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Quotient Hereditarily Indecomposable
Banach Spaces
V. Ferenczi

Abstract. A Banach space X is said to be quotient hereditarily indecomposable if no infinite dimensional quo-
tient of a subspace of X is decomposable. We provide an example of a quotient hereditarily indecomposable
space, namely the space XGM constructed by W. T. Gowers and B. Maurey in [GM]. Then we provide an
example of a reflexive hereditarily indecomposable space X̂ whose dual is not hereditarily indecomposable; so
X̂ is not quotient hereditarily indecomposable. We also show that every operator on X̂∗ is a strictly singular
perturbation of an homothetic map.

1 Introduction

1.1 General Setting

In [GM], W. T. Gowers and B. Maurey gave the first known example of a space XGM that
contains no unconditional basic sequence. Their space has even the stronger property of
being hereditarily indecomposable, that is, no subspace of XGM is decomposable (can be
written as a direct sum of two infinite-dimensional subspaces). Afterwards, Gowers proved
the following dichotomy theorem: every Banach space contains either a hereditarily inde-
composable subspace or a subspace with an unconditional basis [G1], [G2]. This theorem
is a motivation for finding general properties of hereditarily indecomposable spaces. Some
were proved in [F1], [F2]. In this paper, we are interested in the properties of X∗ when X is
hereditarily indecomposable.

Is the hereditarily indecomposable property self-dual? A weaker question is the follow-
ing: a fundamental property of a complex hereditarily indecomposable space X is that X
has few operators in the sense that every operator on X is a strictly singular perturbation of
an homothetic map (the λ Id +S-property); when does this property pass to the dual? This
last question is of interest in relation to the still open λ Id +K-conjecture (does there exist a
Banach space X such that every operator on X is of the form λ Id +K, K compact?). Indeed
if a space X gives a positive answer to this conjecture then both X and X∗ must satisfy the
λ Id +S-property (this comes from the fact that the λ Id +K-property is self-dual).

In the first part of this article we prove that XGM is quotient hereditarily indecomposable
(no subspace of a quotient is decomposable), so that X∗GM is hereditarily indecomposable:
the techniques used by Gowers and Maurey imply the property for the dual. In particu-
lar, all consequences of the hereditarily indecomposable property, as the λ Id +S-property,
pass to the dual. The crucial point in showing this is the following: Gowers and Maurey
showed that any Z ⊂ XGM contains arbitrarily many ln+

1 -vectors; we improve the result
finding ln+

1 -vectors in an arbitrary quotient of subspace Z/W of XGM—actually we find
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ln+
1 -vectors in Z whose classes in Z/W have a controled norm (Lemma 11). The proof that

the space is quotient hereditarily indecomposable then follows more or less from the proof
that XGM is hereditarily indecomposable. For this reason, we will only sketch some parts of
the proof. However, constants are different and we state the result in a more general setting
(Proposition 20).

In the second part of the article, we use Proposition 20 to show by a counter-example
that the hereditarily indecomposable property does not necessarily pass to the dual, even
when the space is reflexive. However in this example, the λ Id +S-property does pass to the
dual. As a consequence, we find the first known example of a non hereditarily indecom-
posable space with the λ Id +S-property. The construction of the space is rather technical
(Proposition 25), however the proof of its properties above is based on general methods
useful in the hereditarily indecomposable context (Proposition 23 and 24).

It should be mentioned that recently [AF], S. Argyros and V. Felouzis improved our
duality result showing that the dual of a H.I. space may be far from being H.I.: such a dual
may contain lp for 1 ≤ p < +∞ and other classical spaces. Their method is quite different
from ours.

1.2 Notation

In the following, by space (resp. subspace), we shall always mean infinite dimensional Ba-
nach space (resp. closed subspace). We shall write Y ⊂∞ Z to mean that Y is a subspace of
Z of infinite codimension. By QS-space of X we shall mean infinite dimensional quotient of
a subspace of X, that is, of the form Z/Y , where Z,Y are subspaces of X such that Y ⊂∞ Z.
We recall that two Banach spaces X and X ′ are totally incomparable if no subspace of X is
isomorphic to a subspace of X ′.

We now give some notation that is useful for the construction of Gowers-Maurey’s space
and similar spaces. Let c00 be the space of sequences of scalars all but finitely many of which
are zero. Let e1, e2, . . . be its unit vector basis. If E ⊂ N, then we shall also use the letter E
for the projection from c00 to c00 defined by E(

∑∞
i=1 aiei) =

∑
i∈E aiei . If E, F ⊂ N, then

we write E < F to mean that sup E < inf F. An interval of integers is a subset of N of the
form {a, a + 1, . . . , b} for some a, b ∈ N. For N in N, EN denotes the interval {1, . . . ,N}.
The range of a vector x in c00, written ran(x), is the smallest interval E such that Ex = x. We
shall write x < y to mean ran(x) < ran(y); notice that this is only defined on c00. A finite
or infinite sequence of vectors (xi) is called successive if xi < xi+1 for all i. If x1, y1, x2, y2

are in c00, we shall also write (x1, y1) < (x2, y2) to mean that there exist intervals F1 < F2

such that for i = 1, 2, ran(xi) ∪ ran(yi) ⊂ Fi .

Let X be the class of Banach sequence spaces such that (ei)∞i=1 is a normalized bimono-
tone basis. We denote by B(l1) the unit ball of l1 ∩ c00. By a block basis in a space X ∈ X we
mean a sequence x1, x2, . . . of successive non-zero vectors in X and by a block subspace of a
space X ∈ X we mean a subspace generated by a block basis.

Let f be the function log2(x + 1). If X ∈ X, and all successive vectors x1, . . . , xn in X
satisfy the inequality f (n)−1

∑n
i=1 ‖xi‖ ≤ ‖

∑n
i=1 xi‖, then we say that X satisfies an lower

f -estimate. We denote by X( f ) the set of such spaces.

Given X in X, given g : [1,+∞) → [1,+∞), a functional x∗ in X∗ is an (M, g)-form if
‖x∗‖∗ ≤ 1 and x∗ =

∑M
j=1 x∗j for a sequence x∗1 < · · · < x∗M of successive functionals such
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that ‖x∗j ‖
∗ ≤ g(M)−1 for each j.

Let C > 0. An ln+
1 -vector with constant C in X is a vector x of the form

∑n
i=1 xi such

that the sequence (xi) is successive and for all i, ‖xi‖ ≤ C‖x‖/n. An ln+
1 -average in X is an

ln+
1 -vector of norm 1 in X.

Notation We shall often refer to lemmas of [GM] (resp. [F2]), using the notation GM and
F (i.e. “Lemma GM7” for “Lemma 7 in [GM]”,. . . ).

1.3 Some Basic Properties of Quotient Hereditarily Indecomposable Spaces

Definition 1 A Banach space X is quotient hereditarily indecomposable (or Q.H.I.) if no
infinite dimensional QS-space of X is decomposable.

Remark 1 If X is quotient hereditarily indecomposable then X is hereditarily indecom-
posable. Indeed a subspace of X is a QS-space of X.

Proposition 2 Let X be a Banach space. Assume that for every infinite dimensional sub-
space Y such that X/Y is infinite dimensional, X/Y is hereditarily indecomposable. Then X is
quotient hereditarily indecomposable.

