-
ture1. Let us use a complex representation that associates
to every point (x, y) the complex number p = x + j y, and

1Other features we tested are: curvature and first-order derivative of
the direction of the tangent vector.
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let us refer to the sequence of tangent vectors of the curve
c = (xc , yc) as ϕc :

∀n ∈ {1, . . . , Nc}, ϕc [n] = arg (pc [n] − pc [n − 1]) ∈ F ,
(5)

where F = [−π ,π[. Computing equation (5) for b and b̃
we obtain the sequences of features ϕb and ϕb̃ defined on
Nb and Nb̃ points, respectively.
A typical behavior of two feature sequences is shown in

Fig. 3; while the two sequences have similar shapes, they
are not aligned. To perform the alignment we need a local
distance measure (or local cost measure), defined as d :
F × F → R+. The local distancemeasure d(ϕb [n],ϕb̃ [m])
should be small when the two features are similar, large oth-
erwise. Since in our case F ⊂ R, we can use as distance
the square of the direction difference:

(|ϕb − ϕb̃ | mod π
)2.

By evaluating the local cost measure for every couple of
elements in the sequences, we obtain the cost matrix C ∈
R

N×M , where the generic element is defined as follows:

C (n, m) = d(ϕb [n],ϕb̃ [m])

= (∣∣ϕb [n] − ϕb̃ [m]
∣∣ mod π

)2
.

We have to find now the sequence ψ , defined as a sequence
of couples:

ψ[�] = (ν�� ,μ
�
�) ∈ {1, . . . , N} × {1, . . . , M},

such that:

(ν�,μ�) = arg min
(ν,μ)

L∑
l=1

C (ν[�],μ[�])

under the conditions:

• boundary condition, ψ[1] = (1, 1) and ψ[L] = (N , M);
• monotonicity of ν�[�] and μ�[�];
• step size, ψ[�] − ψ[�− 1] ∈ {(0, 1), (1, 0), (1, 1)}.
In practice, ψ is a sequence of indices (ν�[�],μ�[�]) of the
curvesϕb andϕb̃ , such thatϕb [ν�[�]] andϕb̃ [μ�[�]] are best
matched under the aforementioned constraints. The associ-
ation byDTWof the two sequences is shown in dotted black
lines in Fig. 3.
In our application, the correspondence function obtained

with DTW on the direction of the tangent vector is very
close to a straight line and it can be approximated with a

Fig. 3. Example of association of two sequences by DTW.

Fig. 4. Ballet: correspondence function. In blue the association of the two
curves using the DTW of the direction of the tangent vector, in dashed red the
approximation with a first-order polynomial, whereas n and m are the indices
of samples on the curves b and b̃ , respectively.

first-order polynomial. The approximation has two main
effects: first it reduces the number of bits needed to code
the function; moreover it prevents sudden variations on the
correspondence function that are rather related to outliers
than actual values. However, one may wonder whether it is
worth computing the exact DTW only for approximating
at a first order: maybe a simple rescaling of the “temporal”
axis from N points to M points could be as effective as the
approximated DTW, without needing to compute the cor-
respondence function. We have dealt with this issue with a
simple heuristic approach: we compared the coding rate of
our algorithm in two cases: in the first, we use the first-order
approximation of the DTW function; in the second we use
a rescaling of N/M. We observed that using the DTW gives
an average rate reduction of 5.33. For this reason, we kept
the DWT in our system.
In Fig. 4, there is an example of DTW and its linear

approximation. The resulting correspondence between the
points of the two curves is shown in Fig. 5. We see that all
the main features of the curves are located and put in cor-
respondence, so that for each point of the actual curve b
there is an associated point on the EC b̃, whose neighbor-
hood is the side information we want to use to enhance the
coding of b.

