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Abstract

Let X be a projective cubic hypersurface of dimension 11 or more, which is defined over
Q. We show that X(Q) is non-empty provided that the cubic form defining X can be
written as the sum of two forms that share no common variables.
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1. Introduction

Let X ⊂ Pn−1 be a cubic hypersurface, given as the zero locus of a cubic form C ∈ Z[x1, . . . , xn].
This paper is concerned with the problem of determining when the set of rational points X(Q)
on X is non-empty. There is a well-known conjecture that X(Q) 6= ∅ as soon as n > 10. In fact, for
non-singular cubic hypersurfaces, it is expected that the Hasse principle holds as soon as n > 5.
This means that in order for X(Q) to be non-empty it is necessary and sufficient that X(Qp) is
non-empty for every prime p. For a large class of possibly singular cubic hypersurfaces X ⊂ Pn−1,
Salberger has calculated the Brauer group Br(Y ) associated to a projective non-singular model Y
of X. A detailed proof of this calculation is provided by Colliot-Thélène in the appendix to this
paper. As a consequence of this investigation one has the following prediction.

Conjecture. Let X ⊂ Pn−1 be a cubic hypersurface defined over Q which is not a cone, with
n > 5 and singular locus which is empty or of codimension at least four in X. Then the Hasse
principle holds for the locus of non-singular points on X.

Let us now consider some of the progress that has been made towards this conjecture.
When C is diagonal it follows from the work of Baker [Bak89] that X has Q-rational points
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as soon as n > 7. At the opposite end of the spectrum, when absolutely no assumptions are
made about the shape of C, a lot of work has been invested in producing a reasonable lower
bound for the number of variables needed to ensure that X(Q) 6= ∅. Building on work of
Davenport [Dav59, Dav63], Heath-Brown [Hea07] has recently shown that n > 14 variables are
enough to secure this property for an arbitrary cubic hypersurface defined over Q. In the light of
this body of work it is very natural to try and evince intermediate results in which the existence
of rational points is guaranteed for cubic hypersurfaces in fewer than 14 variables when mild
assumptions are made about the structure of the hypersurface. It is precisely this point of view
that is the focus of the present investigation.

Let sing(X) denote the singular locus of X, as a projective subvariety of X. When C ∈
Z[x1, . . . , xn] is non-singular, so that sing(X) is empty, it follows from work of Hooley [Hoo88]
that the Hasse principle holds for X provided that n > 9. As is well-known, the local conditions
are automatic when n > 10, and so X(Q) is non-empty for non-singular X provided that n > 10.
This fact was first proved by Heath-Brown [Hea83]. When sing(X) has dimension σ > 0, joint
work of the author [BH09a] with Heath-Brown shows that X(Q) is non-empty provided that
n > 11 + σ.

Let m< n be a positive integer. We will say that an integral cubic form C in n variables
‘splits off an m-form’ if there exist non-zero cubic forms C1, C2 with integer coefficients so that

C(x1, . . . , xn) = C1(x1, . . . , xm) + C2(xm+1, . . . , xn),

identically in x1, . . . , xn. We will merely say that C ‘splits off a form’ if C splits off an m-form
for some 1 6m< n. The following is our main result.

Theorem 1. Let X ⊂ Pn−1 be a hypersurface defined by a cubic form that splits off a form,
with n > 13. Then X(Q) 6= ∅.

The essential content of Theorem 1 is that we can save one variable in the result of Heath-
Brown [Hea07] when the underlying cubic form splits off a form. It should be stressed that
the existence of a single Q-rational point on X is enough to demonstrate the Q-unirationality
of X, and so the Zariski density of X(Q) in X, when X is geometrically integral and not a
cone. Variants of this result have been known for a long time (cf [CSS87, Man86, Seg44]). In the
generality with which we have stated the result, it appears in the work of Colliot-Thélène and
Salberger [CS89, Proposition 1.3] and in that of Kollár [Kol02].