Proof It is enough to prove that X is H.I. (then X/Y is H.I. for any finite-dimensional Y ).
Assume X is not H.I. Then X contains a direct sum W ⊕Z. Let Y be an infinite dimensional
subspace of W such that W/Y is infinite dimensional (for example the space generated by
the even vectors of a basic sequence in W ). Then X/Y contains a space isomorphic to the
sum W/Y ⊕ Z, so X/Y is not H.I.

Proposition 3 Let X be a Banach space. If X∗ is quotient hereditarily indecomposable, then
X is quotient hereditarily indecomposable.

Proof If X is not Q.H.I., then some QS-space Y/Z of X is decomposable. Then the QS-
space Z⊥/Y⊥ ' (Y/Z)∗ of X∗ is decomposable, so X∗ is not Q.H.I.

Corollary 4 Let X be a reflexive Banach space. Then X is quotient hereditarily indecompos-
able iff X∗ is quotient hereditarily indecomposable.

2 There Exists a Quotient Hereditarily Indecomposable Space

2.1 Approximating Sequences

Definition 2 Let W be a Banach space. Let (wn)n∈N and (w ′n)n∈N be two non-zero se-
quences in W . We say that (w ′n)n∈N approximates (wn)n∈N if

lim
n→+∞

‖wn − w ′n‖/‖wn‖ = 0.
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Note that approximation is an equivalence relation.

Lemma 5 Let W be a Banach space in X. Let (wi)i∈N be a successive sequence in W and let
(w ′i )i∈N approximate (wi)i∈N. Let n ∈ N. Then for every ε > 0 there exists N such that for all
subset I of N such that Card(I) = n and I > EN then

∥∥∥∑
i∈I

w ′i

∥∥∥≤ (1 + ε)
∥∥∥∑

i∈I

wi

∥∥∥.

Proof For N big enough, ‖
∑

i∈I w ′i ‖ ≤ ‖
∑

i∈I wi‖+
∑

i∈I ε/n‖wi‖, and the result follows
because the basis in W is bimonotone.

Definition 3 Let W be a Banach space, V be a subset of W . A sequence (wn)n∈N in W is
said to be almost in V if it approximates a sequence of vectors in V .

Let W be a space with a basis. A sequence (wn)n∈N in W is said to be almost successive if
it approximates a sequence of successive vectors in W .

Corollary 6 Let X be a Banach space in X( f ). Let (x∗i )i∈N be an almost successive sequence
in X∗. Let n ∈ N. Then for every ε > 0 there exists N such that for all subset I of N such that
Card(I) = n and I > EN then

∥∥∥∑
i∈I

x∗i

∥∥∥ ≤ (1 + ε) f (n) sup
i∈I
‖x∗i ‖.

Lemma 7 Let W be a space in X. Let (wn)n∈N be a non-zero sequence in W such that
wn/‖wn‖

w
→ 0. Then (wn)n∈N has an almost successive subsequence.

Proof We may assume that (wn)n∈N is a norm 1 sequence. Assume we have already se-
lected wn1 , . . . ,wnk−1 and a successive sequence v1, . . . , vk−1 such that for i = 1, . . . , k− 1,
‖vi − wni‖ ≤ 1/i. Let E be an interval containing e1 and the range of v1 + · · · + vk−1.
There exists nk such that ‖Ewnk‖ ≤ 1/2k. Let v ′k = wnk − Ewnk . There exists an interval
F such that Fv ′k is equal to v ′k up to 1/2k. If we let vk = Fv ′k, we have that vk > vk−1, and
‖vk − wnk‖ ≤ 1/k. Finally, (wnk )k∈N approximates (vk)k∈N.

2.2 Norming Sequences

Definition 4 Let W be a Banach space, W ∗ its dual. We shall say that two unit se-
quences (wn)n∈N in W and (w∗n )n∈N in W ∗ are λ-norming (or that (w∗n ) λ-norms (wn))
if lim inf w∗n (wn) ≥ 1/λ and for n 6= q, |w∗n (wq)| ≤ εmin(n,q) with lim

i→+∞
εi = 0.

Two non-zero sequences (wn)n∈N and (w∗n )n∈N are λ-norming if the unit sequences
(wn/‖wn‖)n∈N and (w∗n/‖w

∗
n‖)n∈N are λ-norming.

Notice that if (w∗n )n∈N λ-norms (wn)n∈N, then it also λ-norms any sequence that ap-
proximates (wn)n∈N.

Lemma 8 Let X be in X( f ), Y ⊂∞ X. Let (zn)n∈N in X/Y be λ-normed by an almost
successive sequence in Y⊥. Then for every ε > 0, every n, there exists N such that if I > EN
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and Card(I) = n

n∑
i=1

‖zi‖ ≤ (1 + ε)λ f (n)
∥∥∥

n∑
i=1

zi

∥∥∥.

Proof Let (z∗n )n∈N be an almost successive sequence in B(Y⊥) that λ-norms (zn)n∈N. Let ε ′

be such that 1 + ε ′ < (1 + ε)
(

1 − (n − 1)ε ′λ
)
. By Corollary 6, there is an N such that if

εi < ε
′ for i > N and I > EN , then

∥∥∥∑
i∈I

z∗i

∥∥∥ ≤ (1 + ε ′) f (n).

It follows that ∥∥∥∑
i∈I

zi

∥∥∥ ≥ ((1 + ε ′) f (n)
)−1

(
∑
i, j∈I

(z∗i (z j )),

∥∥∥
n∑

i=1

zi

∥∥∥ ≥ ((1 + ε ′) f (n)
)−1(

1/λ− (n− 1)ε′
)∑

i∈I

‖zi‖.

Lemma 9 Let X be in X, Y ⊂∞ X. Let (zn)n∈N be a non-zero sequence in X/Y such that
zn/‖zn‖ tends weakly to 0. Then some subsequence of (zn)n∈N has an almost successive 2-
norming sequence in Y⊥.

Proof We may assume that (zn)n∈N is a norm 1 sequence. Let (x ′∗n )n∈N be a dual sequence
in B(Y⊥) such that for all n, x ′∗n (zn) = 1. Passing to a subsequence, we may assume that

x ′∗n
w
→ x∗ (clearly x∗ is in Y⊥). Let x∗n = 1/2(x ′∗n − x∗). As x∗n

w
→ 0, and z∗n

w
→ 0, passing to

a subsequence, we may choose (x∗n ) and (zn) such that for q = 1, . . . , n− 1, |x∗n (zq)| ≤ 1/q
and |x∗q (zn)| ≤ 1/q. By Lemma 7, we may also assume that (x∗n )n∈N is almost successive.

Furthermore, we have that x∗n ∈ B(Y⊥) and

x∗n (zn) = 1/2
(
1− x∗(zn)

)
→ 1/2.

Let X be in X, Y ⊂∞ X. Given x in X, we denote by x̂ its class in X/Y . We shall say that
(xn)n∈N in X is a lifting for (x̂n)n∈N. Let λ ≥ 1. We shall say that (xn)n∈N in X is a λ-lifting
for (x̂n)n∈N if lim sup ‖xn‖/‖x̂n‖ ≤ λ.

Lemma 10 Let X be in X, Y ⊂∞ X. Let (zn)n∈N be a non-zero sequence in X/Y such
that zn/‖zn‖ tends weakly to 0. Then some subsequence of (zn)n∈N has an almost successive
2-lifting.