B) Context
The correspondence function allows us to associate the
current point to a portion of the EC, centered in the corre-
sponding point. This information is used as side informa-
tion to have more accurate probability values for the next
symbol.We called this information the context, and for each
point of the curve b, it is composed by:

• v0, a vector of N0 points of the curve b transmitted so far
(in red in Fig. 6);

• v1p : the “past” on the EC (in dashed blue in Fig. 6), a vector
of Np points of b̃ corresponding to v0; more precisely, v1p

is constituted of the points between those corresponding
to the terminal points of v0;

• v1 f : the “future” on the EC, a vector of N f points of the
EC b̃ following the current correspondent point on b̃ (in
dark blue in Fig. 6).
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Fig. 5. Ballet: correspondences between the EC b̃ (dashed blue) and the curve
to code b (red).

Fig. 6. Extracts from the curves b (red) and b̃ (dashed blue). The correspon-
dences between the two curves are indicated with thin dotted black lines. The
dashed lines represent the extracted direction for the vectors of points v0, v1p ,
and v1 f .

Of course v1p and v1 f are only available for B-contours, for
I-contours only v0 is available. We use the context to obtain
the most probable direction for the next symbol, then we
use this result to define a distribution using the von Mises
statistical model [24].

1. Direction extraction
For all the set of points of the different curves, we have to
estimate the direction of the next symbol. In the case of the
I-contours, only the set of points p0 are used, whereas in the
case of B-contours all the three sets of points v0, v1p , and v1 f

are used.
Several approaches can be used to extract a direction

from a set of ordered points. E.g. in [17] an LR on v0 is
used.We found that a simple average direction (AD) is even

more effective. Using the same complex representation as in
IIIA, the estimated direction α can be obtained using the
following formula:

α (v) = arg

(
1

N − 1

N∑
n=2

(v[n] − v[n − 1])

)
∈ [−π ,π],

(6)

where v is the complex representation of a generic vector
of N points, and is defined as v = [

x1 + j y1, x2 + j y2, . . . ,
xN + j yN

]
; arg is the argument of a complex number.

2. Most probable direction
Applying α on the complex representation of v0, we
obtain α0, the angle of the AD based solely on the previ-
ously transmitted samples. Likewise, α1p and α1 f are the
ADs based on the vectors v1p and v1 f of the curve b̃. We
develop a method to estimate θ , the most likely direction
of next symbol of b: we use α1 f to adjust the direction α0.
In this way, we manage to seize the sudden changes and go
along the long trends.
A simple and intuitive formula to take into account the

context for the prediction of the most probable direction is:

θ = (1 − q)α0 + qα1 f , (7)

with q ∈ [0, 1]. This way we can weight the directions of
the past of the curve b and the future of the curve b̃. To
decide the weight q , we observe that the side information
of the EC is not essential when the curves are regular, while
it becomes fundamental next to the occurrence of a sud-
den change. So q should be small if for the current point the
directions extracted from the two curves are similar (so that
θ is close to α0), and close to 1 if they are not (so that θ close
to α1 f ):

q = max {|α0 − α1p|, |α0 − α1 f |}
π

. (8)

The value of q is related to the modulus of the difference
of directions, and it is large if α0 is very different from α1p

or α1 f because a dissimilarity in the neighborhood of the
current point suggests a changewhich is not predicted solely
from α0.

3. Adaptive statistical model
We retain the statistical model described in [17] to assign
values to the symbols for the next edge. It is based on
the von Mises distribution and the distribution parame-
ters are set according to the information extracted from
the curves b and b̃. The von Mises distribution is the
Gaussian distribution for angular measurements and it is
defined as [24]:

p(β|μ, κ) = eκ cos(β−μ)

2π I0(κ)
, (9)

where I0(·) is the modified Bessel function of order 0, μ is
the mean and in this case it coincides with the estimated
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direction θ , 1/κ is the variance of the distribution.As in [17],
we set κ as a function of the predicted direction θ : when θ is
aligned with the axis of the pixel connection grid, intuition
tells us that it is more convenient to give a higher probability
value to the symbol that represents that direction. So κ is
set to:

κ = ρ cos(2θ̂ ), (10)

where θ̂ = min{|θ − γi |}, and γi are the angles of the pixel
connection grid (

{
0, π8 , 2π

8 , . . .
}
in the case of an eight-

connected grid). The parameter ρ represents a “confidence
level” of the prediction: as it grows it makes the distribu-
tion more unbalanced, so the more precise is the prediction
based on the context, the larger it should be to achieve
higher coding gains.

