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MOD p

V. TRIVEDI

Abstract. We show that the Hilbert-Kunz multiplicities of the reductions

to positive characteristics of an irreducible projective curve in characteristic 0

have a well-defined limit as the characteristic tends to infinity.

Let R be a Noetherian ring of prime characteristic p > 0 and of dimen-

sion d and let I ⊆ R be an ideal of finite colength. Then we recall that the

Hilbert-Kunz multiplicity of R with respect to I is defined as

eHK(R, I) = lim
n→∞

`(R/I [pn])

pnd
,

where

I [pn] = n-th Frobenius power of I

= ideal generated by pn-th power of elements of I

is an ideal of finite colength and `(R/I [pn]) denotes the length of the R-

module R/I [pn].

We note that this limit always exists as proved by Monsky. However,

unlike Hilbert-Samuel multiplicity, this multiplicity could depend on the

characteristic of the ring (see example of [HM] given here in Section 2).

In this paper, we study the behaviour of Hilbert-Kunz multiplicities

(abbreviated henceforth to HK multiplicities) of the reductions to positive

characteristics of an irreducible projective curve in characteristic 0.

For instance, consider the following question. Let f be a nonzero ir-

reducible homogeneous element in the polynomial ring Z[X1, X2, . . . , Xr],

and for any prime number p ∈ Z, let Rp = Z/pZ[X1, X2, . . . , Xr]/(f) (this

is the homogeneous coordinate ring of a projective variety over Z/pZ). Let
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124 V. TRIVEDI

eHK(Rp) denote the Hilbert-Kunz multiplicity of Rp with respect to the

graded maximal ideal. Then one can ask: does limp→∞ eHK(Rp) exist?

This question was first encountered by the author in a survey article

[C], Problem 4, Section 5 (see also Remark 4.10 in [B1]). This seems a

difficult question in general, as so far, there is no known general formula for

HK multiplicity in terms of ‘better understood’ invariants. There does not

seem to even be a heuristic argument as to why the limit should exist, in

general, in arbitrary dimensions.

However in the case of a projective curve (equivalently 2 dimensional

standard graded ring) over an algebraically closed field of characteristic

p > 0, one can express HK multiplicity in terms of (i) “standard” invariants

of the curve which are constant in a flat family and (ii) normalized slopes of

the quotients occuring in a strongly semistable Harder-Narasimhan filtration

(HN filtration) (see Definitions 1.2 and 1.9) of the associated vector bundle

on the curve (see [B1] and [T1]).

Hence, we may pose the question in the following more general setting.

Given a projective curve X defined over a field k of char 0 with a vector

bundle V on X, let (A,XA, VA) be a spread of the pair (X,V ) (details given

above Proposition 2.2). For all closed points s ∈ SpecA, let Vs = VA⊗k(s).

Now for given k ≥ 0 and each such Vs, let

0 ⊂ F s
1 ⊂ · · · ⊂ F s

ts ⊂ F s
ts+1 = F k∗Vs

be the HN filtration of F k∗Vs. Denote

ri(F
k∗Vs) = rank

(
F s

i

F s
i−1

)
and

the normalized slope ai(F
k∗Vs) =

1

pk
µ

(
F s

i

F s
i−1

)
.

Let s0 ∈ SpecA be the generic point of SpecA. Then the question is:

(0.1) For given k ≥ 0, does lim
s→s0

∑

i

ri(F
k∗Vs)ai(F

k∗Vs)
2 exist?

We approach the question as follows. Following the notation of [L], for

a vector bundle V on a nonsingular projective curve X in characteristic p,

we attach convex polygons as follows. Consider the HN filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ El+1 = V
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of V . For k ≥ 0, consider the HN filtration

0 = F0 ⊂ F1 ⊂ · · · ⊂ Ft ⊂ Ft+1 = F k∗V

of the iterated Frobenius pull back bundle F k∗V . Let P (Fi) = (rankFi,

deg Fi/p
k) in R

2. Let HNPpk(V ) be the convex polygon in R
2 obtained by

connecting P (F0), . . . , P (Ft+1) successively by line segments, and connect-

ing the last one with the first one.

Let p ≥ 4(genus(X) − 1)(rank V )3. Then we prove (Lemma 1.8) that

the vertices of HNPpk−1(V ) are retained as a subset of the vertices of

HNPpk(V ) and hence HNPpk(V ) ⊃ HNPp0(V ). In particular, for k � 0,

the HN filtration of the bundle F k∗(V ) is strongly semistable, therefore

Theorem 2.7 of [L] comes as a corollary, in this case.