Our work has implications for the problem of determining when an arbitrary cubic form
C ∈ Z[x1, . . . , xn] represents all non-zero a ∈Q, using rational values for the variables. When this
property holds we say that C ‘captures Q∗’. Recall that a cubic form is said to be degenerate if the
corresponding cubic hypersurface is a cone. Fowler [Fow62] has shown that any non-degenerate
cubic form that represents zero automatically captures Q∗ provided only that n > 3. Hence it
suffices to fix attention on those forms that do not represent zero non-trivially. On multiplying
through by denominators it will clearly suffice to establish that cubic forms of the shape

C(x1, . . . , xn)− ax3
n+1 (1.1)

represent zero non-trivially, with a an arbitrary non-zero integer. But this form splits off a 1-form,
and so is handled by Theorem 1. In this way we deduce the following result.

Corollary. Let C ∈ Z[x1, . . . , xn] be a non-degenerate cubic form, with n > 12. Then C
captures Q∗.
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Rational points on cubic hypersurfaces

This result should be compared with the work of Heath-Brown [Hea07], which implies that
n > 13 variables suffice. It follows from the work of Hooley [Hoo88] that this may be improved
to n > 8 when C is non-singular. As indicated in [Hea83, Appendix 1] the latter lower bound is
probably the correct one for arbitrary cubic forms, since (1.1) always has non-trivial p-adic zeros
for n in this range.

Let n > 4. When X ⊂ Pn−1 is a hypersurface defined by a cubic form that splits off a form,
we are able to handle fewer variables when appropriate assumptions are made about one of the
forms. If X is a cone then we will see in Lemma 1 that X(Q) 6= ∅. If, on the other hand, X
is not a cone let us suppose that the underlying cubic form splits off a non-singular m-form
C1(x1, . . . , xm). If m= n− 1 then X is itself non-singular and we automatically have X(Q) 6= ∅
when n > 10. If m 6 n− 2 then the residual form C2 defines a projective cubic hypersurface
of dimension n−m− 2, and as such has singular locus of dimension at most n−m− 3. But
then it follows that X has singular locus of dimension at most n−m− 3. Thus we may deduce
from [BH09a] that X(Q) 6= ∅ provided that n > 8 + n−m. We record this observation in the
following result.

Theorem 2. Let X ⊂ Pn−1 be a hypersurface defined by a cubic form that splits off a non-
singular m-form, with m > 8 and n > 10. Then X(Q) 6= ∅.

It would be interesting to reduce the range of m needed to ensure the validity of Theorem 2.
Ours is not the first attempt to better understand the arithmetic of cubic hypersurfaces that
split off a form. Indeed, in Davenport’s [Dav63] treatment of cubic forms in 16 variables, a
fundamental ingredient in the treatment of certain bilinear equations is a separate analysis of
those forms that split into two. In further work, Colliot-Thélène and Salberger [CS89] have shown
that the Hasse principle holds for any cubic hypersurface in Pn−1 that contains a set of three
conjugate singular points, provided only that n > 4. Given a cubic extension K of Q, define the
corresponding norm form

N(x1, x2, x3) := NK/Q(ω1x1 + ω2x2 + ω3x3), (1.2)

where {ω1, ω2, ω3} is a basis of K as a vector space over Q. In view of the fact that the local
conditions are automatically satisfied for cubic forms in at least 10 variables, we observe the
following easy consequence.

Theorem 3 (Colliot-Thélène and Salberger [CS89]). Let X ⊂ Pn−1 be a hypersurface defined
by a cubic form that splits off a norm form, with n > 10. Then X(Q) 6= ∅.

It turns out that Theorem 3 will play a useful rôle in dispatching some of the cases that arise
in the proof of Theorem 1. Following the strategy of Birch et al. [BDL62], it would however be
straightforward to adapt the proof of Theorem 1 to retrieve Theorem 3.

An obvious further line of enquiry would be to investigate cubic hypersurfaces that split off
two forms, by which we mean that the corresponding cubic form can be written as

C(x1, . . . , xn) = C1(x1, . . . , x`) + C2(x`+1, . . . , xm) + C3(xm+1, . . . , xn),

identically in x1, . . . , xn, for appropriate 1 6 ` < m< n. With the extra structure apparent in
such hypersurfaces one would like to determine the most general conditions possible under which
the conjectured value of n > 10 variables suffices to ensure the existence of Q-rational points.

