HILBERT-KUNZ MULTIPLICITY AND REDUCTION MOD p

V. TRIVEDI

Abstract. We show that the Hilbert-Kunz multiplicities of the reductions to positive characteristics of an irreducible projective curve in characteristic 0 have a well-defined limit as the characteristic tends to infinity.

Let R be a Noetherian ring of prime characteristic p > 0 and of dimension d and let $I \subseteq R$ be an ideal of finite colength. Then we recall that the Hilbert-Kunz multiplicity of R with respect to I is defined as

$$e_{HK}(R,I) = \lim_{n \to \infty} \frac{\ell(R/I^{[p^n]})}{p^{nd}},$$

where

 $I^{[p^n]} = n$ -th Frobenius power of I= ideal generated by p^n -th power of elements of I

is an ideal of finite colength and $\ell(R/I^{[p^n]})$ denotes the length of the R-module $R/I^{[p^n]}$.

We note that this limit always exists as proved by Monsky. However, unlike Hilbert-Samuel multiplicity, this multiplicity could depend on the characteristic of the ring (see example of [HM] given here in Section 2).

In this paper, we study the behaviour of Hilbert-Kunz multiplicities (abbreviated henceforth to HK multiplicities) of the reductions to positive characteristics of an irreducible projective curve in characteristic 0.

For instance, consider the following question. Let f be a nonzero irreducible homogeneous element in the polynomial ring $\mathbb{Z}[X_1, X_2, \dots, X_r]$, and for any prime number $p \in \mathbb{Z}$, let $R_p = \mathbb{Z}/p\mathbb{Z}[X_1, X_2, \dots, X_r]/(f)$ (this is the homogeneous coordinate ring of a projective variety over $\mathbb{Z}/p\mathbb{Z}$). Let

Received April 28, 2005.

Revised October 31, 2005, November 15, 2005.

 $2000 \ {\rm Mathematics \ Subject \ Classification:} \ 13{\rm D}40, \ 14{\rm H}60, \ 13{\rm H}15.$

 $e_{HK}(R_p)$ denote the Hilbert-Kunz multiplicity of R_p with respect to the graded maximal ideal. Then one can ask: does $\lim_{p\to\infty} e_{HK}(R_p)$ exist?

This question was first encountered by the author in a survey article [C], Problem 4, Section 5 (see also Remark 4.10 in [B1]). This seems a difficult question in general, as so far, there is no known general formula for HK multiplicity in terms of 'better understood' invariants. There does not seem to even be a heuristic argument as to why the limit should exist, in general, in arbitrary dimensions.

However in the case of a projective curve (equivalently 2 dimensional standard graded ring) over an algebraically closed field of characteristic p>0, one can express HK multiplicity in terms of (i) "standard" invariants of the curve which are constant in a flat family and (ii) normalized slopes of the quotients occuring in a strongly semistable Harder-Narasimhan filtration (HN filtration) (see Definitions 1.2 and 1.9) of the associated vector bundle on the curve (see [B1] and [T1]).

Hence, we may pose the question in the following more general setting. Given a projective curve X defined over a field k of char 0 with a vector bundle V on X, let (A, X_A, V_A) be a spread of the pair (X, V) (details given above Proposition 2.2). For all closed points $s \in \operatorname{Spec} A$, let $V_s = V_A \otimes \overline{k(s)}$. Now for given $k \geq 0$ and each such V_s , let

$$0 \subset F_1^s \subset \cdots \subset F_{t_s}^s \subset F_{t_s+1}^s = F^{k*}V_s$$

be the HN filtration of $F^{k*}V_s$. Denote

$$r_i(F^{k*}V_s) = \operatorname{rank}\left(\frac{F_i^s}{F_{i-1}^s}\right)$$
 and the normalized slope $a_i(F^{k*}V_s) = \frac{1}{p^k}\mu\left(\frac{F_i^s}{F_{i-1}^s}\right)$.

Let $s_0 \in \operatorname{Spec} A$ be the generic point of $\operatorname{Spec} A$. Then the question is:

(0.1) For given
$$k \ge 0$$
, does $\lim_{s \to s_0} \sum_i r_i (F^{k*} V_s) a_i (F^{k*} V_s)^2$ exist?

We approach the question as follows. Following the notation of [L], for a vector bundle V on a nonsingular projective curve X in characteristic p, we attach convex polygons as follows. Consider the HN filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_l \subset E_{l+1} = V$$

of V. For $k \geq 0$, consider the HN filtration

$$0 = F_0 \subset F_1 \subset \dots \subset F_t \subset F_{t+1} = F^{k*}V$$

of the iterated Frobenius pull back bundle $F^{k*}V$. Let $P(F_i) = (\operatorname{rank} F_i, \operatorname{deg} F_i/p^k)$ in \mathbb{R}^2 . Let $HNP_{p^k}(V)$ be the convex polygon in \mathbb{R}^2 obtained by connecting $P(F_0), \ldots, P(F_{t+1})$ successively by line segments, and connecting the last one with the first one.

Let $p \geq 4(\operatorname{genus}(X) - 1)(\operatorname{rank} V)^3$. Then we prove (Lemma 1.8) that the vertices of $HNP_{p^k}(V)$ are retained as a subset of the vertices of $HNP_{p^k}(V)$ and hence $HNP_{p^k}(V) \supset HNP_{p^0}(V)$. In particular, for $k \gg 0$, the HN filtration of the bundle $F^{k*}(V)$ is strongly semistable, therefore Theorem 2.7 of [L] comes as a corollary, in this case.