C) Coding
The curve b, represented with a differential chain code, is
encoded with an arithmetic coder which for each symbol
uses the probability vector assigned by the adaptive statis-
tical model. The encoder needs to transmit to the decoder
the parameters involved in the coding process:

• s �, the selected point on the geodesic path;
• the correspondence function, approximated by a first-
order polynomial, so two parameters;

• the parameter ρ;
• N0 and N f .

With this information the decoder can reproduce the
behavior of the encoder and it will compute the same prob-
ability values for each point of the curve b. We observe that
Np does not need to be sent, since it is deduced by applying
the correspondence function to v0.

I V . EXPER IMENTAL RESULTS

The proposed method has been evaluated using the mul-
tiview sequences ballet (provided by Microsoft Research),
mobile (Philips), lovebird (ETRI/MPEG Korea Forum), and
beergarden (Philips). We encoded the curves correspond-
ing to the main object in the depth sequences for a fixed
time instant or view. We used to test our algorithm also
masks extracted from the standard monoview sequences
stefan and foreman.
The curves for ballet, mobile, lovebird, and beergarden

depths were obtained using the Canny edge detector [25].
Depth maps are not as complex as texture images and the
use of the Canny edge detector produced very good results
in our test cases. We extracted the contours of very precise
segmentation maps for the sequences stefan [26, 27] and
foreman [28]. This latter case can be seen as the ideal test
case.
The coding scheme concentrates almost all the com-

putational load at the encoder side. In particular, for the
B-contours the choice of the values of (Np , N f , ρ, s ) can
be simply made trying out every possible combination and

Table 1. Coding results (in bits) for the different
contributions of the developed tools to the technique

proposed in [17], applied to object contours. Two different
methods to extract the probable direction from a set of
points: linear regression (LR), and average direction (AD),

without and with elastic curve (EC) context.

LR+ AD+
LR AD EC context EC context

Ballet 1428.20 1375.20 1386.94 1338.78
Beergarden 1687.67 1610.33 1656.67 1575.58
Lovebird 1424.82 1370.73 1382.08 1341.73
Mobile 711.71 642.29 697.15 639.12

Foreman 411.73 396.82 398.15 390.20
Stefan 745.33 701.00 738.33 700.00

Average 1068.24 1016.06 1043.22 997.57

selecting the one that gives the best outcome. This full
search method, however optimal, is extremely costly in
terms of time and complexity. We thus introduced a greedy
algorithm that optimizes one variable at a time to find a
sub-optimal solution.

A) Coding of I- and B-contours
To code the I-contours we replaced the LR with the more
effective AD in the technique described in [17], whereas for
the coding of the B-contours we can take advantage of the
context provided by the ECs, thus achieving better coding
gains. In Table 1, are shown the results for a set of images
taken from the test sequences. We notice that just altering
the direction extractionmethod from LR to AD the average
coding cost is reduced by 4.88, while passing from AD to
ADwith EC context leads to a reduction of 1.82, for a total
reduction of 6.53. If on the other hand we use the LR with
the EC context, then the rate reduction is 2.25.