Now, for every vector bundle Fj of the HN filtration of F k∗(V ), if

we denote the slope of the line segment, joining P (Fj−1) and P (Fj), by

µj(F
k∗(V ))/pk (see Notation 1.4), and if Ei denotes the unique vector bun-

dle occuring in the HN filtration of V such that Fj ‘almost descends to’ Ei

(see Definition 1.12), then we prove (Lemma 1.14) that

µj(F
k∗V )/pk = µi(V ) + O

(
1

p

)
.

Hence limp→∞ AreaHNPpk(V ) = Area HNPp0(V ). In both Lemmas 1.8

and 1.14 we make crucial use of a result from the paper [SB] of Shepherd-

Barron.

Now, following the notation set up for the question (0.1), if we take

a vector bundle F s
j occuring in the HN filtration of F k∗(Vs) such that it

almost descends to a vector bundle Es
i occuring in the HN filtration of Vs

then we get

aj(F
k∗(Vs)) :=

µj(F
k∗Vs)

pk
= µi(Vs) + O

(
1

p

)
,

where p = char k(s). From this we conclude (Proposition 2.2) that the

question (0.1) has an affirmative answer.

In particular (Theorem 2.4) the Hilbert-Kunz multiplicities of the re-

ductions to positive characteristics of an irreducible projective curve in char-

acteristic 0 have a well-defined limit as the characteristic tends to ∞. This

limit, which is (relatively) an easier invariant to compute, is a lower bound

for the HK multiplicities of the reductions (mod p), though examples of

Han-Monsky show that the convergence is not monotonic as p → ∞, in

general (see Remark 2.7).

https://doi.org/10.1017/S0027763000025770 Published online by Cambridge University Press

https://doi.org/10.1017/S0027763000025770


126 V. TRIVEDI

§1. The HN slope of F ∗V in terms of the HN slope of V

Let X be a nonsingular projective curve of genus g ≥ 1, over an al-

gebraically closed field k of characteristic p > 0. We recall the following

definitions.

Definition 1.1. Let V be a vector bundle (i.e., locally free coherent

sheaf of OX -modules) on X. We say V is a semistable vector bundle on X

if, for every subsheaf of OX -modules F ⊆ V , we have

µ(F ) :=
deg F

rankF
≤ µ(V ),

where for a rank r vector bundle V on X we define

deg V = degree of the line bundle
∧r V on X.

Definition 1.2. Let V be a vector bundle on X. A filtration of V by

vector subbundles

(1.1) 0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ El+1 = V

is a Harder-Narasimhan filtration if

(1) the vector bundles E1, E2/E1, . . . , El+1/El are all semistable.

(2) µ(E1) > µ(E2/E1) > · · · > µ(El+1/El).

Remark 1.3. For any Harder-Narasimhan filtration (we would call it

HN filtration from now onwards), denoted as in Equation (1.1), the following

is true (see [HN], Lemma 1.3.7),

(1) the filtration always exists and is unique for given V ,

(2) µ(E1) > µ(E2) > · · · > µ(El+1) = µ(V ),

(3) µ(Ei/Ei−1) ≥ µ(V ) ≥ µ(Ei+1/Ei), for some 1 ≤ i ≤ l.

Notation 1.4. If

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El ⊂ El+1 = V

is the HN filtration for a vector bundle V on X then we denote

µi(V ) = µ

(
Ei

Ei−1

)
, µmax(V ) = µ(E1) and µmin(V ) = µ

(
V

El

)
.
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Lemma 1.5. Let V be a vector bundle over X of rank r and let

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El ⊂ El+1 = V

be the HN filtration of V . Then

r3 >
r − 1

µi(V )− µi+1(V )
.

Proof. Let µi = µi(V ). Let us denote r̄i = rankEi/Ei−1 and d̄i =

deg Ei/Ei−1. Then

r − 1

µi − µi+1
=

r − 1

d̄i/r̄i − d̄i+1/r̄i+1
=

(r − 1)r̄ir̄i+1

d̄ir̄i+1 − d̄i+1r̄i
.

But

µi − µi+1 > 0 =⇒ d̄ir̄i+1 − d̄i+1r̄i > 0 =⇒ d̄ir̄i+1 − d̄i+1r̄i ≥ 1.

