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HILBERT-KUNZ MULTIPLICITY AND REDUCTION
MOD p

V. TRIVEDI

Abstract. We show that the Hilbert-Kunz multiplicities of the reductions
to positive characteristics of an irreducible projective curve in characteristic 0
have a well-defined limit as the characteristic tends to infinity.

Let R be a Noetherian ring of prime characteristic p > 0 and of dimen-
sion d and let I C R be an ideal of finite colength. Then we recall that the
Hilbert-Kunz multiplicity of R with respect to I is defined as

)

TP
eHK(R,I) = lim M

n—00 p"d

where

IP"] = pth Frobenius power of I

= ideal generated by p"-th power of elements of T

is an ideal of finite colength and ¢(R/IP"]) denotes the length of the R-
module R/IP"].

We note that this limit always exists as proved by Monsky. However,
unlike Hilbert-Samuel multiplicity, this multiplicity could depend on the
characteristic of the ring (see example of [HM] given here in Section 2).

In this paper, we study the behaviour of Hilbert-Kunz multiplicities
(abbreviated henceforth to HK multiplicities) of the reductions to positive
characteristics of an irreducible projective curve in characteristic 0.

For instance, consider the following question. Let f be a nonzero ir-
reducible homogeneous element in the polynomial ring Z[X1, Xo,..., X, ],
and for any prime number p € Z, let R, = Z/pZ[ X1, X2, ..., X,]/(f) (this
is the homogeneous coordinate ring of a projective variety over Z/pZ). Let
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124 V. TRIVEDI

enk (Rp) denote the Hilbert-Kunz multiplicity of R, with respect to the
graded maximal ideal. Then one can ask: does lim, .o egr (R,) exist?

This question was first encountered by the author in a survey article
[C], Problem 4, Section 5 (see also Remark 4.10 in [B1]). This seems a
difficult question in general, as so far, there is no known general formula for
HK multiplicity in terms of ‘better understood’ invariants. There does not
seem to even be a heuristic argument as to why the limit should exist, in
general, in arbitrary dimensions.

However in the case of a projective curve (equivalently 2 dimensional
standard graded ring) over an algebraically closed field of characteristic
p > 0, one can express HK multiplicity in terms of (i) “standard” invariants
of the curve which are constant in a flat family and (ii) normalized slopes of
the quotients occuring in a strongly semistable Harder-Narasimhan filtration
(HN filtration) (see Definitions 1.2 and 1.9) of the associated vector bundle
on the curve (see [B1] and [T1]).

Hence, we may pose the question in the following more general setting.
Given a projective curve X defined over a field k of char (0 with a vector
bundle V on X, let (A, X 4,V4) be a spread of the pair (X, V) (details given
above Proposition 2.2). For all closed points s € Spec A, let V, = V4 @ k(s).
Now for given k > 0 and each such Vg, let

0CFfC--CF CF ,=F"V,

be the HN filtration of F¥*V,. Denote

S

Fs
ri(F*V,) = rank(FZ ) and
i1

1 F?
the normalized slope a;(F**V,) = —k,u< = >
p ey

Let sg € Spec A be the generic point of Spec A. Then the question is:
(0.1) For given k > 0, does lim Z7’1-(1E’]““*T/s)ai(Fk*Vs)2 exist?

§—50 4=
7

We approach the question as follows. Following the notation of [L], for
a vector bundle V on a nonsingular projective curve X in characteristic p,
we attach convex polygons as follows. Consider the HN filtration

O=FEyCEiC---CECE 1=V
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of V. For k > 0, consider the HN filtration
0=FCF C---CF,CF=Fv

of the iterated Frobenius pull back bundle F*V. Let P(F;) = (rank [,
deg F; /p¥) in R%. Let HN P, (V) be the convex polygon in R? obtained by
connecting P(Fy), ..., P(Fiy1) successively by line segments, and connect-
ing the last one with the first one.

Let p > 4(genus(X) — 1)(rank V)3. Then we prove (Lemma 1.8) that
the vertices of HNP,-1(V) are retained as a subset of the vertices of
HNP,.(V) and hence HN P, (V) D HNP,(V). In particular, for k > 0,
the HN filtration of the bundle F**(V) is strongly semistable, therefore
Theorem 2.7 of [L] comes as a corollary, in this case.