B) Side information cost
Wewill now account for the cost to transmit the four param-
eters s �, N�

p , N�
f , and ρ

�, as well as the correspondence
function.
The correspondence function is the result of a linear

approximation and experiments show that using 10 bits to
code the two parameters of the straight line leads to the
same performance as coding them with double precision.
For N�

p and N�
f we decided to use 1 bit for the range of

Np ({5, 6}), and 2 bits for the range of N f ({6, 7, 9, 11}), once
again based on experimental results. On the other hand, the
optimal ρ has a wider range of values, and we observed that
typical values can be represented by the set {6.6 + k�}, with
� = 0.1 and k = 0, . . . , 31, for a cost of 5 bits.
We observe that the accuracy of the representation of the

position on the geodesic s � has a quite large influence on the
coding efficiency. Using for example 2 bits to code the possi-
ble positions we have four curves to use as side information
to code the curve b, using 3 bits leads to eight curves, in
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Table 2. Average coding cost (in bits) for different ways of coding s �: fixed length coding up to 10 bits and Exp-Golomb.

Sequence 2 bits 3 bits 4 bits 5 bits 6 bits 7 bits 8 bits 9 bits 10 bits Exp-Golomb

Ballet 1338.20 1329.00 1323.80 1323.80 1323.40 1321.40 1319.80 1318.20 1316.20 1320.80
Beergarden 1573.33 1565.33 1559.33 1560.33 1559.00 1559.67 1554.67 1554.33 1554.00 1559.00
Lovebird 1370.45 1347.18 1336.73 1334.18 1331.27 1328.73 1328.18 1324.73 1323.91 1332.09
mobile 638.29 635.29 635.43 635.57 634.57 634.86 635.71 635.00 634.71 635.71

Foreman 390.27 388.27 388.45 388.91 387.00 386.82 387.09 386.55 387.09 388.09
Stefan 705.00 695.67 693.00 693.00 691.67 689.33 688.33 689.33 690.00 694.00

Average 1002.59 993.46 989.46 989.30 987.82 986.80 985.63 984.69 984.32 988.28

general using a fixed length representation with bs bits per-
mits us to choose among 2bs different curves. The chance of
finding a good matching curve to use as a side information
increases with bs , but for every bit added the complexity
doubles, and we are increasing the cost of the representa-
tion too. If some values are more probable than others it is
worth to consider a variable length code to reduce the cost
of the representation.
We thus used an experimental approach and compared

two different ways to code s �: a fixed length coding, with
length from 2 to 10, and an Exponential-Golomb code. In
Table 2, we see that, performing the average on different
curves and on different sequences, a fixed length coding
leads to better performance if the number of bits used for
the representation of s � approaches to 6 or more. To com-
pare the proposed method to other techniques we choose
the best performing 10 bits fixed length coding.
For the I-contours we only have to transmit as side infor-

mation the parameters N�
p and ρ�, corresponding to an

overall cost of 6 bits. On the other hand, the decoding of
the B-contours needs the correspondence function as well
as the four parameters N�

p , N�
f , ρ

�, and s �, corresponding
to an overall cost of 28 bits.

C) Greedy algorithm (GA)
Resting on experimental results for each variable we
selected a range of typical values. We initialize the GA
with a starting point (Np0, N f 0, ρ0, s0), corresponding to the
solution in which every value is the closest to the center
of the coded range, and then the GA optimizes the vari-
ables in the order Np , N f , ρ, s . Keeping fixed N f 0, ρ0,
and s0 the GA runs the proposed technique to select the
Np that minimizes the bit rate. Once N�

p has been found
the algorithm starts again to optimize N f from the point
(N�

p , N f 0, ρ0, s0). Then again for ρ and s , until it reaches the
solution (N�

p , N�
f , ρ

�, s �).
The search order for the parameters is set according

to our observations of the optimum parameter distribu-
tions after the full search for many sequences: N�

p has a
very peaked distribution, so the selected value after the first
step of the GA should actually be the best one. N�

f , on the
contrary, has an almost uniform distribution, thus making
difficult to locate the best value; it is however required to
select it before ρ�, because the best value of ρ is influenced

Table 3. Average coding cost (in bits) for the
full search and the greedy algorithm (GA).