Therefore
r − 1

µi − µi+1
≤ (r − 1)r̄ir̄i+1 < r3.

This proves the lemma.

Definition 1.6. If X is a projective variety defined over an alge-

braically closed field of characteristic p > 0, then the absolute Frobenius

morphism F : X → X is a morphism of schemes which is identity on the

underlying set of X and on the underlying sheaf of rings F # : OX → OX is

the pth power map.

Remark 1.7. For a vector bundle V on X, the Frobenius pull back F ∗V

is a vector bundle on X and

rankF ∗V = rankV and µ(F ∗V ) = pµ(V ).

We recall the following crucial result by Shepherd-Barron.

Corollary 2p. ([SB]) If X is a nonsingular projective curve of genus

g and if V is a semistable vector bundle on X of rank r such that F ∗V is

not semistable then

0 < µmax(F
∗V )− µmin(F

∗V ) ≤ (2g − 2)(r − 1).
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128 V. TRIVEDI

Now we prove the following crucial lemma.

Lemma 1.8. Let V be a vector bundle on X with the HN filtration as

in Lemma 1.5. Assume that char k = p > 4(g − 1)r3. Then,

F ∗E1 ⊂ F ∗E2 ⊂ · · · ⊂ F ∗El ⊂ F ∗V

is a subfiltration of the HN filtration of F ∗V , that is, if

0 ⊂ Ẽ1 ⊂ · · · ⊂ Ẽl1+1 = F ∗V

is the HN filtration of F ∗V then for every 1 ≤ i ≤ l there exists 1 ≤ ji ≤ l1
such that F ∗Ei = Ẽji

.

Proof. For each 0 ≤ i ≤ l, let

F ∗Ei ⊂ Ei1 ⊂ · · · ⊂ Eiti ⊂ F ∗Ei+1

be a filtration of vector bundles on X such that

0 ⊂
Ei1

F ∗Ei
⊂

Ei2

F ∗Ei
⊂ · · · ⊂

F ∗Ei+1

F ∗Ei

is the HN filtration of F ∗(Ei+1/Ei). Now it is enough to prove the

Claim.

0 ⊂ E01 ⊂ · · · ⊂ E0t0 ⊂ F ∗E1 ⊂ · · · ⊂ F ∗Ei ⊂ Ei1 ⊂ · · ·

· · · ⊂ Eiti ⊂ F ∗Ei+1 ⊂ · · · ⊂ F ∗V

is the HN filtration of F ∗V .

Proof of the claim. By construction, for 0 ≤ i ≤ l and for 1 ≤ j < ti,

we have

µ

(
Eij

Ei,j−1

)
> µ

(
Ei,j+1

Eij

)

and
Eij

Ei,j−1
,

F ∗Ei

Ei−1,ti−1

and
Ei1

F ∗Ei

are semistable. Hence, by Definition 1.2, it is enough to prove that

µ

(
F ∗Ei

Ei−1,ti−1

)
> µ

(
Ei1

F ∗Ei

)
.
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Now, by Corollary 2p of [SB], we have

(1.2) 0 ≤ µmaxF
∗

(
Ei+1

Ei

)
− µminF

∗

(
Ei+1

Ei

)
≤ (2g − 2)(r − 1).

By Remark 1.3, for all 0 ≤ i ≤ l, we have

µmaxF
∗

(
Ei+1

Ei

)
≥ µ

(
F ∗

(
Ei+1

Ei

))
≥ µminF

∗

(
Ei+1

Ei

)
.

Therefore

0 ≤ µmaxF
∗

(
Ei+1

Ei

)
− µ

(
F ∗

(
Ei+1

Ei

))
≤ (2g − 2)(r − 1).

Let µi = µi(V ). Then we have

(1.3) 0 ≤ µ

(
Ei1

F ∗Ei

)
− pµi+1 ≤ (2g − 2)(r − 1).

Similarly

0 ≤ µ

(
F ∗

(
Ei

Ei−1

))
− µmin

(
F ∗

(
Ei

Ei−1

))
≤ (2g − 2)(r − 1)

which means

(1.4) 0 ≤ pµi − µ

(
F ∗Ei

Ei−1,ti−1

)
≤ (2g − 2)(r − 1).

Now, multiplying (1.3) and (1.4) by −1 and adding, we get

−4(g − 1)(r − 1) + p(µi − µi+1) ≤ µ

(
F ∗Ei

Ei−1,ti−1

)
− µ

(
Ei1

F ∗Ei

)
(1.5)

≤ p(µi − µi+1).