Now, for every vector bundle Fj; of the HN filtration of FF(V), if
we denote the slope of the line segment, joining P(F;_1) and P(F}), by
;i (FE*(V))/p* (see Notation 1.4), and if F; denotes the unique vector bun-
dle occuring in the HN filtration of V' such that F}; ‘almost descends to’ E;
(see Definition 1.12), then we prove (Lemma 1.14) that

1 (F*V) /p* = ps(V) + O (%)

Hence lim, .o, Area HN P (V) = Area HN P, (V). In both Lemmas 1.8
and 1.14 we make crucial use of a result from the paper [SB] of Shepherd-
Barron.

Now, following the notation set up for the question (0.1), if we take
a vector bundle F? occuring in the HN filtration of F¥ (V) such that it
almost descends to a vector bundle E occuring in the HN filtration of Vj
then we get

ko
0 () = V) 4 o<1>,
p p
where p = char k(s). From this we conclude (Proposition 2.2) that the
question (0.1) has an affirmative answer.

In particular (Theorem 2.4) the Hilbert-Kunz multiplicities of the re-
ductions to positive characteristics of an irreducible projective curve in char-
acteristic 0 have a well-defined limit as the characteristic tends to co. This
limit, which is (relatively) an easier invariant to compute, is a lower bound
for the HK multiplicities of the reductions (mod p), though examples of
Han-Monsky show that the convergence is not monotonic as p — oo, in
general (see Remark 2.7).
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81. The HN slope of F'*V in terms of the HN slope of V

Let X be a nonsingular projective curve of genus g > 1, over an al-
gebraically closed field k& of characteristic p > 0. We recall the following
definitions.

DEFINITION 1.1. Let V be a vector bundle (i.e., locally free coherent
sheaf of Ox-modules) on X. We say V is a semistable vector bundle on X
if, for every subsheaf of Ox-modules F' C V', we have

deg F’
= <
n(F) rank F' — H

V),
where for a rank r vector bundle V on X we define
deg V' = degree of the line bundle A"V on X.

DEFINITION 1.2. Let V be a vector bundle on X. A filtration of V' by
vector subbundles

(1.1) O0=EyCEiC---CECE 1=V
is a Harder-Narasimhan filtration if

(1) the vector bundles Eq, Fy/Eq, ..., Ej11/E; are all semistable.
(2) p(Er) > p(Ee/Er) > -+ > w(Ep /[ Ey).

Remark 1.3. For any Harder-Narasimhan filtration (we would call it
HN filtration from now onwards), denoted as in Equation (1.1), the following
is true (see [HN], Lemma 1.3.7),

(1) the filtration always exists and is unique for given V,

(2) p(Er) > p(E2) > -+ > p(Eigr) = p(V),
(3) w(E;i/Ei—1) > (V) > u(Eiz1/E;), for some 1 < i <.

NoOTATION 1.4. If
OZEQCElCEQC"'CElCEl_H:V

is the HN filtration for a vector bundle V on X then we denote

) = (7= )+ V) = ) and piaV) = ()
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LEMMA 1.5. Let V' be a vector bundle over X of rank r and let
OZEQCElCEQC"'CElCEH_l:V

be the HN filtration of V. Then
3 r—1

T ) = (V)

Proof. Let p; = pu;(V). Let us denote #; = rank F;/E; 1 and d; =
deg Ez/Ez—l Then

r—1 r—1 _ (r=Dririp
pi = piv1  difTi — dig1/Tiv1 diTiv1 — digaTi

But
fi — i1 >0 = difip1 — dig1T >0 = diFip1 — digaT; > 1.

Therefore
r—1
i — Hit1
This proves the lemma. 0

< (r— 1T <7

DEFINITION 1.6. If X is a projective variety defined over an alge-
braically closed field of characteristic p > 0, then the absolute Frobenius
morphism F' : X — X is a morphism of schemes which is identity on the
underlying set of X and on the underlying sheaf of rings F# : Ox — Ox is
the p™ power map.

Remark 1.7. For a vector bundle V on X, the Frobenius pull back F'*V
is a vector bundle on X and

rank F*V =rank V' and pu(F*V) = pu(V).
We recall the following crucial result by Shepherd-Barron.