Proof We may assume that (zn)n∈N is a norm 1 sequence. Let (x ′n)n∈N be a lifting for
(zn)n∈N such that ‖x ′n‖ → 1. The sequence (x ′n)n∈N is bounded, so, passing to a subse-
quence, we may assume that x ′n converges weakly. Let y be the weak limit of (x ′n). The
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vector y has norm 1, and belongs to Y , because for every y∗ in Y⊥, y∗(y) = lim y∗(x ′n) =
lim y∗(zn) = 0.

Let xn = x ′n − y. Then xn
w
→ 0 so passing to a further subsequence, we may assume

by Lemma 7 that (xn)n∈N is almost successive; clearly x̂n = zn, and lim sup ‖xn‖/‖zn‖ =
lim sup ‖xn‖ ≤ 2.

2.3 Norming of ln+
1 Vectors

Lemma 11 Let X be reflexive in X( f ), Y,Z be subspaces of X such that Y ⊂∞ Z. Let N ∈ N.
Let ε > 0. Then there is a successive sequence of lN+

1 -averages with constant 2 + ε almost in Z
that is 4 + ε-normed by a successive sequence almost in Y⊥.

Proof Let ε ′ > 0 be such that 2(1+ε ′)4 ≤ 2+ε. Let C be such that (1+ε ′)C > (2+ε ′) f (NC ).
As Z/Y is reflexive, there exists a basic sequence (zn)n∈N of unit vectors in Z/Y such that
zn

w
→ 0. By Lemma 7 and Lemma 9, we may assume that (zn)n∈N is 2-normed by some

almost successive sequence in Y⊥. We shall denote (zn)n∈N by
(
zn(0)

)
n∈N

.
Now consider the sequence

(
zn(1)

)
n∈N
=
(N−1∑

i=0

zNn+i

)
n∈N

obtained by making packs of N zi ’s. The sequence
(
zn(1)

)
n∈N

converges weakly to 0 and by
Lemma 8, it is bounded below for n large enough, so by Lemma 7 and Lemma 9, passing
to a subsequence, we may assume that it is 2-normed by some almost successive sequence
in Y⊥.

We now repeat the procedure above for j = 2, . . . ,C defining

(
zn( j)

)
n∈N
=
(N−1∑

i=0

zNn+i( j − 1)
)

n∈N
.

Passing to a subsequence at each step, we may assume that for every j ∈ [0,C],
(
zn( j)
)

n∈N

is 2-normed by some almost successive sequence in Y⊥.
We now prove that there exists a sequence (ui)i∈N in Z/Y such that (Un)n∈N =

(
∑N−1

i=0 uNn+i)n∈N is 2-normed by an almost successive sequence (U∗n )n∈N in Y⊥, and
sup0≤i≤n−1 ‖uNn+i‖ ≤ (1 + ε ′)/N‖Un‖ for all n.

Indeed, otherwise, for n large enough, and j ∈ [0,C], we have the inequality ‖zn( j)‖ ≤
N/(1 + ε ′) sup0≤i≤n−1 ‖zNn+i( j − 1)‖; it follows by induction that

‖zn( j)‖ ≤
(
N/(1 + ε ′)

) j
,

so that

‖zn(C)‖ ≤
(
N/(1 + ε ′)

)C
.
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But on the other hand,

‖zn(C)‖ = ‖zNC n + · · · + ZNC n+NC−1‖ ≥ NC/(2 + ε ′) f (NC ),

by Lemma 8, a contradiction by choice of N .
We now deduce the existence of successive lN+

1 -vectors almost in Z, well-normed in Y⊥.
Applying Lemma 10, passing to a subsequence at each step of the previous induction, we
may assume that the sequence (ui)i∈N we obtained has an almost successive 2-lifting (x ′i )i∈N

in Z. Let (xi)i∈N be a successive sequence approximating (x ′i )i∈N. Then (xi)i∈N is almost
in Z. Let Xn =

∑N−1
i=0 xNn+i and let X ′n =

∑N−1
i=0 x ′Nn+i . Clearly (X ′n)n∈N is a lifting for

(Un)n∈N, (Xn)n∈N approximates (X ′n)n∈N, (Xn)n∈N is successive, and (X ′n)n∈N in Z.
All the following estimates are for n large enough. For such n’s, and i in [0,N − 1],

‖x ′Nn+i‖ ≤ 2(1 + ε ′)‖uNn+i‖ ≤ 2(1 + ε ′)2/N‖Un‖ ≤ 2(1 + ε ′)2/N‖X ′n‖.

It follows that
‖xNn+i‖ ≤ 2(1 + ε ′)4/N‖Xn‖ ≤ (2 + ε)/N‖Xn‖,

and so Xn is a lN+
1 -vector with constant 2 + ε. Now

‖X ′n‖ ≤
N−1∑
i=0

‖x ′Nn+i‖ ≤ 2(1 + ε ′)
N−1∑
i=0

‖uNn+i‖ ≤ 2(1 + ε ′)2‖Un‖,

so
‖U ∗n ‖ ‖X

′
n‖ ≤ 4(1 + ε ′)3U ∗n (Un) ≤ 4(1 + ε ′)3U ∗n (X ′n),

and so (X ′n)n∈N is 4 + ε-normed by some almost successive sequence in Y⊥. It follows that
it is also 4 + ε-normed by some successive sequence almost in Y⊥, and that (Xn)n∈N shares
the same property.

2.4 Rapidly Increasing Sequences

Following Gowers and Maurey, we now define R.I.S.-vectors in a Banach space X in X( f ).
In fact, the properties of R.I.S. are not interesting in all spaces in X( f ), but they are in
spaces that have, in a sense, Gowers-Maurey’s type; we give a meaning to this expression in
Definition 6, and then state several lemmas true in those spaces.

Let J be a set of integers { jn, n ∈ N}, such that f ( j1) > 256 and such that for all n,
log log log jn+1 ≥ 4 j2

n. Let K = { j1, j3, j5, . . . } and let L = { j2, j4, j6, . . . }.

Definition 5 An L-sequence is a successive sequence x∗1 < · · · < x∗k with k ∈ K, such that
for all i, x∗i is a (Mi , f )-form where Mi is an element in L greater than j2k. An L-sum is a

vector of the form 1/
√

f (k)
∑k

i=1 x∗i , where x∗1 , . . . , x
∗
k is an L-sequence.

In the same way, one can define L ′-sequences and L ′-sums for any subset L′ of L.

Definition 6 A space X in X has pre GM-type if there is a set S of L-sums such that X is the
completion of c00 under a norm ‖ · ‖ satisfying the following equation for all x ∈ c00:

‖x‖ = ‖x‖∞ ∨ sup
n≥2,F1<···<Fn

1

f (n)

n∑
j=1

‖F jx‖ ∨ sup
x∗∈S,E⊂N

|〈x∗, Ex〉|,
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where E and the F j ’s are intervals of integers. Notice that a space of pre GM-type belongs
to X( f ).

Definition 7 We recall that a R.I.S. of length N with constant C in X is a successive se-
quence (xi)N

i=1 of lni +
1 -averages with constant C in X such that n1 ≥ 4(1 + ε)M f (N/ε ′)/ε ′

and ε ′/2 f (ni)1/2 ≥ | ran(xi−1)| for i = 2, . . . ,N , where ε ′ = min{ε, 1} and M f (x) =
f−1(36x2). A R.I.S.-vector is a non-zero multiple of the sum of a R.I.S.

We now show some lemmas very similar to those of [GM]; we have to state them because
we shall use different constants, and because they can be applied to any pre GM-type space,
which will be useful in the last part of the article. From now on we set ε0 = 1/40.