One of the remarkable features of our argument is the breadth of tools that it draws upon. The
underlying machinery is the Hardy–Littlewood circle method, and we certainly take advantage
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of many of the contributions to the theory of polynomial cubic exponential sums that have been
made during the last fifty years. These are detailed in § 3. A further component of our work
involves a detailed analysis of the case in which one of the forms that splits off in Theorem 1
is singular and has a relatively small number of variables. To deal with this scenario it pays to
reflect upon the classification of singular cubic hypersurfaces. This is a very old topic in algebraic
geometry, and can be traced back to the pioneering work of Cayley [Cay69] and Schläfli [Sch64].
All of the necessary information will be collected together in § 2. The final ingredient in our
work comprises good upper bounds for the number of Q-rational points of bounded height on
auxiliary cubic hypersurfaces. The estimates that we will take advantage of are presented in § 4.

When it is applicable, the Hardy–Littlewood circle method allows us to show that X(Q) 6= ∅
for a given cubic hypersurface X ⊂ Pn−1 by evaluating asymptotically the number of Q-rational
points of bounded height on X. It is a well-known but intriguing feature of the method that one
can achieve such precise information by first establishing weaker upper bounds for the growth
rate of Q-rational points on appropriate auxiliary varieties. In fact, we will show in Lemma 11
that the Q-rational points on a non-singular cubic hypersurface X ⊂ Pn−1 satisfy the growth
bound

#{x ∈X(Q) :H(x) 6 P}�ε,X P dimX− 1
2

+ε,

for any P > 1, provided that dimX > 6. Here H : Pn−1(Q)→ R>0 is the usual exponential height
function. This should be compared with the Manin conjecture [FMT89] which predicts that the
exponent of P should be dimX − 1 as soon as dimX > 3.

Notation. Throughout our work, N will denote the set of positive integers. For any α ∈ R,
we will follow common convention and write e(α) := e2πiα and eq(α) := e2πiα/q. The parameter
ε will always denote a very small positive real number. We will use |x| to denote the norm
max |xi| of a vector x = (x1, . . . , xn) ∈ Rn, whereas ‖x‖ will be reserved for the usual Euclidean
norm

√
x2

1 + · · ·+ x2
n. All of the implied constants that appear in this work will be allowed to

depend upon the coefficients of the cubic forms under consideration and the parameter ε > 0.
Any further dependence will be explicitly indicated by appropriate subscripts.

2. Geometry of singular cubic hypersurfaces

The proof of Theorem 1 will depend intimately on the dimension of the hypersurfaces defined by
the constituent cubic forms and the nature of their singularities. A key step will be to determine
conditions on this singular locus under which the hypersurface automatically has rational points.

Let C ∈ Z[x1, . . . , xn] be an arbitrary cubic form, which we assume takes the shape

C(x) :=
∑
i,j,k

cijkxixjxk, (2.1)

in which the coefficients cijk ∈ Z are symmetric in the indices i, j, k. Define the n× n matrix
M(x) with j, k-entry

∑
i cijkxi. We will say that the cubic form C is ‘good’ if for any H > 1 and

any ε > 0 we have the upper bound

#{x ∈ Zn : |x| 6H, rankM(x) = r}�Hr+ε,

for each integer 0 6 r 6 n. A crucial step in Davenport’s [Dav63] treatment of general cubic forms
is a proof of the fact that forms that fail to be good automatically possess non-trivial integer
solutions for ‘geometric reasons’. Our approach has a similar flavour, although the underlying
arguments will be more obviously geometric.
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Assume throughout this section that n > 3 and X ⊂ Pn−1 is a hypersurface defined by a
cubic form C ∈ Z[x1, . . . , xn]. A lot of the facts that we will record are classical. Suppose for the
moment that C is not absolutely irreducible. Then either it has a linear factor L defined over Q,
or it is a product C = L1L2L3 of three linear factors that are conjugate over Q. By considering
the equation L= 0 in the former case, we deduce that X(Q) 6= ∅. In the latter case, we arrive
at the same conclusion when n > 4, by considering the system of equations L1 = L2 = L3 = 0.
When n= 3 and C is a product of three conjugate factors we deduce that X has precisely three
conjugate singular points. When n > 3 and X is defined by an absolutely irreducible cubic form,
but is a cone, we note that the space of vertices on X must be a linear space globally defined
over Q. Thus X(Q) 6= ∅ in this case too. We have therefore established the following simple result.