COROLLARY 2P. ([SB]) If X is a nonsingular projective curve of genus
g and if V is a semistable vector bundle on X of rank r such that F*V is
not semistable then

0 < pmax(F*V) = pmnin (F7"V) < (29 = 2)(r = 1). [
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Now we prove the following crucial lemma.

LEMMA 1.8. Let V be a vector bundle on X with the HN filtration as
in Lemma 1.5. Assume that chark = p > 4(g — 1)r3. Then,

F*Ey\CF*EyC---CF'E, C F*'V
s a subfiltration of the HN filtration of F*V, that is, if
0CE C--CEy4=FV
is the HN filtration of F*V then for every 1 <i <1 there exists 1 < j; <l
such that F*E; = Ej,.
Proof. For each 0 < i <1, let
F*E;CEjyC---CEy, CF'Eiq

be a filtration of vector bundles on X such that
Ei E; F*E; 4

0
“FE “FE - FE

is the HN filtration of F*(FE;11/FE;). Now it is enough to prove the

CLAIM.

0CE01C"'CEQtOCF*E1C"'CF*EZ‘CEZ'1C"'
- CEy, CF'Egyy C- - CF'V

is the HN filtration of F*V .

Proof of the claim. By construction, for 0 < ¢ <[ and for 1 < j < ¢;,

we have . 5
ij i+1
P — > S A —
M<Em1> H( Eij >
and
, and
Eij 1 FEi14_, F*E;

are semistable. Hence, by Definition 1.2, it is enough to prove that

(7o) > (75)
a Ei 14, a F*E; )’
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Now, by Corollary 2P of [SB], we have

E; < B
(1.2) 0< umaxF*< 27“) — fminF (é—“) < (29 -2)(r - 1).
1 (a

By Remark 1.3, for all 0 <4 <[, we have

Ein Eit Ein
* > P2 > P 2.
Prmax F ( E, >_M<F ( E, e 2

Therefore

0 < i (%) - M<F(ET+)> < (29— 2)(r - 1).

Let p; = p;(V'). Then we have

(13) 0< M(FEE> ~ppin < (29— 2)(r — 1),

Similarly

2w () el () = o

which means

F*E;

1.4 0<pu —ul —=1
(1.4) < ppi M<Ei—1,ti_1

) < (29— 2)(r - 1).

Now, multiplying (1.3) and (1.4) by —1 and adding, we get

F*E; Ei
1. —4(g—1D)(r—1 = pir1) < pl ——— ) - !
(1.5) (g =1)(r = 1) +plu uz+1)_u<EiM“> M(FE)
< p(pi — pit1)-

Since p > 4(g — 1)r3, Lemma 1.5 implies that

—4(g — )(r — 1) + p(pi — pit1) >0,

and hence
(7))
a Ei 14, M\ FE )
This proves the claim, and hence the lemma. U
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DEFINITION 1.9. (1) A vector bundle V on X is strongly semistable
if F**(V) is semistable for every s*® iterated power of the absolute
Frobenius map F: X — X.

(2) A filtration by subbundles
OZEQCElC"'CElCEl_H:V

of V' is a strongly semistable HN filtration if

(a) it is the HN filtration and
(b) Eq,E9/Er,...,E;+1/E; are strongly semistable vector bundles.

Remark 1.10. (1) If the HN filtration
O=EyCEiC---CECE41=V
of V is strongly semistable then, for any k& > 0, the filtration
0=FEyC F*E, c---c F**E c F*E, = F*V

is the strongly semistable HN filtration of F'**V/.

(2) If V is a rank 2 vector bundle on X and is not semistable then its HN
filtration will be strongly semistable; as it would be filtered by line
bundles, which are always semistable and hence strongly semistable.

Remark 1.11. Note that, if rank V = r and chark = p > 4(g — 1)r3,
then Lemma 1.8 implies that there exists s > 0 such that the HN filtration
of F¥*V is strongly semistable. Therefore, Theorem 2.7 of [L] follows in this
case.

DEFINITION 1.12. Let E be a vector bundle on X. A vector bundle
F; # 0 occuring in the HN filtration of F'**F is said to almost descend to
a bundle F; occuring in the HN filtration of F if F; C F**FE; and FE; is the
smallest bundle in the HN filtration of F, with this property.