Lemma 12 Let X have pre GM-type. Let ε > 0, let ε′ = min{ε, 1}. Let N be in L, let n be in
[log N, exp N], let (xi)n

i=1 be a R.I.S. of length n with constant 1 + ε in X. Then

∥∥∥
n∑

i=1

xi

∥∥∥ ≤ (1 + ε + ε ′)n f (n)−1.

Proof Apply Lemma GM7 and Lemma GM9.

Lemma 13 Let X have pre GM-type. Let N ∈ L. Let M = Nε0 . Let x1, . . . , xN be a R.I.S. in
X with constant 2 + ε0. Then

∑N
i=1 xi is an lM1+-vector with constant 4.

Proof Follow the proof of Lemma GM11 using Lemma 12 instead of Lemma GM10.

Lemma 14 Every pre GM-type space is reflexive.

Proof Follow the proof that Gowers-Maurey’s space is reflexive (end of Part GM3), using
Lemma 12 instead of Lemma GM10.

Definition 8 Let X have pre GM-type. Let x∗1 , . . . , x
∗
k be an L-sequence of length k, and

for i = 1, . . . , k, let Mi be the element of L greater than j2k such that x∗i is an (Mi , f )-form.
A sequence of successive vectors x1 < · · · < xk in X is said to be a R.I.S. associated to
x∗1 , . . . , x

∗
k if for every i, xi is a normalized R.I.S. of length Mi and constant 2 + ε0, and for

i ≥ 2, 1/2 f
(
(Mi)1/40

)1/2
≥ | ran(xi−1)|.

Because of the choice of the increasing condition in Definition 8 and by Lemma 13, a
R.I.S. associated to an L-sequence of length k is a R.I.S. with constant 4.

Lemma 15 Let X have pre GM-type. Let x be a norm 1 R.I.S.-vector in X of length N1 ∈ L
and constant 2 + ε0 and let x∗ be an (N2, f )-form in X∗ with N2 ∈ L, and assume N1 6= N2.
Let k ∈ K be such that N1 ≥ j2k, N2 ≥ j2k. Then for every interval E, |x∗(Ex)| ≤ 1/k2.

Proof First, by Lemma 13, x is a l
N ′1 +
1 -average with constant 4, where N ′1 = N1/40

1 . Just as
in the middle of Lemma GM12, we then apply Lemma GM4 if N2 < N1 and Lemma GM5
if N2 > N1 to obtain the result.

Lemma 16 Let X have pre GM-type. Let k ∈ K. Let x1 < · · · < xk in X be a R.I.S. associated

to some L-sequence. Let x =
∑k

i=1 xi . Assume that for every L-sum z∗ in S, every interval E,
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|z∗(Ex)| ≤ 1/4. Then

‖x‖ ≤ 5k/ f (k).

Proof As in the end of Lemma GM12, apply Lemma GM9 to K0 = K \ {k} and
Lemma GM7.

Lemma 17 Let X have pre GM-type. Let L ′ and L ′ ′ be subsets of L such that L′ ∩ L ′ ′ = ∅.
Let x∗1 , . . . , x

∗
k be an L′-sequence in X∗. Let x1 < · · · < xk in X be a R.I.S. associated to

x∗1 , . . . , x
∗
k . Let x = x1 + · · · + xk. Then for every L ′ ′-sum z∗ of length k in X∗, every interval

E, |z∗(Ex)| ≤ 1/4.

Proof Let z∗ be an L ′ ′-sum, E be an interval. Then there are (li, f )-forms z∗i , with li in L ′ ′,

such that z∗ = 1/
√

f (k)
∑k

i=1 z∗i . For every j, x j has length in L ′, and L ′ ∩ L ′ ′ = ∅ are
disjoint, so it follows from Lemma 15 that |z∗i (Ex j )| ≤ 1/k2. Finally,

|z∗(Ex)| ≤ 1/
√

f (k)
k∑

i, j=1

|z∗i (Ex j)| ≤ 1/
√

f (k) ≤ 1/4.

Definition 9 A pre GM-type space has GM-type if there are subsets L′ and L ′ ′ of L with
L ′ infinite and L ′ ∩ L ′ ′ = ∅, and an injection σ from the collection of finite sequences of
vectors in Q into L ′ such that the set S in the definition of the pre GM-type space is of the
form S ′ ∪ S ′′ where S ′ ′ is some set of L ′′-sums and S ′ is the set of L ′-sums of the form
1/
√

f (k)
∑k

i=1 x∗i , where the L ′-sequence x∗1 < · · · < x∗k satisfies the additional condition
that Mi = σ(x∗1 , . . . , x

∗
i−1) for i = 2, . . . , k.

Here we added a set S ′ ′ in the definition of Gowers-Maurey’s space. As in [GM], the
elements of S ′ are called special functionals. The condition L ′ ∩ L ′ ′ = ∅ makes sure that
the action of elements of S ′ ′ is small on the R.I.S. used in Gowers-Maurey’s construction
(see Lemma 17), so in a GM-type space, one can more or less repeat Gowers-Maurey’s
proofs. In Part 3, we will carefully choose S ′ ′ to get additional properties. Of course, we
have in particular:

Remark 18 Gowers-Maurey’s space has GM-type (with L = L ′, S ′ ′ = ∅, and S ′ the set of
special sums).

2.5 GM-Type Spaces are Quotient Hereditarily Indecomposable

We first show a lemma similar to Lemma GM12.

Lemma 19 Let X have GM-type. Let x∗1 , . . . , x
∗
k be a special sequence in X. Let x1 < · · · <

xk be a R.I.S associated to x∗1 , . . . , x
∗
k . Let x =

∑k
i=1 xi . Assume that for every interval E,

|(
∑k

i=1 x∗i )(Ex)| ≤ 2, then

‖x‖ ≤ 5k/ f (k).
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Proof By Lemma 16, it is enough to prove that for any function z∗ in S, every interval E,

|z∗(Ex)| ≤ 1/4, and by Lemma 17, it is enough to prove it for z∗ = f (k)−1/2
∑k

i=1 z∗i in S ′.

Following the proof of Lemma GM12, using Lemma 15, we obtain that |(
∑k

i=1 z∗i )(Ex)| ≤
4, and that |z∗(Ex)| ≤ 4 f (k)−1/2 < 1/4.

Proposition 20 Every GM-type space is reflexive, quotient hereditarily indecomposable.

Proof The reflexive part is Lemma 14. Let X have GM-type, let Y ⊂∞ X. Let Z/Y and
W/Y be two subspaces of X/Y . We want to prove that their sum is not direct. Let δ > 0,
let k ∈ K be such that 150/

√
f (k) ≤ δ and ε > 0 be such that 182kε ≤ 1.

First we show that given η > 0 and M ∈ L, there is a R.I.S. z of length M and constant
2 + ε0 such that dist(z,Z) < η, and an (M, f )-form z∗ such that dist(z∗,Y⊥) < η with
z∗(z) ≥ 1/

(
(4 + ε0)(3 + ε0)

)
.

Indeed, adding lni +
1 -averages given by Lemma 11, we may obtain a successive sequence

of R.I.S. vectors almost in Z, of length M and constant 2 + ε0. Write z =
∑M

i=1 zi a R.I.S.
vector in this sequence. Then by Lemma 12, ‖z‖ ≤ (3 + ε0)M/ f (M). Let y∗i be a successive
norm 1 sequence close to Y⊥ satisfying y∗i (zi) ≥ 1/(4 + ε0) and let y∗ = f (M)−1

∑M
i=1 y∗i ;

then y∗ is an (M, f )-form arbitrarily close to Y⊥ when min
(
ran(z)

)
increases and

y∗(z) = f (M)−1
M∑

i=1

y∗i (zi) ≥ M/
(
(4 + ε0) f (M)

)
≥ ‖z‖/

(
(3 + ε0)(4 + ε0)

)
.