Lemma 1. Let n > 4. If X is not geometrically integral, or if X is a cone, then X(Q) 6= ∅. When
n= 3 the same conclusion holds unless X contains precisely three conjugate singular points.

Recall that a cubic hypersurface X is said to be non-singular if over Qn the only solution to
the system of equations ∇C(x) = 0 has x = 0. Henceforth we will be predominantly interested
in singular cubic forms, and then only in the cases n= 3, 4 and 5. Let k be a field. It has
been conjectured by Cassels and Swinnerton-Dyer that any cubic hypersurface X ⊂ Pn−1 defined
over k that contains a k-rational 0-cycle of degree coprime to three, automatically has a k-rational
point. The case n= 3 goes back to Poincaré. When the singular locus is non-empty, the case n= 4
can be deduced from the work of Skolem [Sko55]. A comprehensive discussion of the arithmetic of
singular cubic surfaces can be found in the work of Coray and Tsfasman [CT88]. Coray [Cor76]
has established the conjecture for all local fields and, in a subsequent investigation [Cor87,
Proposition 3.6], has also dispatched the case in which n= 5 and the 0-cycle is made up of
double points.

Suppose first that n= 3, so that X ⊂ P2 defines a cubic curve, which we assume to be
geometrically integral and not a cone. When X is singular it contains exactly one singular
point, which must therefore be defined over Q. Once combined with Lemma 1 we arrive at the
following result.

Lemma 2. Let n= 3 and suppose that X(Q) = ∅. Then one of the following holds.

(i) The curve X is non-singular.

(ii) The curve X contains precisely three conjugate singular points.

In case (ii) of Lemma 2 one concludes that the underlying cubic form can be written as a
norm form (1.2), for appropriate ω1, ω2, ω3 ∈K, where K is the cubic number field obtained by
adjoining one of the singularities.

We turn now to the case n= 4 of cubic surfaces X ⊂ P3, which we suppose to be geometrically
integral and not equal to a cone. Suppose that X is singular. The classification of such cubic
surfaces can be traced back to Cayley [Cay69] and Schläfli [Sch64], but we will employ the modern
treatment found in the work of Bruce and Wall [BW79]. In particular the singular locus of X is
either a single line, in which case X is ruled, or else it contains δ 6 4 isolated singularities and
these are all rational double points. It follows that X(Q) 6= ∅ unless δ = 3 and the three singular
points are conjugate to each other over a cubic extension of Q. In this final case, Skolem [Sko55]
showed that C can be written as

NK/Q(x1ω1 + x2ω2 + x3ω3) + ax2
4 TrK/Q(x1ω1 + x2ω2 + x3ω3) + bx3

4, (2.2)

for appropriate coefficients ω1, ω2, ω3 ∈K and a, b ∈ Z, where K is the cubic number field
obtained by adjoining one of the singularities to Q. In terms of the classification over Q according
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to singularity type, the only possibility here is that X has singularity type 3Ai for i= 1 or 2,
since the action of Gal(Q/Q) preserves the singularity type. Bringing this all together, we have
therefore established the following analogue of Lemma 2.

Lemma 3. Let n= 4 and suppose that X(Q) = ∅. Then one of the following holds.

(i) The surface X is non-singular.

(ii) The surface X contains precisely three conjugate double points.

We now try to construct a version of Lemmas 2 and 3 for the case n= 5. Let Y ⊂X denote
the singular locus of X ⊂ P4, a variety of dimension at most two. As usual we assume that X is
geometrically integral and not a cone. We analyse Y by considering the intersection of X with
a generic hyperplane H ∈ P4∗. In particular the hyperplane section

SH =H ∩X

is a geometrically integral cubic surface which is not a cone (see [Har92, Proposition 18.10], for
example). In taking H to be defined over Q, we may further assume that SH is defined over Q.
Any Q-rational point on SH visibly produces a Q-rational point on X. Let TH ⊂ SH denote the
singular locus of SH . Then the classification of cubic surfaces implies that TH is either empty or
it is a union of δH 6 4 points or it is a line. When TH is non-empty it follows from Lemma 3 that
either SH(Q) 6= ∅ or else TH is finite, with δH = 3 and with the three points being conjugate to
each other over Q.

Now an application of Bertini’s theorem (in the form given by Harris [Har92, Theorem 17.16],
for example) shows that

H ∩ Y = TH .