Since p > 4(g − 1)r3, Lemma 1.5 implies that

−4(g − 1)(r − 1) + p(µi − µi+1) > 0,

and hence

µ

(
F ∗Ei

Ei−1,ti−1

)
> µ

(
Ei1

F ∗Ei

)
,

This proves the claim, and hence the lemma.
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130 V. TRIVEDI

Definition 1.9. (1) A vector bundle V on X is strongly semistable

if F s∗(V ) is semistable for every sth iterated power of the absolute

Frobenius map F : X → X.

(2) A filtration by subbundles

0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ El+1 = V

of V is a strongly semistable HN filtration if

(a) it is the HN filtration and

(b) E1, E2/E1, . . . , El+1/El are strongly semistable vector bundles.

Remark 1.10. (1) If the HN filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ El+1 = V

of V is strongly semistable then, for any k ≥ 0, the filtration

0 = E0 ⊂ F k∗E1 ⊂ · · · ⊂ F k∗El ⊂ F k∗El+1 = F k∗V

is the strongly semistable HN filtration of F k∗V .

(2) If V is a rank 2 vector bundle on X and is not semistable then its HN

filtration will be strongly semistable; as it would be filtered by line

bundles, which are always semistable and hence strongly semistable.

Remark 1.11. Note that, if rankV = r and char k = p > 4(g − 1)r3,

then Lemma 1.8 implies that there exists s ≥ 0 such that the HN filtration

of F s∗V is strongly semistable. Therefore, Theorem 2.7 of [L] follows in this

case.

Definition 1.12. Let E be a vector bundle on X. A vector bundle

Fj 6= 0 occuring in the HN filtration of F s∗E is said to almost descend to

a bundle Ei occuring in the HN filtration of E if Fj ⊆ F s∗Ei and Ei is the

smallest bundle in the HN filtration of E, with this property.

Remark 1.13. Note that, if p > 4(g−1)(rankE)3, then by Lemma 1.8,

we have the following transitivity property: if Fj almost descends to a

bundle Ẽi in the HN filtration of F k∗E, and Ẽi almost descends to a bundle

Et occuring in the HN filtration of E, then Fj almost descends to the bundle

Et.
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Lemma 1.14. Let E be a vector bundle on X of rank r and let the

characteristic p satisfy p > 4(g−1)r3. Let Fj 6= 0 be a subbundle in the HN

filtration of F s∗E, which almost descends to a vector bundle Ei occuring in

the HN filtration of E. Then

µj(F
s∗E)

ps
= µi(E) +

C

p
,

where |C| ≤ 4(g − 1)(r − 1), and µj(F
s∗E) and µi(E) are given as in

Notation 1.4.

Proof. Let Fj−1 be the vector bundle on X such that Fj−1 ⊂ Fj are

two consecutive subbundles of the HN filtration of F s∗E. Therefore, by

Lemma 1.8, there exist two consecutive subbundles Ei1−1 ⊂ Ei1 in the HN

filtration of F (s−1)∗E such that

F ∗Ei1−1 ⊆ Fj−1 ⊂ Fj ⊆ F ∗Ei1 .

In particular, we are in the situation that Ei1/Ei1−1 is a semistable vector

bundle on X and

(1) either Fj−1/F
∗Ei1−1 = 0 in F ∗(Ei1/Ei1−1), and Fj/F

∗Ei1−1 is the

first nonzero vector bundle in the HN filtration of F ∗(Ei1/Ei1−1) or

(2) Fj−1/F
∗Ei1−1 ⊂ Fj/F

∗Ei1−1 are two consecutive subbundles in the

HN filtration of F ∗(Ei1/Ei1−1).

In both the cases, by Definition 1.2, we have

µminF
∗

(
Ei1

Ei1−1

)
≤ µ

(
Fj

Fj−1

)
≤ µmaxF

∗

(
Ei1

Ei1−1

)
.

Therefore, Corollary 2p of [SB] implies

−2(g − 1)(r − 1) ≤ µj(F
s∗(V ))− µ

(
F ∗

(
Ei1

Ei1−1

))
≤ 2(g − 1)(r − 1).