Then starting from M1 = j2k, and repeating by induction as in Gowers-Maurey’s con-
struction, build for i = 1, . . . , k, vectors zi such that zi is in Z up to ε if i is odd, in W up to ε

if i is even, and (Mi, f )-forms z∗i in Y⊥ up to ε, such that 1/2 f
(
(Mi)1/40

)1/2
≥ | ran(zi−1)|,

|z∗i (zi)− 1/13| ≤ ε, (zi , z∗i ) > (zi−1, z∗i−1), and Mi = σ(z∗1 , . . . , z
∗
i−1) for i ≥ 2; z∗1 , . . . , z

∗
k

is a special sequence, and z1, . . . , zk is a R.I.S. associated to z∗1 , . . . , z
∗
k . Let y∗1 , . . . , y

∗
k be an

ε-perturbation of z∗1 , . . . , z
∗
k in Y⊥.

It follows that that ‖
∑k

i=1 y∗i ‖ ≤
√

f (k) + kε ≤ 2
√

f (k), so

∥∥∥
k∑

i=1

ẑi

∥∥∥ ≥ (1/2) f (k)−1/2
( k∑

i=1

y∗i

)( k∑
i=1

zi

)
,

∥∥∥
k∑

i=1

ẑi

∥∥∥ ≥ (1/2) f (k)−1/2
( k∑

i=1

z∗i (zi)− kε
∥∥∥

k∑
i=1

zi

∥∥∥),
∥∥∥

k∑
i=1

ẑi

∥∥∥ ≥ (1/2) f (k)−1/2
(
k(1/13− ε)− k2ε

)
≥ (1/30)k f (k)−1/2.

On the other hand, we have |(
∑k

i=1 z∗i )E
(∑k

i=1(−1)i zi

)
| ≤ 2 for all interval E, so by

Lemma 19,

∥∥∥
k∑

i=1

(−1)i ẑi

∥∥∥ ≤ ∥∥∥
k∑

i=1

(−1)i zi

∥∥∥ ≤ 5k f (k)−1.
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If z denotes the sum of the odd vectors, w the sum of the even vectors, we have that
ẑ ∈ Z/Y , ŵ ∈W/Y , and

‖ẑ − ŵ‖ ≤ 150 f (k)−1/2‖ẑ + ŵ‖ ≤ δ‖ẑ + ŵ‖.

As δ is arbitrary, it follows that the sum of Z/Y and W/Y is not direct, and finally, that
X/Y is H.I., so by Proposition 2, X is Q.H.I.

Corollary 21 By Remark 18, XGM is quotient hereditarily indecomposable.

Corollary 22 By Remark 1 and Corollary 4, if X has GM-type then X∗ is hereditarily inde-
composable. In particular, X∗GM is hereditarily indecomposable.

3 There Exists a Hereditarily Indecomposable Space Which is Not Quotient
Hereditarily Indecomposable

In this section, we build a H.I. space X̂ which is not Q.H.I. as a quotient of a direct sum of
two GM-type spaces X1 and X2. The space X̂ is reflexive, and we show that the space X̂∗

contains a direct sum of two subspaces, which means that X̂∗ is not H.I., and implies that
X̂ is not Q.H.I. (Corollary 4). The result stated clearly follows from Propositions 23 and 25
below.

Proposition 23 For i = 1, 2, let Xi be a hereditarily indecomposable Banach space, let Zi be
a subspace of Xi. Assume that Z1 and Z2 are isometric, and that X1/Z1 and X2/Z2 are infinite
dimensional and totally incomparable. By abuse of notation, we identify both Z1 and Z2 with a
same space Z. Let X̂ be the quotient space (X1 ⊕X2)/{(z,−z), z ∈ Z}. Then X̂ is hereditarily
indecomposable and X̂∗ is not hereditarily indecomposable.

In fact, it is possible to prove that in the complex case, every operator on X̂∗ is a strictly
singular perturbation of an homothetic map, which proves that this property does not
characterize H.I. spaces. This result clearly follows from Proposition 24 and Proposition 25
below.

Proposition 24 For i = 1, 2, let Xi ,Zi and X̂ be complex spaces as in Proposition 23. Assume
furthermore that X∗1 and X∗2 are totally incomparable hereditarily indecomposable Banach
space. Then every operator on X̂∗ is a strictly singular perturbation of an homothetic map.

Proposition 25 For i = 1, 2, there exist Xi complex reflexive quotient hereditarily indecom-
posable Banach space, Zi subspace of Xi, such that Z1 and Z2 are isometric, X1/Z1 and X2/Z2

are totally incomparable, and X∗1 and X∗2 are totally incomparable.

By a simple generalization explained in the Appendix, it is even possible to build for any
n a H.I. space X̂ such that X̂∗ contains a direct sum of n subspaces, and every operator on
X̂∗ is a strictly singular perturbation of an homothetic map.
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3.1 Proof of Proposition 23

Some Definitions Let X be a Banach space. Let Y be a subspace of X. We shall denote by
iY (resp. IX) the identity map from Y (resp. X) to X. Following [GM], we will say that an
operator from Y to X is infinitely singular if its restriction to a finite codimensional subspace
is never an isomorphism into. An operator S from Y to X is said to be strictly singular if
the restriction of S to a subspace is never an isomorphism into (see [LT, 75–80]). This is
equivalent to saying that for any ε > 0, any Z, there exists z in Z such that ‖S(z)‖ ≤ ε‖z‖.
We denote by S(Y,X) the space of strictly singular operators from Y to X.

Two subspaces Y and Z of X are said to be Id +S-isomorphic if there exists an isomor-
phism of the form IY + S from Y onto Z, with S ∈ S(Y,X). It is proved easily that this is an
equivalence relation.

The subspace Y is said to be quasi-maximal if Y and any subspace W of X have Id +S-
isomorphic subspaces. By Corollary F1, X is hereditarily indecomposable if and only if
every subspace of X is quasi-maximal; it follows easily that if X has a quasi-maximal hered-
itarily indecomposable subspace then X is hereditarily indecomposable. By Lemma F2, if
the restriction of S ∈ L(X) to some quasi-maximal subspace of X is strictly singular, then
S is strictly singular.

Proof For xi in Xi , i = 1, 2, we denote by x̂i the class of xi in Xi/Zi , by (̂x1, x2) the class of
(x1, x2) in X̂. By definition,

‖(̂x1, x2)‖ = inf
z∈Z

(‖x1 + z‖ + ‖x2 − z‖).

It follows that the space X̂1 = {(̂x1, 0), x1 ∈ X1} is isometric to X1, the space X̂2 =

{(̂0, x2), x2 ∈ X2} is isometric to X2, and the space Ẑ = {(̂z, 0), z ∈ Z} = {(̂0, z), z ∈ Z} is
isometric to Z. As an easy consequence, we have the relation

X̂/Ẑ = X̂1/Ẑ ⊕ X̂2/Ẑ ' X1/Z1 ⊕ X2/Z2,

so

Ẑ⊥ = X̂2
⊥
⊕ X̂1

⊥
' (X1/Z1)∗ ⊕ (X2/Z2)∗,

and this proves that X̂∗ is not H.I. Now for i = 1, 2, we define a linear operator φi : X̂ →

Xi/Zi by φi

(
(̂x1, x2)

)
= x̂i . It is easy to check that φi is well defined. Now let W be

a subspace of X̂. There exists an i such that φi/W is infinitely singular: indeed, if φ1/W

and φ2/W are both not infinitely singular, then there exists a subspace V of W on which
φ1 and φ2 are isomorphisms into, so that X1/Z1 and X2/Z2 have isomorphic subspaces, a
contradiction.