Remark 1.13. Note that, if p > 4(g — 1)(rank E)?, then by Lemma 1.8,
we have the following transitivity property: if F); almost descends to a
bundle ENJZ in the HN filtration of F**E , and EZ almost descends to a bundle
E; occuring in the HN filtration of F, then F); almost descends to the bundle
E;.
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LEMMA 1.14. Let E be a vector bundle on X of rank r and let the
characteristic p satisfy p > 4(g —1)r3. Let F; # 0 be a subbundle in the HN
filtration of F**E, which almost descends to a vector bundle E; occuring in
the HN filtration of E. Then

(F*E C
Iuj( s ) :MZ(E)+_7
p p
where |C| < 4(g — 1)(r — 1), and p;(F**E) and p;(E) are given as in
Notation 1.4.

Proof. Let F;_1 be the vector bundle on X such that F;_; C F} are
two consecutive subbundles of the HN filtration of F'**FE. Therefore, by

Lemma 1.8, there exist two consecutive subbundles F;,_; C E;, in the HN
filtration of FG6~V*E such that

F*E; 1 CFj_1 C F; CF'E;,.

In particular, we are in the situation that E;, /E; 1 is a semistable vector
bundle on X and

(1) either Fj—l/F*Eil—l = 0 in F*(Eil/Ei1—1)7 and Fj/F*Eil—l is the
first nonzero vector bundle in the HN filtration of F*(E;, /E;,—1) or

(2) Fj_1/F*E;,—1 C F;/F*E; _1 are two consecutive subbundles in the
HN filtration of F*(E;, /E;; —1).

In both the cases, by Definition 1.2, we have

o) =) < (52)
minF1>k L < J < me* — .
a <Ei11 =M Fj 4 = fima E; 1

Therefore, Corollary 2P of [SB] implies

“2g =0 -1 < (0 - (P (7)) <200 - D0 - ).

i1
Note that pu(F*(E;, /E;i, 1)) = pui, (F®~D*E). Therefore we have
pi(F¥E) = ppi, (FC~VE) + Cy,

where |C| < 2(g —1)(r — 1).
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Note E;, is a nonzero subbundle in the HN filtration of F'*~D*E which
almost descends to F; occuring in the HN filtration of E. Hence, inductively
one can prove that

piy (FED*E) = p* Ly (B) + p*2Cy + -+ + O,
where |Ca|,...,|Cs| <2(g —1)(r — 1). Therefore

i (F*E) = p*ui(E) +p* ' Cs + - + pCs + Ch.
Therefore

1
= pi(B) £ 5 (p* o 4 pCa + O1).
But
(0" Cs -+ pCa+ Cl < L+ +p" ) (2(g — 1(r - 1)).

Since (1+p+---+p*')/p* ! < 2, we have

Ip*~1Cs + - + pCs + O]
ps—l

<4(g=D(r=1).

Therefore we conclude that

(F*E C
wEZE) p ) = ni(E) + —,
p p
where |C| < 4(g — 1)(r — 1). This proves the lemma. [

NOTATION 1.15. Henceforth we assume that the characteristic p satis-
fies p > 4(g — 1)r3. We also fix a vector bundle V on X of rank r with the
HN filtration

O0=EyCEICEyC---CECE1=V.
Let
(1.6) 0CF CFC---CF CFy=Fv

be the HN filtration of F¥*V and let

pi(F*V)

F
ri( F&*V) = rank<F - > and a;(F¥V) = o

i—1
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PROPOSITION 1.16.  With the notation as above, where p > 4(g — 1)r3,
if a vector bundle F; of the HN filtration of F*V almost descends to a
vector bundle E; of the HN filtration of V' then, for any m > 1,

* m m C
aj(Fk V)™ = (V) +E7

where |C] < Sgr(max{2)u (V) .., 21 (V)], 2171,
Proof. By Lemma 1.14, we have
* Cij
aj(F"V) = pi(V) + =1,

where |c;j| < 4(g — 1)(r — 1). For the sake of abbreviation let us denote
1 (V) by pj. Therefore

k m Cij m it m\ ¢ij
*Y7\m m 149 i tJ
a;(F™V)™ — pj ——<1>u’in —]+---+< 1>ui _1—1—( >—

Hence

laj(FF*V)™ — |
el [(mY,| jm1 m legg| ™72 (m ey
< gl A v B Pyl |
>~ D 1 ‘/’LZ‘ + + m—1 ’Ml, pm—Q + m pm—l

Now, as |¢;;|/p < 1, this implies

|a; (F™V) ml_p L)l e

(1) Let |u;| < 1. Then

vy = < B () (7 )+ ()

(8gr(2™71)).

p

"D

(2) Let |u;| > 1. Then

0, (FEVY™ — | < % KT) - (m@ 1) s (g)]

< leagllpa™ (8gr(2lu)™1).

p

@2m—1) <

[ =

Hence the proposition. []
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§2. Applications

We extend Notation 1.15 to the case, when the underlying field is of
arbitrary characteristic, as follows.