Note that µ(F ∗(Ei1/Ei1−1)) = pµi1(F
(s−1)∗E). Therefore we have

µj(F
s∗E) = pµi1(F

(s−1)∗E) + C1,

where |C1| ≤ 2(g − 1)(r − 1).
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132 V. TRIVEDI

Note Ei1 is a nonzero subbundle in the HN filtration of F (s−1)∗E which

almost descends to Ei occuring in the HN filtration of E. Hence, inductively

one can prove that

µi1(F
(s−1)∗E) = ps−1µi(E) + ps−2Cs + · · ·+ C2,

where |C2|, . . . , |Cs| ≤ 2(g − 1)(r − 1). Therefore

µj(F
s∗E) = psµi(E) + ps−1Cs + · · · + pC2 + C1.

Therefore

µj(F
s∗E)

ps
= µi(E) +

1

ps
(ps−1Cs + · · · + pC2 + C1).

But

|(ps−1Cs + · · ·+ pC2 + C1)| ≤ (1 + · · ·+ ps−1)(2(g − 1)(r − 1)).

Since (1 + p + · · · + ps−1)/ps−1 ≤ 2, we have

|ps−1Cs + · · · + pC2 + C1|

ps−1
≤ 4(g − 1)(r − 1).

Therefore we conclude that

µj(F
s∗E)

ps
= µi(E) +

C

p
,

where |C| ≤ 4(g − 1)(r − 1). This proves the lemma.

Notation 1.15. Henceforth we assume that the characteristic p satis-

fies p > 4(g − 1)r3. We also fix a vector bundle V on X of rank r with the

HN filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ El ⊂ El+1 = V.

Let

(1.6) 0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Ft ⊂ Ft+1 = F k∗V

be the HN filtration of F k∗V , and let

ri(F
k∗V ) = rank

(
Fi

Fi−1

)
and ai(F

k∗V ) =
µi(F

k∗V )

pk
.
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Proposition 1.16. With the notation as above, where p > 4(g− 1)r3,

if a vector bundle Fj of the HN filtration of F k∗V almost descends to a

vector bundle Ei of the HN filtration of V then, for any m ≥ 1,

aj(F
k∗V )m = µi(V )m +

C

p
,

where |C| ≤ 8gr(max{2|µ1(V )|, . . . , 2|µl+1(V )|, 2}m−1).

Proof. By Lemma 1.14, we have

aj(F
k∗V ) = µi(V ) +

cij

p
,

where |cij | ≤ 4(g − 1)(r − 1). For the sake of abbreviation let us denote

µj(V ) by µj. Therefore

aj(F
k∗V )m − µm

i =

(
m

1

)
µm−1

i

cij

p
+ · · ·+

(
m

m− 1

)
µi

cm−1
ij

pm−1
+

(
m

m

)
cm
ij

pm
.

Hence

|aj(F
k∗V )m − µm

i |

≤
|cij |

p

[(
m

1

)
|µi|

m−1 + · · · +

(
m

m− 1

)
|µi|
|cij |

m−2

pm−2
+

(
m

m

)
|cij |

m−1

pm−1

]
.

Now, as |cij |/p ≤ 1, this implies

|aj(F
k∗V )m − µm

i | ≤
|cij |

p

[(
m

1

)
|µi|

m−1 + · · ·+

(
m

m− 1

)
|µi|+

(
m

m

)]
.

(1) Let |µi| ≤ 1. Then

|aj(F
k∗V )m − µm

i | ≤
|cij |

p

[(
m

1

)
+ · · · +

(
m

m− 1

)
+

(
m

m

)]

≤
|cij |

p
(2m − 1) ≤

1

p
(8gr(2m−1)).

(2) Let |µi| ≥ 1. Then

|aj(F
k∗V )m − µm

i | ≤
|cij ||µi|

m−1

p

[(
m

1

)
+ · · ·+

(
m

m− 1

)
+

(
m

m

)]

≤
|cij ||µi|

m−1

p
(2m − 1) ≤

1

p
(8gr(2|µi|)

m−1).

Hence the proposition.
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§2. Applications

We extend Notation 1.15 to the case, when the underlying field is of

arbitrary characteristic, as follows.

Notation 2.1. Let X be a nonsingular curve over an algebraically

closed field k and V a vector bundle on X, with HN filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ El ⊂ El+1 = V.

(1) If char k = p > 0, then we define the numbers µi(F
k∗V ), ri(F

k∗V )

and ai(F
k∗V ) as in Notations 1.4 and 1.15. Moreover, we choose an

integer s ≥ 0 such that F s∗(V ) has a strongly semistable HN filtration

and we denote

ãi(V ) = ai(F
s∗(V )) and r̃i(V ) = ri(F

s∗(V ))

(note that, by Remark 1.10, these numbers are independent of the

choice of such an s).