Now, for every vector bundle F_j of the HN filtration of $F^{k*}(V)$, if we denote the slope of the line segment, joining $P(F_{j-1})$ and $P(F_j)$, by $\mu_j(F^{k*}(V))/p^k$ (see Notation 1.4), and if E_i denotes the unique vector bundle occuring in the HN filtration of V such that F_j 'almost descends to' E_i (see Definition 1.12), then we prove (Lemma 1.14) that

$$\mu_j(F^{k*}V)/p^k = \mu_i(V) + O\left(\frac{1}{p}\right).$$

Hence $\lim_{p\to\infty} \operatorname{Area} HNP_{p^k}(V) = \operatorname{Area} HNP_{p^0}(V)$. In both Lemmas 1.8 and 1.14 we make crucial use of a result from the paper [SB] of Shepherd-Barron.

Now, following the notation set up for the question (0.1), if we take a vector bundle F_j^s occurring in the HN filtration of $F^{k*}(V_s)$ such that it almost descends to a vector bundle E_i^s occurring in the HN filtration of V_s then we get

$$a_j(F^{k*}(V_s)) := \frac{\mu_j(F^{k*}V_s)}{p^k} = \mu_i(V_s) + O\left(\frac{1}{p}\right),$$

where $p = \operatorname{char} k(s)$. From this we conclude (Proposition 2.2) that the question (0.1) has an *affirmative* answer.

In particular (Theorem 2.4) the Hilbert-Kunz multiplicities of the reductions to positive characteristics of an irreducible projective curve in characteristic 0 have a well-defined limit as the characteristic tends to ∞ . This limit, which is (relatively) an easier invariant to compute, is a *lower bound* for the HK multiplicities of the reductions (mod p), though examples of Han-Monsky show that the convergence is <u>not</u> monotonic as $p \to \infty$, in general (see Remark 2.7).

§1. The HN slope of F^*V in terms of the HN slope of V

Let X be a nonsingular projective curve of genus $g \geq 1$, over an algebraically closed field k of characteristic p > 0. We recall the following definitions.

DEFINITION 1.1. Let V be a vector bundle (i.e., locally free coherent sheaf of \mathcal{O}_X -modules) on X. We say V is a *semistable* vector bundle on X if, for every subsheaf of \mathcal{O}_X -modules $F \subseteq V$, we have

$$\mu(F) := \frac{\deg F}{\operatorname{rank} F} \le \mu(V),$$

where for a rank r vector bundle V on X we define

 $\deg V = \text{degree of the line bundle } \bigwedge^r V \text{ on } X.$

DEFINITION 1.2. Let V be a vector bundle on X. A filtration of V by vector subbundles

$$(1.1) 0 = E_0 \subset E_1 \subset \cdots \subset E_l \subset E_{l+1} = V$$

is a ${\it Harder-Narasimhan\ filtration\ if}$

- (1) the vector bundles $E_1, E_2/E_1, \ldots, E_{l+1}/E_l$ are all semistable.
- (2) $\mu(E_1) > \mu(E_2/E_1) > \cdots > \mu(E_{l+1}/E_l)$.

Remark~1.3. For any Harder-Narasimhan filtration (we would call it HN filtration from now onwards), denoted as in Equation (1.1), the following is true (see [HN], Lemma 1.3.7),

- (1) the filtration always exists and is unique for given V,
- (2) $\mu(E_1) > \mu(E_2) > \cdots > \mu(E_{l+1}) = \mu(V)$,
- (3) $\mu(E_i/E_{i-1}) \ge \mu(V) \ge \mu(E_{i+1}/E_i)$, for some $1 \le i \le l$.

NOTATION 1.4. If

$$0 = E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_l \subset E_{l+1} = V$$

is the HN filtration for a vector bundle V on X then we denote

$$\mu_i(V) = \mu\left(\frac{E_i}{E_{i-1}}\right), \quad \mu_{\max}(V) = \mu(E_1) \quad \text{and} \quad \mu_{\min}(V) = \mu\left(\frac{V}{E_l}\right).$$

Lemma 1.5. Let V be a vector bundle over X of rank r and let

$$0 = E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_l \subset E_{l+1} = V$$

be the HN filtration of V. Then

$$r^3 > \frac{r-1}{\mu_i(V) - \mu_{i+1}(V)}.$$

Proof. Let $\mu_i = \mu_i(V)$. Let us denote $\bar{r}_i = \operatorname{rank} E_i/E_{i-1}$ and $\bar{d}_i = \operatorname{deg} E_i/E_{i-1}$. Then

$$\frac{r-1}{\mu_i - \mu_{i+1}} = \frac{r-1}{\bar{d}_i/\bar{r}_i - \bar{d}_{i+1}/\bar{r}_{i+1}} = \frac{(r-1)\bar{r}_i\bar{r}_{i+1}}{\bar{d}_i\bar{r}_{i+1} - \bar{d}_{i+1}\bar{r}_i}.$$

But

$$\mu_i - \mu_{i+1} > 0 \implies \bar{d}_i \bar{r}_{i+1} - \bar{d}_{i+1} \bar{r}_i > 0 \implies \bar{d}_i \bar{r}_{i+1} - \bar{d}_{i+1} \bar{r}_i \ge 1.$$

Therefore

$$\frac{r-1}{\mu_i - \mu_{i+1}} \le (r-1)\bar{r}_i \bar{r}_{i+1} < r^3.$$

This proves the lemma.

DEFINITION 1.6. If X is a projective variety defined over an algebraically closed field of characteristic p > 0, then the absolute Frobenius morphism $F: X \to X$ is a morphism of schemes which is identity on the underlying set of X and on the underlying sheaf of rings $F^{\#}: \mathcal{O}_X \to \mathcal{O}_X$ is the p^{th} power map.

Remark 1.7. For a vector bundle V on X, the Frobenius pull back F^*V is a vector bundle on X and

$$\operatorname{rank} F^*V = \operatorname{rank} V$$
 and $\mu(F^*V) = p\mu(V)$.

We recall the following crucial result by Shepherd-Barron.