NotATION 2.1. Let X be a nonsingular curve over an algebraically
closed field k and V a vector bundle on X, with HN filtration

OZE()CElC"'CElCElJrl:V.

(1) If chark = p > 0, then we define the numbers ju;(F*¥*V), r;(FFV)
and a;(F¥*V) as in Notations 1.4 and 1.15. Moreover, we choose an
integer s > 0 such that F'**(V') has a strongly semistable HN filtration
and we denote

ai(V) = ai(F*(V)) and 75(V) = ri(F**(V))

(note that, by Remark 1.10, these numbers are independent of the
choice of such an s).

(2) If char k = 0, define

V) = V) = g ). and V) = 1) = v ).

1—1

Here we recall a notion of spread for the pair (X,V’), where X is a
nonsingular curve over a field of characteristic 0 and V is a vector bundle
on X. For such a pair there exists a finitely generated Z-algebra A C k and
a projective A-scheme X 4 over A and coherent, locally free sheaves V4 and

EigC---CEaCVy
on X 4 such that
X4 XgpecaSpeck =X and Va®ak=7V,
and for all closed points s € Spec A, if

Ve =Va®k(s), and Ej,) = Eia ® k(s),

then
OCEl(S) C - CEl(s) Cc Vs
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is the HN filtration of Vj (this follows by an openness property of semistable
vector bundles ([Ma])). We call the triple (A, X 4,V4) a spread of (X,V).

Moreover, if, for the pair (X, V'), we have a spread (A4, X 4,V4) as above
and A C A’ C k, for some finitely generated Z-algebra A" then (A’, X 4/, Vas)
satisfy the same properties as (A4, X 4,V4). Hence we may always assume
that the spread (A, X 4, Va) as above is chosen such that A contains a given
finitely generated algebra Ag C k.

PROPOSITION 2.2. Let f : X4 — SpecA be a projective morphism of
Noetherian schemes, smooth of relative dimension 1, where A is a finitely
generated Z-algebra and is an integral domain. Let Ox,(1) be an f-very
ample invertible sheaf on Xa. Let V4 be a vector bundle on X4. For

s € Spec A, let Vs = V4 ®4 k(s) be the induced vector bundle on the smooth

projective curve X = X4 ®4 k(s). Let so = Spec Q(A) be the generic point
of Spec A. Then,

(1) for any k>0 and m > 0, we have

Jim D S (FFV)ag (FF V)™ = 3 (Vo i (Vo)™
J

(2) Similarly

sh—>nslo Z 7i(Vs)a;(Vs)™ = Z 7i(Vso ) 1i (V)™
j i

where in both the limits, s runs over closed points of Spec A.

Proof. To prove the proposition, one can replace Spec A by an affine
open subset (after localizing A if necessary), so that

(A, X4,Va) is a spread of (X4 ® k(so),Va ® k(so))

as defined above. Moreover we can choose A such that, for any closed point
s € Spec A, we have

char k(s) > 4(genus X, — 1)(rank V;)3 = 4(genus X, — 1)(rank V;,)>.
Therefore, if we denote

M = 8(genus(Xs,))r(Vs, ) (max{2, 2|u1 (Vs, )1, - - -, ‘:U*lJrl(V;o)‘}m_l)?
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where r(V;,) = rank(V;,), then, by Proposition 1.16, we have
ZTJ F V)a] F V Zrz s z s + ? , Where |CZ‘ <M

J
m CS
- E TZ(V;())MZ(V;()) ka

p

where |Cs, | < r(Vsy)M. In particular, for every closed point s € Spec A, we

have )
D Ve (V)™ = D2 ri(Vag (Vi)™ + =
J i
where |Cs| < 7(Vs,)M. Now the proposition follows easily. [