(2) If char k = 0, define

ãi(V ) = µi(V ) = µ

(
Ei

Ei−1

)
, and r̃i(V ) = ri(V ) = rank

(
Ei

Ei−1

)
.

Here we recall a notion of spread for the pair (X,V ), where X is a

nonsingular curve over a field of characteristic 0 and V is a vector bundle

on X. For such a pair there exists a finitely generated Z-algebra A ⊆ k and

a projective A-scheme XA over A and coherent, locally free sheaves VA and

E1A ⊂ · · · ⊂ ElA ⊂ VA

on XA such that

XA ×Spec A Spec k = X and VA ⊗A k = V,

and for all closed points s ∈ SpecA, if

Vs = VA ⊗ k(s), and Ei(s) = EiA ⊗ k(s),

then

0 ⊂ E1(s) ⊂ · · · ⊂ El(s) ⊂ Vs
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is the HN filtration of Vs (this follows by an openness property of semistable

vector bundles ([Ma])). We call the triple (A,XA, VA) a spread of (X,V ).

Moreover, if, for the pair (X,V ), we have a spread (A,XA, VA) as above

and A ⊂ A′ ⊂ k, for some finitely generated Z-algebra A′ then (A′, XA′ , VA′)

satisfy the same properties as (A,XA, VA). Hence we may always assume

that the spread (A,XA, VA) as above is chosen such that A contains a given

finitely generated algebra A0 ⊆ k.

Proposition 2.2. Let f : XA → SpecA be a projective morphism of

Noetherian schemes, smooth of relative dimension 1, where A is a finitely

generated Z-algebra and is an integral domain. Let OXA
(1) be an f -very

ample invertible sheaf on XA. Let VA be a vector bundle on XA. For

s ∈ SpecA, let Vs = VA⊗A k(s) be the induced vector bundle on the smooth

projective curve Xs = XA⊗A k(s). Let s0 = SpecQ(A) be the generic point

of SpecA. Then,

(1) for any k ≥ 0 and m ≥ 0, we have

lim
s→s0

∑

j

rj(F
k∗Vs)aj(F

k∗Vs)
m =

∑

i

ri(Vs0
)µi(Vs0

)m.

(2) Similarly

lim
s→s0

∑

j

r̃j(Vs)ãj(Vs)
m =

∑

i

ri(Vs0
)µi(Vs0

)m,

where in both the limits, s runs over closed points of SpecA.

Proof. To prove the proposition, one can replace SpecA by an affine

open subset (after localizing A if necessary), so that

(A,XA, VA) is a spread of (XA ⊗ k(s0), VA ⊗ k(s0))

as defined above. Moreover we can choose A such that, for any closed point

s ∈ SpecA, we have

char k(s) > 4(genus Xs − 1)(rankVs)
3 = 4(genus Xs0

− 1)(rank Vs0
)3.

Therefore, if we denote

M = 8(genus(Xs0
))r(Vs0

)(max{2, 2|µ1(Vs0
)|, . . . , |µl+1(Vs0

)|}m−1),
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where r(Vs0
) = rank(Vs0

), then, by Proposition 1.16, we have

∑

j

rj(F
k∗Vs)aj(F

k∗Vs)
m =

∑

i

ri(Vs)

(
µi(Vs)

m +
Ci

p

)
, where |Ci| ≤M

=
∑

i

ri(Vs0
)µi(Vs0

)m +
Csk

p
,

where |Csk
| ≤ r(Vs0

)M . In particular, for every closed point s ∈ SpecA, we

have ∑

j

r̃j(Vs)ãj(Vs)
m =

∑

i

ri(Vs0
)µi(Vs0

)m +
Cs

p
,

where |Cs| ≤ r(Vs0
)M . Now the proposition follows easily.

Corollary 2.3. Along with Notation 2.1, if we denote (as defined in

[B2]), for char k > 0, µHK(V ) =
∑

i r̃i(V )ãi(V )2, and for char k = 0,

µHK(V ) =
∑

j rj(V )µj(V )2, then

lim
s→s0

µHK(Vs) = µHK(Vs0
).

Proof. The corollary follows by substituting m = 2 in the second state-

ment of Proposition 2.2.