Sequence Full Search GA

Ballet 1309.60 1316.20
Beergarden 1548.00 1554.00
Lovebird 1305.18 1323.91
Mobile 631.43 634.71

Foreman 380.82 387.09
Stefan 684.00 690.00

Average 976.51 984.32

by the selected values of Np and N f . Still based on our
observations, the last parameter to select is s .
As we can see in Table 3, the average loss with respect

to the full search is 0.82, but the number of calculations
the encoder has to do is approximately reduced by a factor
of 250.
Regarding the overall time needed for the coding of a

curve, we can distinguish fixed and variable time contribu-
tions. The elastic estimation is fixed but we can decide how
many frames to leave in between the two reference ones.
On the other hand, the execution time for the choice of
the parameters can vary greatly: a full search is very costly,
and even if the GA speeds up the whole process, one can
also decide to keep the same parameters (or a subset of the
parameters) for a certain number of frames.

D) Comparisons
We compare our technique to various methods to code the
differential chain code of the contours: Adaptive Arithmetic
Coder (AAC), Context Based Arithmetic Coder (CBAC),
and the technique proposed in [17].
In the compression of B-contours, we achieve gains up

to 10 compared to the method of [17], but to make a fair
comparison we have to consider for our technique both
I-contours and B-contours of the GOP structure. To study
the influence of the GOP structure on the coding perfor-
mance we used the following:

• IBIBIB . . . is very effective for the B-contours, since the
two reference frames are very close and the prediction is
very accurate, but the I-contours have a non negligible
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Table 4. Average coding cost (in bits) for various sequences in the view domain (ballet) and in the time domain (mobile,
lovebird, beergarden, stefan). The tested methods are: JBIG2, Adaptive Arithmetic Coder (AAC), Context Based Arithmetic
Coder (CBAC) with 1 symbol context, the one proposed in [17], and the proposed technique (all the side information cost

accounted). In the last column are reported the gains of the proposed technique over the other best performing one in the group.

Sequence # symbols JBIG2 AAC CBAC Method [17] Proposed Gain ()

Ballet 1125.00 3968.00 1715.40 1585.60 1428.20 1338.78 6.26
Beergarden 1369.00 4226.67 2052.33 1882.67 1687.67 1575.58 6.64
Lovebird 1302.09 3153.45 1886.55 1740.36 1418.82 1341.73 5.43
Mobile 661.86 1915.43 837.14 696.00 711.71 639.12 10.20

Foreman 330.00 1776.73 517.18 522.91 411.73 390.20 5.23
Stefan 565.00 2106.67 859.33 877.33 745.33 700.00 6.08

Average 892.16 2857.82 1311.32 1217.48 1067.24 997.57 6.53

cost on the final outcome. Using this GOP structure pro-
duced in our experiments an average bit rate of 1000,19
bits per contour;

• IBBIBB . . . and IBBBIBBB . . . are flat structures with fairly
distant I-contours, they produced an average bit rate of
1004.03 and 1010.28 bits per contour, respectively;

• I1B1B2B3I2 . . . is a hierarchical structure with 5 frames in
the GOP, in which B2 is predicted using I1 and I2, B1 using
I1 and B2, and so on. It produced an average bit rate of
997,57 bits per contour.

The hierarchical structure proved to be the most effective
GOP structure: the cost of the I-contours is low and the
elastic prediction for B2 is just slightly less accurate than
the ones for B1 and B3. This result is expected, given the
previous study on depth map compression with traditional
hybrid techniques that shows the importance of the predic-
tion order [29].
In Table 4, the average results for the test sequences are

shown, and in every case our technique performs better
than the others. The overall average gain with respect to
the second best coding technique in the group, the one pro-
posed in [17], is 6.53. If we consider instead the gain of
the proposed technique with respect to JBIG2, which is not
optimized for this kind of data but has been chosen to code
the boundary information in [8], it is 65.09. Over other
standard techniques, such as AAC and CBAC (with one
symbol context, the best choice in our tests) the average
gains are of 23.93 and 18.06, respectively.