COROLLARY 2^p . ([SB]) If X is a nonsingular projective curve of genus g and if V is a semistable vector bundle on X of rank r such that F^*V is not semistable then

$$0 < \mu_{\max}(F^*V) - \mu_{\min}(F^*V) \le (2g - 2)(r - 1).$$

Now we prove the following crucial lemma.

LEMMA 1.8. Let V be a vector bundle on X with the HN filtration as in Lemma 1.5. Assume that char $k = p > 4(g-1)r^3$. Then,

$$F^*E_1 \subset F^*E_2 \subset \cdots \subset F^*E_l \subset F^*V$$

is a subfiltration of the HN filtration of F^*V , that is, if

$$0 \subset \widetilde{E}_1 \subset \cdots \subset \widetilde{E}_{l_1+1} = F^*V$$

is the HN filtration of F^*V then for every $1 \le i \le l$ there exists $1 \le j_i \le l_1$ such that $F^*E_i = \widetilde{E}_{j_i}$.

Proof. For each $0 \le i \le l$, let

$$F^*E_i \subset E_{i1} \subset \cdots \subset E_{it_i} \subset F^*E_{i+1}$$

be a filtration of vector bundles on X such that

$$0 \subset \frac{E_{i1}}{F^*E_i} \subset \frac{E_{i2}}{F^*E_i} \subset \cdots \subset \frac{F^*E_{i+1}}{F^*E_i}$$

is the HN filtration of $F^*(E_{i+1}/E_i)$. Now it is enough to prove the

CLAIM.

$$0 \subset E_{01} \subset \cdots \subset E_{0t_0} \subset F^* E_1 \subset \cdots \subset F^* E_i \subset E_{i1} \subset \cdots$$
$$\cdots \subset E_{it_i} \subset F^* E_{i+1} \subset \cdots \subset F^* V$$

is the HN filtration of F^*V .

Proof of the claim. By construction, for $0 \le i \le l$ and for $1 \le j < t_i$, we have

$$\mu\left(\frac{E_{ij}}{E_{i,j-1}}\right) > \mu\left(\frac{E_{i,j+1}}{E_{ij}}\right)$$

and

$$\frac{E_{ij}}{E_{i,j-1}}$$
, $\frac{F^*E_i}{E_{i-1,t_{i-1}}}$ and $\frac{E_{i1}}{F^*E_i}$

are semistable. Hence, by Definition 1.2, it is enough to prove that

$$\mu\left(\frac{F^*E_i}{E_{i-1,t_{i-1}}}\right) > \mu\left(\frac{E_{i1}}{F^*E_i}\right).$$

Now, by Corollary 2^p of [SB], we have

(1.2)
$$0 \le \mu_{\max} F^* \left(\frac{E_{i+1}}{E_i} \right) - \mu_{\min} F^* \left(\frac{E_{i+1}}{E_i} \right) \le (2g - 2)(r - 1).$$

By Remark 1.3, for all $0 \le i \le l$, we have

$$\mu_{\max} F^* \left(\frac{E_{i+1}}{E_i} \right) \ge \mu \left(F^* \left(\frac{E_{i+1}}{E_i} \right) \right) \ge \mu_{\min} F^* \left(\frac{E_{i+1}}{E_i} \right).$$

Therefore

$$0 \le \mu_{\max} F^* \left(\frac{E_{i+1}}{E_i} \right) - \mu \left(F^* \left(\frac{E_{i+1}}{E_i} \right) \right) \le (2g - 2)(r - 1).$$

Let $\mu_i = \mu_i(V)$. Then we have

(1.3)
$$0 \le \mu \left(\frac{E_{i1}}{F^* E_i} \right) - p \mu_{i+1} \le (2g - 2)(r - 1).$$

Similarly

$$0 \le \mu \left(F^* \left(\frac{E_i}{E_{i-1}} \right) \right) - \mu_{\min} \left(F^* \left(\frac{E_i}{E_{i-1}} \right) \right) \le (2g - 2)(r - 1)$$

which means

(1.4)
$$0 \le p\mu_i - \mu\left(\frac{F^*E_i}{E_{i-1,t_{i-1}}}\right) \le (2g-2)(r-1).$$

Now, multiplying (1.3) and (1.4) by -1 and adding, we get

$$(1.5) -4(g-1)(r-1) + p(\mu_i - \mu_{i+1}) \le \mu \left(\frac{F^* E_i}{E_{i-1,t_{i-1}}}\right) - \mu \left(\frac{E_{i1}}{F^* E_i}\right)$$

$$\le p(\mu_i - \mu_{i+1}).$$

Since $p > 4(g-1)r^3$, Lemma 1.5 implies that

$$-4(q-1)(r-1) + p(\mu_i - \mu_{i+1}) > 0,$$

and hence

$$\mu\left(\frac{F^*E_i}{E_{i-1,t_{i-1}}}\right) > \mu\left(\frac{E_{i1}}{F^*E_i}\right),$$

This proves the claim, and hence the lemma.

DEFINITION 1.9. (1) A vector bundle V on X is strongly semistable if $F^{s*}(V)$ is semistable for every s^{th} iterated power of the absolute Frobenius map $F: X \to X$.

(2) A filtration by subbundles

$$0 = E_0 \subset E_1 \subset \cdots \subset E_l \subset E_{l+1} = V$$

of V is a strongly semistable HN filtration if

- (a) it is the HN filtration and
- (b) $E_1, E_2/E_1, \dots, E_{l+1}/E_l$ are strongly semistable vector bundles.

Remark 1.10. (1) If the HN filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_l \subset E_{l+1} = V$$

of V is strongly semistable then, for any $k \geq 0$, the filtration

$$0 = E_0 \subset F^{k*}E_1 \subset \cdots \subset F^{k*}E_l \subset F^{k*}E_{l+1} = F^{k*}V$$

is the strongly semistable HN filtration of $F^{k*}V$.