Here recall similar notion of spread for the pair (R, I), where R is a

finitely generated N-graded two dimensional domain over an algebraically

closed field k of characteristic 0 and I ⊂ R is a homogeneous ideal of finite

colength. For such a pair, there exists a finitely generated Z-algebra A ⊆ k,

a finitely generated N-graded algebra RA over A and a homogeneous ideal

IA ⊂ RA such that RA ⊗A k = R and for any closed point s ∈ SpecA

(i.e. maximal ideal of A) the ring Rs = RA ⊗A k(s) is a finitely generated

N-graded 2-dimensional domain (which is a normal domain if R is normal)

over k(s) and the ideal Is = Im(IA ⊗A k(s)) ⊂ Rs is a homogeneous ideal

of finite colength. We call (A,RA, IA) a spread of the pair (R, I).

Moreover, if, for the pair (R, I), we have a spread (A,RA, IA) as above

and A ⊂ A′ ⊂ k, for some finitely generated Z-algebra A′ then (A′, RA′ , IA′)

satisfy the same properties as (A,RA, IA). Hence we may always assume

that the spread (A,RA, IA) as above is chosen such that A contains a given

finitely generated algebra A0 ⊆ k.
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Theorem 2.4. Let R be a standard graded two dimensional domain

over an algebraically closed field k of characteristic 0. Let I ⊂ R be a

homogeneous ideal of finite colength. Let (A,RA, IA) be a spread as given

above. Then

lim
s→s0

eHK(Rs, Is)

exists and is a rational number, where s0 = SpecQ(A) is the generic point

of SpecA, and the limit is taken over closed points s ∈ SpecA.

Proof. Let R → S be the normalization of R. Then R → S is a

finite graded map of degree 0, and Q(R) = Q(S), such that S is a finitely

generated N-graded 2-dimensional normal domain over k. Now, for pairs

(R, I), (S, IS), we choose spreads (A,RA, IA) and (A,SA, ISA) such that

for every closed point s ∈ SpecA, the natural map Rs = RA⊗ k(s)→ Ss =

SA⊗k(s) is a finite graded map of degree 0. Therefore we have the following

commutative diagrams of horizontal finite maps

ProjR ←−−−− ProjS
y

y

ProjRA ←−−−− ProjSA.

It follows that, for every s ∈ SpecA, the corresponding map of curves

ProjSA ⊗A k(s) −→ ProjRA ⊗A k(s)

is a finite map, where the curve ProjSA ⊗A k(s) is nonsingular. Since

Rs → Ss is a finite map such that Ss is a module of rank 1 over Rs, by

Lemma 1.3 in [M], Theorem 2.7 in [WY] and [BCP], we have

eHK(Rs, Is) = eHK(Ss, ISs), for every closed point s ∈ SpecA.

Therefore it is enough to prove the following

Claim. lims→s0
eHK(Ss, ISs) exists.

Proof of the claim. Let I and ISA be generated by the set {f1, . . . , fk},

where deg fi = di. We have a short exact sequence of OXA
-sheaves (see [B1]

and [T1]):

(2.1) 0 −→ VA −→
k⊕

i=1

OXA
(1− di) −→ OXA

(1) −→ 0
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where OXA
(1 − di) → OXA

(1) is multiplication by fi. Restricting (2.1) to

the fiber Xs, we get

0 −→ Vs −→

k⊕

i=1

OXs(1− di) −→ OXs(1) −→ 0.

Note that (see [B1] and [T1]),

eHK(Ss, ISs) =
deg ProjSs

2

(∑

i

r̃i(Vs)ãi(Vs)
2 −

k∑

i=1

d2
i

)
.

Therefore

lim
s→s0

eHK(Ss, ISs) =
deg ProjS

2

(
lim
s→s0

∑

i

r̃i(Vs)ãi(Vs)
2 −

k∑

i=1

d2
i

)
.

Hence, by Proposition 2.2,

lim
s→s0

eHK(Ss, ISs) =
deg ProjS

2

(∑

i

ri(Vs0
)µi(Vs0

)2 −

k∑

i=1

d2
i

)
.

In particular lims→s0
eHK(Ss, ISs) exists and is a rational number. This

proves the theorem.

Remark 2.5. Let R be a standard graded 2 dimensional domain over a

field of characteristic 0. Let I ⊂ R be a homogeneous ideal of finite colength.