E) Object-based depth maps coding technique
We underline here that the goal of this paper is not to pro-
pose a complete system for MVD coding, but only to show
the potential of the lossless contour coding based on elastic
deformation. In this respect, we show that a relatively simple
codec based on this tool may be competitive with (or even
better than) the state of the art and this may be considered
a validation of the proposed approach.
Coming to the implementation, we observe that it is

very difficult to integrate our object-based technique into

a 3DVC coder. We resort to an existing object-based tech-
nique since it can immediately benefit from an improved
contour coding method, even though it is not the best
option from an rate-distortion (RD) perspective. Despite
the simplicity of the approach, as we will show, we have
satisfying results, due to the nature of the data we want to
compress. In summary, the new object-based compression
technique is composed of:

• the proposed technique for the contours of the object with
a hierarchical GOP structure I1B1B2B3I2, as described in
Section IVD. This part provides a lossless coding with
inter-frame prediction;

• for the inner part of the objects we use the Shape Adaptive
(SA) Wavelet Transform, followed by SA Set Partitioning
In Hierarchical Trees (SPIHT), followed by an arithmetic
coder [30].We remark that for the inner part of the objects
we thus have an entirely “Intra” technique.

We have chosen this technique because it is reasonable
and simple, and it complements perfectly with our lossless
coding technique.
To make a meaningful comparison we used HEVC Intra

to compress the depth maps. We believe that the compari-
son is fair because in the case of HEVC Intra the arithmetic
coder for the lossless coding part take advantage of the
context updating, and there is no temporal prediction. Like-
wise, in our technique, the lossless coding part exploits
the temporal redundancy, while the object coding is totally
“Intra”.Moreover, it would not be fair tomake a comparison
with HEVC Inter because we have no temporal predic-
tion for the objects, neither would be easy to develop an
object-based coder with temporal prediction.
Once defined the compression technique, we use the

decoded depths to synthesize new views and make a com-
parison with the images generated by the uncompressed
depth maps. Given any two adjacent views of the multiview
sequence, we generated three equally spaced synthetic inter-
mediate views. To test our depth maps compression tech-
nique we used the multiview sequences ballet, beergarden,
lovebird and mobile, synthesizing 6, 15, 30, and 54 frames,
respectively. In order to assess the quality of the virtual
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views, we compared them to synthesized images obtained
by applying the same DIBR algorithm to the uncompressed
depths and views, and thus we obtained the RD points
related to our techniques and to HEVC Intra.
Finally, we computed the Bjontegaard metrics [31] on

these RD points: we observed that our technique out-
performs the reference for ballet, beergarden and mobile,
achieving respectively +2.6 dB, +0.16 dB and +0.88 dB,
while the PSNR was practically identical for lovebird. These
results, however, pertinent to quite specific test conditions
(PSNR of synthesized images, limited range), show that our
technique can perform at least as well as HEVC Intra, or
even better depending on the sequence: these results imply
that the proposed approach is worth considering. This is
evenmore relevant in sight of the fact that in general, object-
based coding techniques achieve not very good results in
image compression. It has been shown that the cost of loss-
less contour coding is one of the elements that undermine
these techniques the most [10].

V . CONCLUS IONS

In this paper, we have proposed a new technique for lossless
coding of object contours for MVD. Using elastic deforma-
tion between two reference contour curves, we obtained a
useful side information for the coding of the actual con-
tour. The price payed with the coding cost for the side
information is fully rewarded with significant gains with
respect to the reference techniques and to the state of the
art. We have also improved the technique described in [17]
by substituting its prediction method with the ADmethod.
Moreover, a simple object-based depthmap coding tech-

nique has been set up, showing that this approach can
give interesting results, even if compared to state-of-the-art
techniques, such as HEVC Intra.
So far, only a monodimensional elastic interpolation has

been considered, but we expect a more precise estimation if
we can take into account four or eight reference curves from
different views and different times, thus leading to further
improvements of the technique. This will be the subject of
further study.
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