(2) If V is a rank 2 vector bundle on X and is not semistable then its HN filtration will be strongly semistable; as it would be filtered by line bundles, which are always semistable and hence strongly semistable.

Remark 1.11. Note that, if rank V=r and char $k=p>4(g-1)r^3$, then Lemma 1.8 implies that there exists $s\geq 0$ such that the HN filtration of $F^{s*}V$ is strongly semistable. Therefore, Theorem 2.7 of [L] follows in this case.

DEFINITION 1.12. Let E be a vector bundle on X. A vector bundle $F_j \neq 0$ occurring in the HN filtration of $F^{s*}E$ is said to almost descend to a bundle E_i occurring in the HN filtration of E if $F_j \subseteq F^{s*}E_i$ and E_i is the smallest bundle in the HN filtration of E, with this property.

Remark 1.13. Note that, if $p > 4(g-1)(\operatorname{rank} E)^3$, then by Lemma 1.8, we have the following transitivity property: if F_j almost descends to a bundle \widetilde{E}_i in the HN filtration of $F^{k*}E$, and \widetilde{E}_i almost descends to a bundle E_t occurring in the HN filtration of E, then F_j almost descends to the bundle E_t .

LEMMA 1.14. Let E be a vector bundle on X of rank r and let the characteristic p satisfy $p > 4(g-1)r^3$. Let $F_j \neq 0$ be a subbundle in the HN filtration of $F^{s*}E$, which almost descends to a vector bundle E_i occurring in the HN filtration of E. Then

$$\frac{\mu_j(F^{s*}E)}{p^s} = \mu_i(E) + \frac{C}{p},$$

where $|C| \leq 4(g-1)(r-1)$, and $\mu_j(F^{s*}E)$ and $\mu_i(E)$ are given as in Notation 1.4.

Proof. Let F_{j-1} be the vector bundle on X such that $F_{j-1} \subset F_j$ are two consecutive subbundles of the HN filtration of $F^{s*}E$. Therefore, by Lemma 1.8, there exist two consecutive subbundles $E_{i_1-1} \subset E_{i_1}$ in the HN filtration of $F^{(s-1)*}E$ such that

$$F^*E_{i_1-1} \subseteq F_{j-1} \subset F_j \subseteq F^*E_{i_1}$$

In particular, we are in the situation that E_{i_1}/E_{i_1-1} is a semistable vector bundle on X and

- (1) either $F_{j-1}/F^*E_{i_1-1} = 0$ in $F^*(E_{i_1}/E_{i_1-1})$, and $F_j/F^*E_{i_1-1}$ is the first nonzero vector bundle in the HN filtration of $F^*(E_{i_1}/E_{i_1-1})$ or
- (2) $F_{j-1}/F^*E_{i_1-1} \subset F_j/F^*E_{i_1-1}$ are two consecutive subbundles in the HN filtration of $F^*(E_{i_1}/E_{i_1-1})$.

In both the cases, by Definition 1.2, we have

$$\mu_{\min} F^* \left(\frac{E_{i_1}}{E_{i_1-1}} \right) \le \mu \left(\frac{F_j}{F_{j-1}} \right) \le \mu_{\max} F^* \left(\frac{E_{i_1}}{E_{i_1-1}} \right).$$

Therefore, Corollary 2^p of [SB] implies

$$-2(g-1)(r-1) \le \mu_j(F^{s*}(V)) - \mu\left(F^*\left(\frac{E_{i_1}}{E_{i_1-1}}\right)\right) \le 2(g-1)(r-1).$$

Note that $\mu(F^*(E_{i_1}/E_{i_1-1})) = p\mu_{i_1}(F^{(s-1)*}E)$. Therefore we have

$$\mu_j(F^{s*}E) = p\mu_{i_1}(F^{(s-1)*}E) + C_1,$$

where $|C_1| \le 2(g-1)(r-1)$.

Note E_{i_1} is a nonzero subbundle in the HN filtration of $F^{(s-1)*}E$ which almost descends to E_i occurring in the HN filtration of E. Hence, inductively one can prove that

$$\mu_{i_1}(F^{(s-1)*}E) = p^{s-1}\mu_i(E) + p^{s-2}C_s + \dots + C_2,$$

where $|C_2|, \ldots, |C_s| \leq 2(g-1)(r-1)$. Therefore

$$\mu_j(F^{s*}E) = p^s \mu_i(E) + p^{s-1}C_s + \dots + pC_2 + C_1.$$

Therefore

$$\frac{\mu_j(F^{s*}E)}{p^s} = \mu_i(E) + \frac{1}{p^s}(p^{s-1}C_s + \dots + pC_2 + C_1).$$

But

$$|(p^{s-1}C_s + \dots + pC_2 + C_1)| \le (1 + \dots + p^{s-1})(2(q-1)(r-1)).$$

Since $(1 + p + \dots + p^{s-1})/p^{s-1} \le 2$, we have

$$\frac{|p^{s-1}C_s + \dots + pC_2 + C_1|}{p^{s-1}} \le 4(g-1)(r-1).$$

Therefore we conclude that

$$\frac{\mu_j(F^{s*}E)}{p^s} = \mu_i(E) + \frac{C}{p},$$

where $|C| \leq 4(g-1)(r-1)$. This proves the lemma.