When SH is non-singular it therefore follows that H ∩ Y is empty for generic H ∈ P4∗, whence Y
must be finite. In the alternative case, when SH is singular, we may conclude that #(H ∩ Y ) = 3
for generic H ∈ P4∗, whence the maximal component of Y is a cubic curve.

Let us examine further the possibility that the singular locus Y of X has dimension one, and
that it contains a cubic curve Y0 as its component of maximal dimension. Clearly Y0 is defined
over Q. Furthermore, we may conclude from Bézout’s theorem that the line connecting any two
points of Y0 must be contained in X, since each such point is a singularity of X.

If Y0 is reducible over Q then there are two basic possibilities: either it is a union of lines or
it is a union of a conic and a line. In the latter case Y0 contains a line defined over Q and it
trivially follows that Y0(Q) 6= ∅. The former case fragments into a number of subcases: either
it is a union of three concurrent lines, or it contains a pair of skew lines, or it is a union of three
coplanar lines, or it contains a repeated line. The second case is impossible since then the join
of the two skew lines defines a 3-plane that would also be contained in X, contradicting the fact
that X is geometrically irreducible. It follows from consideration of the Galois action on Y0 that
Y0(Q) 6= ∅ in every case apart from the one in which Y0 is a union of three coplanar lines.

If Y0 is geometrically irreducible then it cannot be a twisted cubic since then the secant variety
S(Y0)∼= P3 would be contained in X. Our argument so far has shown that either Y0(Q) 6= ∅ for
trivial reasons, or else Y0 is a cubic plane curve that is either geometrically irreducible or a union
of three distinct lines. The plane P containing Y0 is defined over Q and, after carrying out a
linear change of variables, we may take x1 = x2 = 0 as its defining equations. However, it then
follows that the cubic form defining X can be written

x1Q1(x1, . . . , x5) + x2Q2(x1, . . . , x5),
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for appropriate quadratic forms Q1, Q2 defined over Z. With this notation one sees that Y is the
locus of solutions to the system of equations

x1 = x2 =Q1(0, 0, x3, x4, x5) =Q2(0, 0, x3, x4, x5) = 0,

in P4. It is now clear that the component Y0 of Y of maximal dimension cannot be a cubic plane
curve of the two remaining types.

It remains to deal with the case in which the singular locus Y of X is finite and globally
defined over Q. As shown by Segre [Seg86/87], we have δ = #Y 6 10, the extremal case of 10
singular points being achieved by the so-called Segre threefold. Since X is assumed not to be
a cone so we may assume that all of the singularities are double points. Indeed any singularity
with multiplicity exceeding two must be a vertex for X. In fact, when δ > 6 it is known [CLSS99,
Lemma 2.2] that all the singularities are actually nodal. Appealing to Coray’s partial resolution of
the Cassels–Swinnerton-Dyer conjecture for threefolds, we are now ready to record our analogue
of Lemmas 2 and 3.

Lemma 4. Let n= 5 and suppose that X(Q) = ∅. Then one of the following holds.

(i) The threefold X is non-singular.

(ii) The threefold X is a geometrically integral cubic hypersurface whose singular locus contains
precisely δ double points, with δ ∈ {3, 6, 9}.

In the second case of Lemma 4 it follows from [CS89, CLSS99] that the Hasse principle holds
for X when δ = 3 or 6. Our investigation would be made easier if we were also in possession
of this fact when δ = 9. Lacking this, all that we actually require from part (ii) of Lemma 4
is that the singular locus should be finite. In his survey of open problems in Diophantine
geometry, Lewis [Lew89] reports on unpublished joint work with Blass, which would appear
to give Lemma 4. However, in the absence of subsequent elucidation, we have chosen to present
our own proof of this result.

3. Cubic exponential sums

Let C ∈ Z[x1, . . . , xn] be an arbitrary cubic form, assumed to take the shape (2.1). Our work in
this section centres upon various properties of the cubic exponential sums

S(α) = Sw(α; C, P ) :=
∑
x∈Zn

w(P−1x)e(αC(x)), (3.1)

for a suitable family of weights w on Rn, and cubic forms that are always either good (in the
sense of the previous section) or the hypersurface they define has finite (possibly empty) singular
locus. Specifically, we will collect together some general upper bounds for S(α), some estimates
for suitable moments of S(α) and some asymptotic formulae for S(α) when suitable assumptions
are made about how α can be approximated by rational numbers. All of these estimates will
depend on the parameter P which should be thought of as tending to infinity.