Now assume for example that φ1/W is infinitely singular. Then there exists a norm 1

basic sequence (wn)n∈N in W such that φ1(wn)
+∞
−−→ 0. By definition of φ1, this means that

d(wn, X̂2)
+∞
−−→ 0. It follows easily that W and X̂2 have Id +S-isomorphic subspaces. As X̂2
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is isometric to X2, it is H.I.; it follows that Ẑ is quasi-maximal in X̂2, so W and Ẑ also have
Id +S-isomorphic subspaces.

We have now proved that for every subspace W of X̂, W and Ẑ have Id +S-isomorphic
subspaces. This means that Ẑ is quasi-maximal in X̂. As Ẑ is H.I., this implies that X̂ is H.I.

3.2 Proof of Proposition 24

More definitions An operator on X is Fredholm if TX is closed, and the kernel and cok-
ernel of T are finite dimensional. According to [GM], every operator on a hereditarily
indecomposable space is either Fredholm or strictly singular. Also, if T is Fredholm then
T∗ is Fredholm.

We also recall a definition and some results from [F2]: a Banach space is said to be HDn

if the maximum number of subspaces in a direct sum is finite and equal to n. Clearly, any
subspace of a HDn space is HDm for some m ≤ n. By Corollary F1, every direct sum of
n subspaces is quasi-maximal in a HDn space. By Corollary F2, the direct sum of n H.I.
spaces is HDn. Finally if Y is complex HDm, included in X complex HDn, the dimension
of L(Y,X)/S(Y,X) is finite and there exists an upper estimate (smaller than mn) for it
(Proposition F4).

Proof If T∗ ∈ L(X̂∗) then there exists some scalar λ such that T − λIX̂ = S, strictly
singular, and T∗ − λIX̂∗ = S∗, so it is enough to prove that if S ∈ L(X̂) is strictly singular,
then S∗ ∈ L(X̂∗) is strictly singular.

So assume S∗ ∈ L(X̂∗) is not strictly singular. First notice that X̂1
⊥

is H.I., since

X̂1
⊥
' Z⊥2 ⊂ X∗2 . Likewise, X̂2

⊥
is H.I. It follows that X̂∗ is HD2: indeed it is included in

the HD2 space X∗1 ⊕X∗2 and contains the HD2 space X̂1
⊥
⊕ X̂2

⊥
. It follows that X̂1

⊥
⊕ X̂2

⊥

is quasi-maximal in X̂∗, and so that the restriction of S∗ to X̂1
⊥
⊕ X̂2

⊥
is not strictly sin-

gular (Lemma F2). So the restriction of S∗ to say X̂1
⊥

is not strictly singular. Now by
Proposition F4,

dim L(X̂1
⊥
, X̂∗)/S(X̂1

⊥
, X̂∗) ≤ dim L(X̂1

⊥
, X̂1

⊥
⊕ X̂2

⊥
)/S(X̂1

⊥
, X̂1

⊥
⊕ X̂2

⊥
),

and this last dimension is equal to

dim L(X̂1
⊥

)/S(X̂1
⊥

) + dim L(X̂1
⊥
, X̂2

⊥
)/S(X̂1

⊥
, X̂2

⊥
) = 1 + 0 = 1,

because X̂1
⊥

is H.I. and X̂1
⊥
↪→ X∗2 and X̂2

⊥
↪→ X∗1 are totally incomparable. So for

some non zero scalar λ, S∗
|X̂1
⊥ − λi

X̂1
⊥ is strictly singular. This means that the restriction

of S∗ − λIX̂∗ to X̂1
⊥

is strictly singular. So S∗ − λIX̂∗ is not Fredholm, and S − λIX̂ is not
Fredholm. As λ 6= 0, it follows that S is not strictly singular.
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3.3 Construction of Spaces Satisfying Proposition 25

Following the Gowers-Maurey’s method, we shall equip c00 with two different norms ‖ · ‖1

and ‖ · ‖2, forcing however these norms to be equal on Z00, the algebraic subspace of c00

generated by {e2n+1, n ∈ N}. Then we shall take the completions of c00 under these norms
to obtain the Banach spaces X1 and X2 in Proposition 25 (and the closure of Z00 in those
spaces to obtain their subspaces Z1 and Z2).

Let Q be the set of sequences with finite range, rational coordinates and maximum at
most one in modulus. We recall that J is a set of integers { jn, n ∈ N}, such that f ( j1) > 256
and for all n, log log log jn+1 ≥ 4 j2

n, that K = { j1, j3, j5, . . . }, and L = { j2, j4, j6, . . . }.
Furthermore, we let L1 = { j2, j6, j10, . . . }, L2 = { j4, j8, . . . }. For i = 1, 2, let σi be an
injection from the collection of finite sequences of successive elements of Q to Li . We now
need some definitions.

Definition 10 A dual couple is a couple (G,H) of balanced bounded convex subsets of c00.
Let (G,H) be a dual couple. A vector in c00 is an N-Schlumprecht sum in G if it is of

the form 1/ f (N)
∑N

i=1 y∗i , where the y∗i ’s are in G and y∗1 < · · · < y∗N . A Schlumprecht
sum in G is a N-Schlumprecht sum in G for some N . The set of Schlumprecht sums in G is
denoted by Σ(G). In the same way, we define Schlumprecht sums in H.

A special sequence in G is a sequence of successive vectors x∗1 < · · · < x∗k , with k ∈ K,
such that for i = 1, . . . , k, x∗i is an Mi-Schlumprecht sum in G with Mi ≥ j2k, and Mi =

σ1(x∗1 , . . . , x
∗
i−1) for i = 2, . . . , k. A special sum in G is a sum of the form 1/

√
f (k)
∑k

i=1 x∗i ,
where x∗1 < · · · < x∗k is a special sequence in G. The set of special sums in G is denoted by
S(G). We similarly define special sequences in H and special sums in H replacing σ1 by σ2 in
the above definitions.

So far, we just defined the notions needed for a usual Gowers-Maurey procedure in G
and in H separately. We now need to add elements to link the two procedures. To do
this, we define an associated dual couple as a dual couple (G,H) such that there exist two
multivalued functions a : G→ H and b : H → G satisfying the following four properties.

(a) for all x∗ ∈ G, all y∗ ∈ a(x∗), y∗ − x∗ is in Z⊥00;
(b) for all x∗ ∈ G, all y∗ ∈ a(x∗), ran(y∗) ⊂ ran(x∗);
(c) for all x∗ ∈ G ∩ Z⊥00, a(x∗) = {0};
(d) for all N-Schlumprecht sum x∗ in G with x∗ in G, a(x∗) contains an N-Schlumprecht

sum in H,

and the similar four properties for b.
The multifunction a from G to H allows us to define so-called “shadows” in H of ele-

ments in G (and likewise for b). Actually, we will only define shadows in G (resp. H) of
special sequences in H (resp. G).