NOTATION 1.15. Henceforth we assume that the characteristic p satisfies $p > 4(g-1)r^3$. We also fix a vector bundle V on X of rank r with the HN filtration

$$0 = E_0 \subset E_1 \subset E_2 \subset \cdots \subset E_l \subset E_{l+1} = V.$$

Let

$$(1.6) 0 \subset F_1 \subset F_2 \subset \cdots \subset F_t \subset F_{t+1} = F^{k*}V$$

be the HN filtration of $F^{k*}V$, and let

$$r_i(F^{k*}V) = \operatorname{rank}\left(\frac{F_i}{F_{i-1}}\right) \text{ and } a_i(F^{k*}V) = \frac{\mu_i(F^{k*}V)}{p^k}.$$

PROPOSITION 1.16. With the notation as above, where $p > 4(g-1)r^3$, if a vector bundle F_j of the HN filtration of $F^{k*}V$ almost descends to a vector bundle E_i of the HN filtration of V then, for any $m \ge 1$,

$$a_j(F^{k*}V)^m = \mu_i(V)^m + \frac{C}{p},$$

where $|C| \leq 8gr(\max\{2|\mu_1(V)|, \dots, 2|\mu_{l+1}(V)|, 2\}^{m-1}).$

Proof. By Lemma 1.14, we have

$$a_j(F^{k*}V) = \mu_i(V) + \frac{c_{ij}}{p},$$

where $|c_{ij}| \leq 4(g-1)(r-1)$. For the sake of abbreviation let us denote $\mu_j(V)$ by μ_j . Therefore

$$a_{j}(F^{k*}V)^{m} - \mu_{i}^{m} = {m \choose 1} \mu_{i}^{m-1} \frac{c_{ij}}{p} + \dots + {m \choose m-1} \mu_{i} \frac{c_{ij}^{m-1}}{p^{m-1}} + {m \choose m} \frac{c_{ij}^{m}}{p^{m}}.$$

Hence

$$|a_{j}(F^{k*}V)^{m} - \mu_{i}^{m}| \leq \frac{|c_{ij}|}{p} \left[\binom{m}{1} |\mu_{i}|^{m-1} + \dots + \binom{m}{m-1} |\mu_{i}| \frac{|c_{ij}|^{m-2}}{p^{m-2}} + \binom{m}{m} \frac{|c_{ij}|^{m-1}}{p^{m-1}} \right].$$

Now, as $|c_{ij}|/p \le 1$, this implies

$$|a_j(F^{k*}V)^m - \mu_i^m| \le \frac{|c_{ij}|}{p} \left[\binom{m}{1} |\mu_i|^{m-1} + \dots + \binom{m}{m-1} |\mu_i| + \binom{m}{m} \right].$$

(1) Let $|\mu_i| \leq 1$. Then

$$|a_{j}(F^{k*}V)^{m} - \mu_{i}^{m}| \leq \frac{|c_{ij}|}{p} \left[{m \choose 1} + \dots + {m \choose m-1} + {m \choose m} \right]$$
$$\leq \frac{|c_{ij}|}{p} (2^{m} - 1) \leq \frac{1}{p} (8gr(2^{m-1})).$$

(2) Let $|\mu_i| \geq 1$. Then

$$|a_{j}(F^{k*}V)^{m} - \mu_{i}^{m}| \leq \frac{|c_{ij}||\mu_{i}|^{m-1}}{p} \left[\binom{m}{1} + \dots + \binom{m}{m-1} + \binom{m}{m} \right]$$
$$\leq \frac{|c_{ij}||\mu_{i}|^{m-1}}{p} (2^{m} - 1) \leq \frac{1}{p} (8gr(2|\mu_{i}|)^{m-1}).$$

Hence the proposition.

§2. Applications

We extend Notation 1.15 to the case, when the underlying field is of arbitrary characteristic, as follows.

NOTATION 2.1. Let X be a nonsingular curve over an algebraically closed field k and V a vector bundle on X, with HN filtration

$$0 = E_0 \subset E_1 \subset \cdots \subset E_l \subset E_{l+1} = V.$$

(1) If char k = p > 0, then we define the numbers $\mu_i(F^{k*}V)$, $r_i(F^{k*}V)$ and $a_i(F^{k*}V)$ as in Notations 1.4 and 1.15. Moreover, we choose an integer $s \geq 0$ such that $F^{s*}(V)$ has a strongly semistable HN filtration and we denote

$$\widetilde{a}_i(V) = a_i(F^{s*}(V))$$
 and $\widetilde{r}_i(V) = r_i(F^{s*}(V))$

(note that, by Remark 1.10, these numbers are independent of the choice of such an s).

(2) If char k = 0, define

$$\widetilde{a}_i(V) = \mu_i(V) = \mu\left(\frac{E_i}{E_{i-1}}\right), \text{ and } \widetilde{r}_i(V) = r_i(V) = \operatorname{rank}\left(\frac{E_i}{E_{i-1}}\right).$$

Here we recall a notion of *spread* for the pair (X, V), where X is a nonsingular curve over a field of characteristic 0 and V is a vector bundle on X. For such a pair there exists a finitely generated \mathbb{Z} -algebra $A \subseteq k$ and a projective A-scheme X_A over A and coherent, locally free sheaves V_A and

$$E_{1A} \subset \cdots \subset E_{lA} \subset V_A$$

on X_A such that

$$X_A \times_{\operatorname{Spec} A} \operatorname{Spec} k = X$$
 and $V_A \otimes_A k = V$,

and for all closed points $s \in \operatorname{Spec} A$, if

$$V_s = V_A \otimes \overline{k(s)}, \text{ and } E_{i(s)} = E_{iA} \otimes \overline{k(s)},$$

then

$$0 \subset E_{1(s)} \subset \cdots \subset E_{l(s)} \subset V_s$$

is the HN filtration of V_s (this follows by an openness property of semistable vector bundles ([Ma])). We call the triple (A, X_A, V_A) a spread of (X, V).

Moreover, if, for the pair (X, V), we have a spread (A, X_A, V_A) as above and $A \subset A' \subset k$, for some finitely generated \mathbb{Z} -algebra A' then $(A', X_{A'}, V_{A'})$ satisfy the same properties as (A, X_A, V_A) . Hence we may always assume that the spread (A, X_A, V_A) as above is chosen such that A contains a given finitely generated algebra $A_0 \subseteq k$.