Then for the pair (R, I) we choose a spread (A,XA, IA) as described earlier

and define

(2.2) eHK(R, I) = lim
s→so

eHK(Rs, Is).

This is, inherently, a well defined notion (i.e., irrespective of a choice of

generators of I), since in positive characteristic eHK(Rs, Is) is independent

of a choice of generators of Is. We extend this definition to a standard graded

2-dimensional ring R, over a field k of characteristic 0, and a homogeneous

ideal I ⊂ R of finite colength as

eHK(R, I) =
∑

p∈Spec R, dim R/p=2

`Rp
(Rp)eHK(R/p, IR/p),
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This is a always a rational number, by Theorem 2.4.

Note that a notion of eHK(R, I), when R is also a normal domain (i.e.,

ProjR is a smooth curve) over a field of characteristic 0, is given in [B2] as

(2.3) eHK(R, I) =
deg ProjR

2

(
µHK(V )−

k∑

i=1

d2
i

)
,

where V is the vector bundle given by

0 −→ V −→
⊕

i

OX(1− di) −→ OX(1) −→ 0.

By Corollary 2.3, these two definitions (2.3) and (2.2) coincide, in this case.

Remark 2.6. It follows from Remark 4.13 of [T1] that, for every closed

point s in SpecA, where (A,RA, IA) is a spread for the pair (R, I), we have

eHK(Rs, Is) ≥ eHK(R, I),

and eHK(Rs, Is) = eHK(R, I) if and only if HN filtration of Vs is the strongly

semistable HN filtration, where eHK(Rs, Is) is the HK multiplicity defined

(as given in the introduction) over the residue field k(s), of the point s, which

is of positive characteristic and eHK(R, I) is defined (as in Remark 2.5), over

the quotient field of A which is of characteristic 0. If Vs is semistable then

eHK(R, I) =
deg ProjRs

2

((∑

i

di

)2
/(t− 1)−

∑

i

d2
i

)
.

Remark 2.7. As observed in the above remark,

{eHK(Rs, Is)− eHK(R, I) | s ∈ {closed points of SpecA}}

is a sequence of non-negative rational numbers (indexed by the closed points

of SpecA), converging to 0. Examples show that it could be oscillating.

First we recall the following result of [T2]

Corollary. Let Xp = ProjRp, where Rp = k[x, y, z]/(f)), be a non-

singular plane curve of degree d over an algebraically closed field k of char-

acteristic p > 0. Then

eHK(Xp,OXp(1)) = eHK(Rp, (x, y, z)Rp) =
3d

4
+

l2

4dp2s
,
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where s ≥ 1 is a number such that F (s−1)∗VXp is semistable and F s∗VXp is

not semistable (if F t∗VXp is semistable for all t ≥ 0, we take s =∞) and l

is an integer congruent to pd (mod 2) with 0 ≤ l ≤ d(d− 3).

Monsky (around 1990) calculated the Hilbert Kunz function for plane

curves k[x, y, z]/(xd + yd + zd), this result was later generalized in [H] and

[HM] to diagonal hypersurfaces k[x1, x2, . . .]/
(∑

i x
d
i

)
. In particular, arguing

as in the examples of [HM] we have the following

Let

Rp = k[X,Y,Z]/(x4 + y4 + z4), where char k = p.

Then

eHK(Rp, (x, y, z)Rp) = 3 +
1

p2
, if p ≡ ±3(8)

= 3, if p ≡ ±1(8).

Now, let Xp = ProjRp. Consider the short exact sequence

0 −→ VXp −→ OXp ⊕OXp ⊕OXp −→ OXp(1) −→ 0,

where the second map is given by (f1, f2, f3)→ xf1 + yf2 + zf3.

By the above Corollary, we have

(1) if p ≡ ± − 3 (8) and p � 0 then l = 4 and s = 1, i.e. VXp is semi-

stable, and F ∗(VXp) is not semistable and has strongly semistable HN

filtration and

a1(VXp) = µ(VXp) +
2

p
and a2(VXp) = µ(VXp)−

2

p

In particular µHK(VXp) = 2µ(VXp)
2 + 8

p2 .

(2) if p ≡ ±− 1 (8) then l = 0, i.e. VXp is strongly semistable, and

a1(VXp) = µ(VXp)

In particular µHK(VXp) = 2µ(VXp)
2.

In particular, for p� 0 the numbers a1(VXp) a2(VXp) do not eventually

become constant or a well defined function of p, but keep oscillating and

converge to µ(VX).
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