COROLLARY 2.3. Along with Notation 2.1, if we denote (as defined in
[B2]), for chark > 0, upx(V) = >, 7:(V)a;(V)?, and for chark = 0,
pk (V) = 3;r;(V)ui(V)?, then

Jim pwc(Ve) = prre (Vio)-
Proof. The corollary follows by substituting m = 2 in the second state-
ment of Proposition 2.2. []

Here recall similar notion of spread for the pair (R,I), where R is a
finitely generated N-graded two dimensional domain over an algebraically
closed field k of characteristic 0 and I C R is a homogeneous ideal of finite
colength. For such a pair, there exists a finitely generated Z-algebra A C k,
a finitely generated N-graded algebra R over A and a homogeneous ideal
Ipx C Rj such that Ry ®4 k = R and for any closed point s € Spec A
(i.e. maximal ideal of A) the ring Rs = R4 ®4 k(s) is a finitely generated
N-graded 2-dimensional domain (which is a normal domain if R is normal)
over k(s) and the ideal Iy = Im(f4 ®4 k(s)) C Rs is a homogeneous ideal
of finite colength. We call (A, Ra,I4) a spread of the pair (R, I).

Moreover, if, for the pair (R, I), we have a spread (A, Ra,I4) as above
and A C A’ C k, for some finitely generated Z-algebra A’ then (A", Ras, L4/)
satisfy the same properties as (A, R4,l4). Hence we may always assume
that the spread (A, Ra,l4) as above is chosen such that A contains a given
finitely generated algebra Ay C k.
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THEOREM 2.4. Let R be a standard graded two dimensional domain
over an algebraically closed field k of characteristic 0. Let I C R be a
homogeneous ideal of finite colength. Let (A,Ra,Ia) be a spread as given
above. Then

lim eHK(RS,IS)

Ss—S0

exists and is a rational number, where sg = Spec Q(A) is the generic point
of Spec A, and the limit is taken over closed points s € Spec A.

Proof. Let R — S be the normalization of R. Then R — S is a
finite graded map of degree 0, and Q(R) = Q(S), such that S is a finitely
generated N-graded 2-dimensional normal domain over k. Now, for pairs
(R,I), (S,1S), we choose spreads (A, Ra,I4) and (A, Sa,IS4) such that
for every closed point s € Spec A, the natural map Ry = Ry ® k(s) — Ss =
SA®Kk(s) is a finite graded map of degree 0. Therefore we have the following
commutative diagrams of horizontal finite maps

ProjR «——— ProjS

! |

ProjR4 «—— ProjSa.
It follows that, for every s € Spec A, the corresponding map of curves
Proj SARa k:(s) — ProjRa ®4 k(s)

is a finite map, where the curve ProjS4 ®4 k(s) is nonsingular. Since
Rs; — S5 is a finite map such that Ss is a module of rank 1 over Rg, by
Lemma 1.3 in [M], Theorem 2.7 in [WY] and [BCP], we have

eni(Rs, Is) = e (Ss, ISs), for every closed point s € Spec A.
Therefore it is enough to prove the following
CrLAM. limg_,s, egr(Ss, ISs) exists.

Proof of the claim. Let I and IS4 be generated by the set {f1,..., fx},
where deg f; = d;. We have a short exact sequence of Ox ,-sheaves (see [B1]
and [T1]):

k
(2.1) 0—Va— @0x,(1—di) — Ox,(1) — 0
1=1
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where Ox, (1 — d;) — Ox, (1) is multiplication by f;. Restricting (2.1) to
the fiber X, we get

k
0—V, — @OXs(l —d;) — Ox,(1) — 0.

i=1

Note that (see [B1] and [T1]),

deg Proj S, ~ ~ 9 b 9
enk (S, 18;) = ————=( Y _FH(Voa(Va)> = > _d7 ).

2 - ;
7 =1
Therefore
. k
) deg Proj S [ .. ZN - 9 Z 9
slir?o eHK(SS’ ISS) - f (sli{rslo - n(%)al(%) a —1 dl .