PROPOSITION 2.2. Let $f: X_A \to \operatorname{Spec} A$ be a projective morphism of Noetherian schemes, smooth of relative dimension 1, where A is a finitely generated \mathbb{Z} -algebra and is an integral domain. Let $\mathcal{O}_{X_A}(1)$ be an f-very ample invertible sheaf on X_A . Let V_A be a vector bundle on X_A . For $s \in \operatorname{Spec} A$, let $V_s = V_A \otimes_A \overline{k(s)}$ be the induced vector bundle on the smooth projective curve $X_s = X_A \otimes_A \overline{k(s)}$. Let $s_0 = \operatorname{Spec} Q(A)$ be the generic point of $\operatorname{Spec} A$. Then,

(1) for any $k \geq 0$ and $m \geq 0$, we have

$$\lim_{s \to s_0} \sum_{i} r_j (F^{k*} V_s) a_j (F^{k*} V_s)^m = \sum_{i} r_i (V_{s_0}) \mu_i (V_{s_0})^m.$$

(2) Similarly

$$\lim_{s \to s_0} \sum_j \widetilde{r}_j(V_s) \widetilde{a}_j(V_s)^m = \sum_i r_i(V_{s_0}) \mu_i(V_{s_0})^m,$$

where in both the limits, s runs over closed points of Spec A.

Proof. To prove the proposition, one can replace $\operatorname{Spec} A$ by an affine open subset (after localizing A if necessary), so that

$$(A, X_A, V_A)$$
 is a spread of $(X_A \otimes k(s_0), V_A \otimes k(s_0))$

as defined above. Moreover we can choose A such that, for any closed point $s \in \operatorname{Spec} A$, we have

$$\operatorname{char} k(s) > 4(\operatorname{genus} X_s - 1)(\operatorname{rank} V_s)^3 = 4(\operatorname{genus} X_{s_0} - 1)(\operatorname{rank} V_{s_0})^3.$$

Therefore, if we denote

$$M = 8(\operatorname{genus}(X_{s_0}))r(V_{s_0})(\max\{2, 2|\mu_1(V_{s_0})|, \dots, |\mu_{l+1}(V_{s_0})|\}^{m-1}),$$

where $r(V_{s_0}) = \text{rank}(V_{s_0})$, then, by Proposition 1.16, we have

$$\sum_{j} r_{j} (F^{k*} V_{s}) a_{j} (F^{k*} V_{s})^{m} = \sum_{i} r_{i} (V_{s}) \left(\mu_{i} (V_{s})^{m} + \frac{C_{i}}{p} \right), \text{ where } |C_{i}| \leq M$$

$$= \sum_{i} r_{i} (V_{s_{0}}) \mu_{i} (V_{s_{0}})^{m} + \frac{C_{s_{k}}}{p},$$

where $|C_{s_k}| \leq r(V_{s_0})M$. In particular, for every closed point $s \in \operatorname{Spec} A$, we have

$$\sum_{j} \widetilde{r}_j(V_s)\widetilde{a}_j(V_s)^m = \sum_{i} r_i(V_{s_0})\mu_i(V_{s_0})^m + \frac{C_s}{p},$$

where $|C_s| \leq r(V_{s_0})M$. Now the proposition follows easily.

COROLLARY 2.3. Along with Notation 2.1, if we denote (as defined in [B2]), for char k>0, $\mu_{HK}(V)=\sum_i \widetilde{r}_i(V)\widetilde{a}_i(V)^2$, and for char k=0, $\mu_{HK}(V)=\sum_j r_j(V)\mu_j(V)^2$, then

$$\lim_{s \to s_0} \mu_{HK}(V_s) = \mu_{HK}(V_{s_0}).$$

Proof. The corollary follows by substituting m=2 in the second statement of Proposition 2.2.

Here recall similar notion of spread for the pair (R,I), where R is a finitely generated N-graded two dimensional domain over an algebraically closed field k of characteristic 0 and $I \subset R$ is a homogeneous ideal of finite colength. For such a pair, there exists a finitely generated \mathbb{Z} -algebra $A \subseteq k$, a finitely generated N-graded algebra R_A over A and a homogeneous ideal $I_A \subset R_A$ such that $R_A \otimes_A k = R$ and for any closed point $s \in \operatorname{Spec} A$ (i.e. maximal ideal of A) the ring $R_s = R_A \otimes_A k(s)$ is a finitely generated N-graded 2-dimensional domain (which is a normal domain if R is normal) over k(s) and the ideal $I_s = \operatorname{Im}(I_A \otimes_A k(s)) \subset R_s$ is a homogeneous ideal of finite colength. We call (A, R_A, I_A) a spread of the pair (R, I).

Moreover, if, for the pair (R, I), we have a *spread* (A, R_A, I_A) as above and $A \subset A' \subset k$, for some finitely generated \mathbb{Z} -algebra A' then $(A', R_{A'}, I_{A'})$ satisfy the same properties as (A, R_A, I_A) . Hence we may always assume that the spread (A, R_A, I_A) as above is chosen such that A contains a given finitely generated algebra $A_0 \subseteq k$.

Theorem 2.4. Let R be a standard graded two dimensional domain over an algebraically closed field k of characteristic 0. Let $I \subset R$ be a homogeneous ideal of finite colength. Let (A, R_A, I_A) be a spread as given above. Then

$$\lim_{s \to s_0} e_{HK}(R_s, I_s)$$

exists and is a rational number, where $s_0 = \operatorname{Spec} Q(A)$ is the generic point of $\operatorname{Spec} A$, and the limit is taken over closed points $s \in \operatorname{Spec} A$.