Definition 11 Let (G,H) be an associated dual couple.
A shadow sequence in G is a sequence of successive vectors x∗1 < · · · < x∗k such that there

exists a special sequence y∗1 < · · · < y∗k in H such that for all i, x∗i is an Mi-Schlumprecht
sum in G belonging to b(y∗i ), where Mi is the integer associated to y∗i in the definition of

the special sequence. A shadow sum in G is a sum of the form 1/
√

f (k)
∑k

i=1 x∗i , where
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x∗1 < · · · < x∗k is a shadow sequence in G. The set of shadow sums in G is denoted by
s(G,H).

We similarly define shadow sequences and shadow sums in H, and denote the set of
shadow sums in H by s(H,G).

To define the norms, we shall now build by induction an associated dual couple (C,D)
where C (resp. D) is meant to be almost the dual unit ball of X1 (resp. X2). We shall build
C as

⋃
n∈N Cn, building the increasing sequence Cn by induction. We shall also build a by

induction, defining a function an from Cn to Dn at each step n; but to simplify the notation,
we shall denote all the terms of the sequence by a (and we shall do symmetrically the same
for D and b).

In this situation, Property (a) ensures that the subspaces Z1 and Z2 are isometric. Prop-
erties (b) and (d) allow us to give convenient properties to the images by a of the special
sequences, that is the shadow sequences. Property (c) allows the quotient spaces X1/Z1 and
X2/Z2 (resp. the dual spaces X∗1 and X∗2 ) to be totally incomparable. As pointed out at
the end of 2.4, the action of shadow sums will be small, so that adding them allows new
properties but doesn’t prevent the Q.H.I. property for X1 or X2.

Construction At the first step, we define C0 = B(l1) and D0 = B(l1), a and b by
a(
∑

i∈N λie∗i ) = b(
∑

i∈N λie∗i ) =
∑

i odd λie∗i . It is easy to check that (C0,D0) is an as-
sociated dual couple.

Now assume we are given an associated dual couple (Cn−1,Dn−1), with functions a :
Cn−1 → Dn−1 and b : Dn−1 → Cn−1. We define C ′n−1 to be Σ(Cn−1) ∪ S(Cn−1) ∪

s(Cn−1,Dn−1), and Cn to be the set of elements of the form E(
∑M

i=1 λix∗i ), where E is an

interval projection,
∑M

i=1 |λi| = 1, and for all i, x∗i is in C ′n−1. We define Dn in a similar
way.

We now extend a to Cn. If x∗ ∈ Cn ∩ Z⊥00, then we let a(x∗) = {0}. We now define a
construction if x∗ is in Cn and not in Z⊥00.

The set a(x∗) may be already defined or not (it is when x∗ is in Cn−1); if not we may
assume a(x∗) = ∅. Then we add new values to the set a(x∗) in each of the following cases
(notice that at least one of the possibilities happens, so that a is well defined on the whole
of Cn, but that the possibilities are not exclusive).

- If x∗ is a Schlumprecht sum of the form f (N)−1
∑N

i=1 x∗i with x∗i ∈ Cn−1 then we add

to a(x∗) the set f (N)−1
∑N

i=1 a(x∗i ).

- If x∗ is a special sum of the form f (k)−1/2
∑k

i=1 x∗i where x∗i is an (Mi , f )-form in Cn−1

then we add to the set a(x∗) the set of all sums of the form f (k)−1/2
∑k

i=1 y∗i , where y∗i is
an (Mi, f )-form in a(x∗i ).

- If x∗ is a shadow sum of the form f (k)−1/2
∑k

i=1 x∗i with x∗i ∈ b(y∗i ) and y∗1 , . . . , y
∗
k

is a special sum in Dn−1, then we add to the set a(x∗) the singleton { f (k)−1/2
∑k

i=1 Ey∗i },
where E = ran(x∗).

- If x∗ is the projection of a convex combination of elements of the three previous forms,
that is, x∗ = ran(x∗)(

∑
i λix∗i ), then we add to the set a(x∗) the set ran(x∗)

(∑
i λia(x∗i )

)
,

a(x∗i ) being defined as above whether x∗i is a Schlumprecht sum, a special sum, or a shadow
sum in Cn−1. It is important to remember that we only use this construction when x∗ is
not in Z⊥00.
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It is then easy to check that a (resp. b) takes its values in Dn (resp. in Cn) and that it
still satisfies the four properties (a)–(d), so (Cn,Dn) is an associated dual couple. Define
C as

⋃
n∈N Cn and D as

⋃
n∈N Dn; the multifunction a (resp. b) is defined on C (resp. D),

so (C,D) is an associated dual couple as well. Then define ‖ · ‖1 = supx∗∈C〈x
∗, ·〉 (resp.

‖ · ‖2 = supy∗∈D〈y
∗, ·〉), X1 (resp. X2) as the completion of c00 under ‖ · ‖1 (resp. ‖ · ‖2)

and Z1 (resp. Z2) as the closure of Z00 in X1 (resp. X2).

Remark 26 With Definition 5, a special sequence in X1 is an L1-sequence, a shadow se-
quence in X1 is an L2-sequence. It follows that the space X1 has GM-type, the set S ′ being
the set of special sequences in X∗1 and the set S ′ ′ being the set of shadow sums in X∗1 . The
symmetric facts are of course true for X2.

Lemma 27 The spaces Z1 and Z2 are isometric.

Proof Let z be an element of Z00. Then

‖z‖1 = sup
x∗∈C

(〈x∗, z〉) = sup
x∗∈C,y∗∈a(x∗)

(〈x∗ − y∗, z〉 + 〈y∗, z〉).

Now by definition of a, for x∗ ∈ C and y∗ ∈ a(x∗), x∗−y∗ is in Z⊥00, so 〈x∗−y∗, z〉 = 0; and
as y∗ is in D, (〈y∗, z〉) ≤ ‖z‖2. It follows that ‖z‖1 ≤ ‖z‖2, and by symmetry, ‖z‖1 = ‖z‖2.

Lemma 28 Let y∗1 , . . . , y
∗
k be a special sequence in Z⊥2 . Let x1 < · · · < xk in X1 be associated

to y∗1 , . . . , y
∗
k . Let x =

∑k
i=1 xi . Then

‖x‖ ≤ 5k/ f (k).

Proof The space X1 has GM-type, so it is enough to prove the hypothesis of Lemma 16. By
Lemma 17, it is true for every special sum, so now consider z∗ be a shadow sum in X∗1 and
E an interval.

For every i, let Mi be such that y∗i is an (Mi, f )-form. There exists a special sequence

v∗1 , . . . , v
∗
k in X∗2 such that z∗ = 1/

√
f (k)
∑k

i=1 z∗i with for every i, z∗i ∈ b(v∗i ); let Ni be
such that v∗i is an (Ni, f )-form; by definition of a shadow sum, z∗i is also an (Ni , f )-form.
Let I = sup{i/Mi = Ni}, or 0 if no such I exists. For i < I, because σ2 is injective, we have
that v∗i = y∗i . It follows that v∗i is in Z⊥2 , so b(v∗i ) = {0}, and z∗i = 0. For i > I, the now
usual application of Lemma 15 shows that |z∗i (Ex j )| ≤ 1/k2. Finally,

|z∗(Ex)| ≤ 1/
√

f (k)
(
0 + |z∗I (xI)| + k2.k−2

)
≤ 2/

√
f (k) ≤ 1/4.

Lemma 29 The spaces X1/Z1 and X2/Z2 are totally incomparable.