Hence, by Proposition 2.2,

k
. deg Proj S
lim e (4, 18,) = =222 (Z riVao)i(Vao)2 = 3 d?).
% =1
In particular lims_,s, e (Ss, [Ss) exists and is a rational number. This
proves the theorem. []

Remark 2.5. Let R be a standard graded 2 dimensional domain over a
field of characteristic 0. Let I C R be a homogeneous ideal of finite colength.
Then for the pair (R, I) we choose a spread (A, X 4,I4) as described earlier
and define

(22) €HK(R,I) = SILII;OGHK(RS,IS).

This is, inherently, a well defined notion (i.e., irrespective of a choice of
generators of I), since in positive characteristic e (Rs, I5) is independent
of a choice of generators of I;. We extend this definition to a standard graded
2-dimensional ring R, over a field k of characteristic 0, and a homogeneous
ideal I C R of finite colength as

enk(R,I) = > (r,(Rp)enx (R/p, IR/p),
pESpec R, dim R/p=2
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This is a always a rational number, by Theorem 2.4.
Note that a notion of e g (R, I), when R is also a normal domain (i.e.,
Proj R is a smooth curve) over a field of characteristic 0, is given in [B2] as

. k
deg Proj R 9
(2.3) eni (R 1) = ———— <MHK(V) -~ E; di>,

where V' is the vector bundle given by
0—V— EB(’)X(l —d;) — Ox(1) — 0.
i
By Corollary 2.3, these two definitions (2.3) and (2.2) coincide, in this case.

Remark 2.6. It follows from Remark 4.13 of [T1] that, for every closed
point s in Spec A, where (A, R4, 14) is a spread for the pair (R, I), we have

enk(Rs,Is) > enx (R, 1),

and e (Rs, Is) = egr (R, I) if and only if HN filtration of Vj is the strongly
semistable HN filtration, where ey g (Rs, Is) is the HK multiplicity defined
(as given in the introduction) over the residue field k(s), of the point s, which
is of positive characteristic and eg g (R, I) is defined (as in Remark 2.5), over
the quotient field of A which is of characteristic 0. If V; is semistable then

err(R,I) = degPrOJR ((Zd) J(t—1) —Zd?).

Remark 2.7. As observed in the above remark,
{emr(Rs,Is) —enr(R,I) | s € {closed points of Spec A}}
is a sequence of non-negative rational numbers (indexed by the closed points
of Spec A), converging to 0. Examples show that it could be oscillating.
First we recall the following result of [T2]

COROLLARY. Let X, = Proj R, where R, = k[z,y,2]/(f)), be a non-
singular plane curve of degree d over an algebraically closed field k of char-
acteristic p > 0. Then

3d 12

enk(Xp, Ox,(1)) = enx (Ry, (z,y,2)Ry) = = 1=
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where s > 1 is a number such that F(S*I)*VXP is semistable and FS*VXP 18
not semistable (if F**Vx, is semistable for allt > 0, we take s = o0o) and |
is an integer congruent to pd (mod 2) with 0 <1 <d(d — 3). 0

Monsky (around 1990) calculated the Hilbert Kunz function for plane
curves k[z,y, z]/(z? 4+ y® + 2%), this result was later generalized in [H] and
[HM] to diagonal hypersurfaces k[z1, z2,...]/(3; 2¢). In particular, arguing
as in the examples of [HM] we have the following

Let

R, = k[X,Y, Z]/(z* + y* + 2?), where chark = p.

Then
erric(Ry, (2,9, 2)Ry) = 3+ ]%, it p = +3(8)
=3, if p=+£1(8).
Now, let X, = Proj R,,. Consider the short exact sequence
0 — Vx, — Ox, ® Ox, ® Ox, — Ox,(1) — 0,

where the second map is given by (f1, fo2, f3) — xf1 + yfo + 2 fs.
By the above Corollary, we have

(1) if p=4—-3(8) and p > 0 then [ = 4 and s = 1, i.e. Vx, is semi-
stable, and F*(Vx,) is not semistable and has strongly semistable HN
filtration and

2 2
a1(Vx,) = p(Vx,) + » and az(Vx,) = p(Vx,) — p
In particular ppx(Vx,) = QH(VXP)Z + z%'

(2) if p=+—1(8) then =0, i.e. Vi, is strongly semistable, and
a1(Vx,) = n(Vx,)

In particular ppx(Vx,) = 2u(Vx,)?.

In particular, for p > 0 the numbers a;(Vx,) a2(Vx,) do not eventually
become constant or a well defined function of p, but keep oscillating and
converge to u(Vx).
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