Proof. Let $R \to S$ be the normalization of R. Then $R \to S$ is a finite graded map of degree 0, and Q(R) = Q(S), such that S is a finitely generated N-graded 2-dimensional normal domain over k. Now, for pairs (R,I), (S,IS), we choose spreads (A,R_A,I_A) and (A,S_A,IS_A) such that for every closed point $s \in \operatorname{Spec} A$, the natural map $R_s = R_A \otimes k(s) \to S_s = S_A \otimes k(s)$ is a finite graded map of degree 0. Therefore we have the following commutative diagrams of horizontal finite maps

$$\begin{array}{cccc} \operatorname{Proj} R & \longleftarrow & \operatorname{Proj} S \\ \downarrow & & \downarrow \\ \operatorname{Proj} R_A & \longleftarrow & \operatorname{Proj} S_A. \end{array}$$

It follows that, for every $s \in \operatorname{Spec} A$, the corresponding map of curves

$$\operatorname{Proj} S_A \otimes_A k(s) \longrightarrow \operatorname{Proj} R_A \otimes_A k(s)$$

is a finite map, where the curve $\operatorname{Proj} S_A \otimes_A k(s)$ is nonsingular. Since $R_s \to S_s$ is a finite map such that S_s is a module of rank 1 over R_s , by Lemma 1.3 in [M], Theorem 2.7 in [WY] and [BCP], we have

$$e_{HK}(R_s, I_s) = e_{HK}(S_s, IS_s)$$
, for every closed point $s \in \operatorname{Spec} A$.

Therefore it is enough to prove the following

CLAIM.
$$\lim_{s\to s_0} e_{HK}(S_s, IS_s)$$
 exists.

Proof of the claim. Let I and IS_A be generated by the set $\{f_1, \ldots, f_k\}$, where deg $f_i = d_i$. We have a short exact sequence of \mathcal{O}_{X_A} -sheaves (see [B1] and [T1]):

$$(2.1) 0 \longrightarrow V_A \longrightarrow \bigoplus_{i=1}^k \mathcal{O}_{X_A}(1-d_i) \longrightarrow \mathcal{O}_{X_A}(1) \longrightarrow 0$$

where $\mathcal{O}_{X_A}(1-d_i) \to \mathcal{O}_{X_A}(1)$ is multiplication by f_i . Restricting (2.1) to the fiber X_s , we get

$$0 \longrightarrow V_s \longrightarrow \bigoplus_{i=1}^k \mathcal{O}_{X_s}(1-d_i) \longrightarrow \mathcal{O}_{X_s}(1) \longrightarrow 0.$$

Note that (see [B1] and [T1]),

$$e_{HK}(S_s, IS_s) = \frac{\operatorname{deg}\operatorname{Proj} S_s}{2} \left(\sum_{i} \widetilde{r}_i(V_s) \widetilde{a}_i(V_s)^2 - \sum_{i=1}^k d_i^2 \right).$$

Therefore

$$\lim_{s \to s_0} e_{HK}(S_s, IS_s) = \frac{\operatorname{deg} \operatorname{Proj} S}{2} \left(\lim_{s \to s_0} \sum_{i} \widetilde{r}_i(V_s) \widetilde{a}_i(V_s)^2 - \sum_{i=1}^k d_i^2 \right).$$

Hence, by Proposition 2.2,

$$\lim_{s \to s_0} e_{HK}(S_s, IS_s) = \frac{\deg \operatorname{Proj} S}{2} \left(\sum_i r_i(V_{s_0}) \mu_i(V_{s_0})^2 - \sum_{i=1}^k d_i^2 \right).$$

In particular $\lim_{s\to s_0} e_{HK}(S_s, IS_s)$ exists and is a rational number. This proves the theorem.

Remark 2.5. Let R be a standard graded 2 dimensional domain over a field of characteristic 0. Let $I \subset R$ be a homogeneous ideal of finite colength. Then for the pair (R, I) we choose a spread (A, X_A, I_A) as described earlier and define

(2.2)
$$e_{HK}(R,I) = \lim_{s \to s_0} e_{HK}(R_s, I_s).$$

This is, inherently, a well defined notion (i.e., irrespective of a choice of generators of I), since in positive characteristic $e_{HK}(R_s, I_s)$ is independent of a choice of generators of I_s . We extend this definition to a standard graded 2-dimensional ring R, over a field k of characteristic 0, and a homogeneous ideal $I \subset R$ of finite colength as

$$e_{HK}(R,I) = \sum_{\mathbf{p} \in \operatorname{Spec} R, \dim R/\mathbf{p} = 2} \ell_{R_{\mathbf{p}}}(R_{\mathbf{p}}) e_{HK}(R/\mathbf{p}, IR/\mathbf{p}),$$

This is a always a rational number, by Theorem 2.4.

Note that a notion of $e_{HK}(R, I)$, when R is also a normal domain (*i.e.*, Proj R is a smooth curve) over a field of characteristic 0, is given in [B2] as

(2.3)
$$e_{HK}(R,I) = \frac{\operatorname{deg}\operatorname{Proj}R}{2} \left(\mu_{HK}(V) - \sum_{i=1}^{k} d_i^2\right),$$

where V is the vector bundle given by

$$0 \longrightarrow V \longrightarrow \bigoplus_{i} \mathcal{O}_{X}(1-d_{i}) \longrightarrow \mathcal{O}_{X}(1) \longrightarrow 0.$$

By Corollary 2.3, these two definitions (2.3) and (2.2) coincide, in this case.

Remark 2.6. It follows from Remark 4.13 of [T1] that, for every closed point s in Spec A, where (A, R_A, I_A) is a spread for the pair (R, I), we have

$$e_{HK}(R_s, I_s) \ge e_{HK}(R, I),$$

and $e_{HK}(R_s, I_s) = e_{HK}(R, I)$ if and only if HN filtration of V_s is the strongly semistable HN filtration, where $e_{HK}(R_s, I_s)$ is the HK multiplicity defined (as given in the introduction) over the residue field k(s), of the point s, which is of positive characteristic and $e_{HK}(R, I)$ is defined (as in Remark 2.5), over the quotient field of A which is of characteristic 0. If V_s is semistable then

$$e_{HK}(R,I) = \frac{\operatorname{deg}\operatorname{Proj} R_s}{2} \left(\left(\sum_i d_i \right)^2 / (t-1) - \sum_i d_i^2 \right).$$

Remark 2.7. As observed in the above remark,

$$\{e_{HK}(R_s, I_s) - e_{HK}(R, I) \mid s \in \{\text{closed points of Spec } A\}\}$$

is a sequence of non-negative rational numbers (indexed by the closed points of $\operatorname{Spec} A$), converging to 0. Examples show that it could be *oscillating*.