Proof We now assume that there exists an isomorphism α between a subspace W1/Z1 of
X1/Z1 and a subspace W2/Z2 of X2/Z2 and we intend to find a contradiction.
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First notice that X2/Z2 has a basis (namely the basis (e ′2n)n∈N dual to the basis (e∗2n)n∈N

of Z⊥2 ). By Lemma 11, there exists a sequence (wn)n∈N of lni +
1 vectors almost in W1, 4 + ε0-

normed in Z⊥1 , and up to perturbations on α and W1, we may assume that (wn)n∈N is
actually in W1 and that the sequence

(
α(ŵn)

)
is a sequence of unit vectors, successive with

respect to (e ′2n).
Now let k ∈ K. We may find a unit R.I.S vector x1 =

∑M1

i=1 xi
1 in W1, and xi∗

1 in Z⊥1 such
that xi∗

1 (xi
1) ≥ (4 + ε0)−1‖xi

1‖, so that

‖x̂i
1‖ ≥ xi∗

1 (x̂i
1) = xi∗

1 (xi
1) ≥ (4 + ε0)−1‖xi

1‖.

For i = 1, . . . ,M1, let yi∗
1 ∈ Z⊥2 be a functional that norms α(x̂i

1) and such that

ran(yi∗
1 ) ⊂ ran

(
α(x̂i

1)
)

, and let y∗1 be the (M1, f )-form f (M1)−1
∑M1

i=1 yi∗
1 . As y∗1

(
α(x̂1)

)
=

f (M1)−1
∑M1

i=1 ‖α(x̂i
1)‖ ≥

(
(4 + ε0)‖α−1‖ f (M1)

)−1∑M1

i=1 ‖x
i
1‖, by Lemma 12,

y∗1
(
α(x̂1)

)
≥
(
(4 + ε0)(3 + ε0)‖α−1‖

)−1
,

and by a perturbation, if we only ask that y∗1
(
α(x̂1)

)
≥ (13‖α−1‖)−1, we may assume that

y∗1 is in Q, and that ran(y∗1 ) ⊂ ran
(
α(x̂1)

)
.

Repeating this procedure, we obtain vectors xi in W1, and y∗i in B(Z⊥2 ), such that
x1, . . . , xk is associated to the special sequence y∗1 , . . . , y

∗
k in Z⊥2 . It follows that

∥∥∥α(
k∑

i=1

x̂i

)∥∥∥ ≥ f (k)−1/2
k∑

i=1

y∗i
(
α(x̂i)

)
≥ (13‖α−1‖)−1k f (k)−1/2,

while as (xi) is associated to (y∗i ), by Lemma 28,

∥∥∥
k∑

i=1

x̂i

∥∥∥ ≤ ∥∥∥
k∑

i=1

xi

∥∥∥ ≤ 5k f (k)−1.

It follows that ‖α‖ ‖α−1‖ ≥ 65−1
√

f (k), and this for any k in K, contradicting the bound-
edness of α.

Lemma 30 The spaces X∗1 and X∗2 are totally incomparable.

Proof As they are hereditarily indecomposable, if X∗1 and X∗2 had isomorphic subspaces,
passing to further subspaces which Id +S-embed in Z⊥1 and Z⊥2 respectively, we would find
an isomorphism β between a subspace W1∗ of Z⊥1 and a subspace W2∗ of Z⊥2 .

By Lemma 11 and a perturbation on W1∗ and β, find a successive sequence of lni +
1 vectors

in X1 4 + ε0-normed by (w∗n )n∈N , successive in W1∗, such that
(
β(w∗n )

)
is a sequence of unit

vectors, successive with respect to (e∗2n). Applying the usual method, get for any k ∈ K,
vectors xi in X1, x∗i in W1∗, such that x∗i (xi) ≥ (13‖β‖)−1 and x1, . . . , xk is associated to
the special sequence β(x∗1 ), . . . , β(x∗k ) in W2∗. By Lemma 28, it follows that

∥∥∥
k∑

i=1

xi

∥∥∥ ≤ 5k f (k)−1,
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so ∥∥∥
k∑

i=1

x∗i

∥∥∥ ≥ k
/(

13‖β‖
∥∥∥

k∑
i=1

xi

∥∥∥) ≥ (65‖β‖)−1 f (k),

while ∥∥∥β(
k∑

i=1

x∗i

)∥∥∥ ≤√ f (k).

It follows that ‖β‖ ‖β−1‖ ≥ 65−1
√

f (k), and this for any k in K, contradicting the bound-
edness of β.

4 Appendix

We give a sketch of the proof of the existence of a hereditarily indecomposable space X̂ such
that X̂∗ contains a direct sum of n subspaces, and every operator on X̂∗ is a strictly singular
perturbation of an homothetic map.

Proposition A1 Let n ∈ N. For i = 1, . . . , n, let Xi be a hereditarily indecomposable Banach
space, let Zi be a subspace of Xi . Assume that the spaces Zi are all isometric to a same space Z,
and that for any i 6= j, Xi/Zi and X j/Z j are infinite dimensional and totally incomparable.
Let Z[1,n] = {(z1, . . . , zn) ∈ Z1 × · · · × Zn/

∑n
i=1 zi = 0}. Let X̂ be the quotient space

(X1 × · · · × Xn)/Z[1,n]. Then X̂ is hereditarily indecomposable and X̂∗ contains a direct sum
of n subspaces.

Proof (sketch) We use the same notation as in the case n = 2, in particular we let Ẑ =

{ ̂(z, 0, . . . , 0), z ∈ Z}, and we show that

Ẑ⊥ '
n⊕

i=1

(Xi/Zi)
∗.

Now we consider W a subspace of X̂. There exists at most one value iW of i such that
φi/W is not infinitely singular, otherwise two quotient spaces Xi/Zi and X j/Z j would have
isomorphic subspaces. It follows easily that W and X̂iW have Id +S-isomorphic subspaces,
and finally that X̂ is H.I.

Proposition A2 Let n ∈ N. For i = 1, . . . , n, let Xi,Zi and X̂ be complex spaces as in
Proposition A1. Assume furthermore that for any i, X∗i is hereditarily indecomposable, and
that for any i 6= j, X∗i and X∗j are totally incomparable. Then every operator on X̂∗ is a strictly
singular perturbation of an homothetic map.

Proof It follows exactly the case n = 2.

Proposition A3 Let n ∈ N. For i = 1, . . . , n, there exists Xi complex quotient hereditarily
indecomposable reflexive Banach space, Zi subspace of Xi, such that all Zi are isometric, and
for any i 6= j, Xi/Zi and X j/Z j (resp. X∗i and X∗j ) are totally incomparable.
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Proof (sketch) We make a construction similar to the case n = 2, using a partition of L in
n subsets L1, . . . , Ln. We build n balanced bounded convex subsets C1, . . . ,Cn of c00, and
multifunctions ai j : Ci → C j for i 6= j, such that for all i 6= j, (Ci ,C j) is an associated dual
couple. The difference is that we have n − 1 kinds of shadow sequences in each Ci (those
coming from special sequences in C j for all j 6= i).

Notice that X̂∗ is not decomposable, otherwise X̂ reflexive would be decomposable. It
follows:

Corollary A4 Let n ∈ N∗. Then there exists a non decomposable HDn space.

Thanks The main part of this article is part of my Ph.D. thesis written under the direction
of B. Maurey. I am very grateful to him for his valuable help.
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