First we recall the following result of [T2]

COROLLARY. Let $X_p = \operatorname{Proj} R_p$, where $R_p = k[x,y,z]/(f)$, be a non-singular plane curve of degree d over an algebraically closed field k of characteristic p > 0. Then

$$e_{HK}(X_p, \mathcal{O}_{X_p}(1)) = e_{HK}(R_p, (x, y, z)R_p) = \frac{3d}{4} + \frac{l^2}{4dp^{2s}},$$

where $s \ge 1$ is a number such that $F^{(s-1)*}V_{X_p}$ is semistable and $F^{s*}V_{X_p}$ is not semistable (if $F^{t*}V_{X_p}$ is semistable for all $t \ge 0$, we take $s = \infty$) and l is an integer congruent to $pd \pmod 2$ with $0 \le l \le d(d-3)$.

Monsky (around 1990) calculated the Hilbert Kunz function for plane curves $k[x,y,z]/(x^d+y^d+z^d)$, this result was later generalized in [H] and [HM] to diagonal hypersurfaces $k[x_1,x_2,\ldots]/(\sum_i x_i^d)$. In particular, arguing as in the examples of [HM] we have the following

Let

$$R_p = k[X, Y, Z]/(x^4 + y^4 + z^4)$$
, where char $k = p$.

Then

$$e_{HK}(R_p, (x, y, z)R_p) = 3 + \frac{1}{p^2}, \text{ if } p \equiv \pm 3(8)$$

= 3, \text{ if } p \equiv \pm 1(8).

Now, let $X_p = \operatorname{Proj} R_p$. Consider the short exact sequence

$$0 \longrightarrow V_{X_p} \longrightarrow \mathcal{O}_{X_p} \oplus \mathcal{O}_{X_p} \oplus \mathcal{O}_{X_p} \longrightarrow \mathcal{O}_{X_p}(1) \longrightarrow 0,$$

where the second map is given by $(f_1, f_2, f_3) \to xf_1 + yf_2 + zf_3$. By the above Corollary, we have

(1) if $p \equiv \pm -3$ (8) and $p \gg 0$ then l = 4 and s = 1, *i.e.* V_{X_p} is semistable, and $F^*(V_{X_p})$ is not semistable and has strongly semistable HN filtration and

$$a_1(V_{X_p}) = \mu(V_{X_p}) + \frac{2}{p}$$
 and $a_2(V_{X_p}) = \mu(V_{X_p}) - \frac{2}{p}$

In particular $\mu_{HK}(V_{X_p}) = 2\mu(V_{X_p})^2 + \frac{8}{p^2}$.

(2) if $p \equiv \pm -1$ (8) then l = 0, i.e. V_{X_p} is strongly semistable, and

$$a_1(V_{X_p}) = \mu(V_{X_p})$$

In particular $\mu_{HK}(V_{X_p}) = 2\mu(V_{X_p})^2$.

In particular, for $p \gg 0$ the numbers $a_1(V_{X_p})$ $a_2(V_{X_p})$ do not eventually become constant or a well defined function of p, but keep oscillating and converge to $\mu(V_X)$.

References

- [B1] H. Brenner, The rationality of the Hilbert-Kunz multiplicity in graded dimension two, preprint, arXiv:math.AC/0402180v1.
- [B2] H. Brenner, A characteristic zero Hilbert-Kunz criterion for solid closure in dimension two, Math. Res. Lett., 11 (2004), no. 5–6, 563–574.
- [BCP] R. Buchweitz, Q. Chen and K. Pardue, *Hilbert-Kunz functions*, preprint (Algebraic Geometry e-print series).
- [C] Q. Chen, *Hilbert-Kunz functions*: a survey, unpublished notes May 1997, Essen-Seminar.
- [H] C. Han, The Hilbert-Kunz function of a diagonal hypersurface, Ph.D. thesis, Brandeis University (1991).
- [HM] C. Han and P. Monsky, Some surprising Hilbert-Kunz functions, Math. Z., 214 (1993), no. 1, 119–135.
- [HN] G. Harder and M. S. Narasimhan, On the cohomology groups of moduli spaces of vector bundles on curves, Math. Ann., **212** (1975), 215–248.
- [L] A. Langer, Semistable sheaves in positive characteristic, Ann. Math., 159 (2004).
- [Ma] M. Maruyama, Openness of a family of torsion free sheaves, J. Math. Kyoto Univ., 16-3 (1976), 627–637.
- [M] P. Monsky, The Hilbert-Kunz function, Math. Ann., 263 (1983), 43–49.
- [SB] N. I. Shepherd-Barron, Semistability and reduction mod p, Topology, **37** (1998), no. 3, 659–664.
- [T1] V. Trivedi, Semistabiltiy and HK multiplicities for curves, J. of algebra, 284 (2005), 627–644.
- [T2] V. Trivedi, Strong semistability and Hilbert-Kunz multiplicity for singular plane curves, to appear in Contemporary Mathematics of AMS.
- [WY] K. Watanabe and K. Yoshida, Hilbert-Kunz multiplicity and an inequality between multiplicity and colength, J. Algebra, 230 (2000), 295–317.

School of Mathematics Tata Institute of Fundamental Research Homi Bhabha Road Mumbai-400005 India

vija@math.tifr.res.in