We must begin by saying a few words about the weight functions that we will be working
with. Let n1, n2 > 0 such that n1 + n2 = n. When ni > 1 we let zi ∈ Rni be certain vectors, which
we think of as being fixed, but whose nature will be determined later. Similarly we let ρ > 0.
All of the estimates in our work will be allowed to depend upon the choice of z1, z2 and ρ.
Define w1 : Rn1 → R>0, via

w1(x1) := exp(−‖x1 − z1‖2(log P )4), (3.2)
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where we have written x1 = (x1, . . . , xn1). Let P0 = P (log P )−2. Then

w1(P−1x1) = exp(−‖x1 − Pz1‖2P−2
0 )

is exactly the weight function introduced by Heath-Brown in [Hea83, § 3]. Note that

∇w1(x1) =−2(log P )4w1(x1)(x1 − z1, . . . , xn1 − zn1),

so that ∇w1(x1)� (log P )4 for any x1 ∈ Rn1 . Next we let w2 : Rn2 →{0, 1} denote the
characteristic function

w2(x2) :=

{
1 if |x2 − z2|< ρ,
0 otherwise,

(3.3)

where x2 = (xn1+1, . . . , xn).

Each weight w appearing in our work will either be of the form w1(x) or w2(x) or
w = w1(x1)w2(x2), for x = (x1, x2) ∈ Rn1 × Rn2 = Rn, depending on context. To help distinguish
which estimates are valid for which choice of weight function, let us denote byW(1)

n the set of non-
negative weight functions on Rn that are of the shape (3.2), and letW(2)

n denote the corresponding
set of weight functions on Rn of the type (3.3). We let Wn denote the set of mixed functions
w = w1w2, with wi ∈W(i)

ni for i= 1, 2. In particular W(i)
n ⊂Wn for i= 1, 2. In the definition of

these sets the precise value of z1, z2 or ρ is immaterial, unless explicitly indicated otherwise,
and the corresponding implied constants will always be allowed to depend on these quantities in
any way.

We are now ready to record the upper bounds for S(α) that feature in our investigation.

Lemma 5. Let ε > 0, let w ∈Wn and assume that C ∈ Z[x1, . . . , xn] is a good cubic form. Let
a, q ∈ Z such that 0 6 a < q 6 P 3/2 and gcd(a, q) = 1. Then if α= a/q + θ we have

S(α)� Pn+ε(q|θ|+ (q|θ|P 3)−1)n/8.

If furthermore |θ| 6 q−1P−3/2, then we have

S(α)� Pn+εq−n/8 min{1, (|θ|P 3)−n/8}.

Proof. This is the essential content of the investigation of Davenport [Dav63] into cubic forms
in 16 variables. The bounds are derived in a more succinct manner by Heath-Brown [Hea07,
§ 2]. The fact that we are working with exponential sums that are differently weighted makes
no difference to the validity of the argument, and the reader may wish to consult [BH09b, § 9],
where the necessary modifications can be found in the setting of quartic forms. 2

Define the complete exponential sum

Sa,q :=
∑

y mod q

eq(aC(y)), (3.4)

for any coprime integers a, q such that q > 0. It can easily be deduced from the proof of Lemma 5
that Sa,q� q7n/8+ε for any ε > 0, under the assumption that the cubic form is good. The following
improvement is due to Heath-Brown [Hea07, § 7].

Lemma 6. Let ε > 0 and assume that C ∈ Z[x1, . . . , xn] is a good cubic form. Then we have
Sa,q� q5n/6+ε.
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We now come to the real workhorse in our argument. Given R, φ > 0 and v > 0 we define

Mv(R, φ,±) :=
∑

R<q62R

∑
a mod q

gcd(a,q)=1

∫ 2φ

φ

∣∣∣∣S(aq ± t
)∣∣∣∣v dt. (3.5)

The following result provides an upper bound for this quantity.

Lemma 7. Let ε > 0, let w ∈Wn and assume that C ∈ Z[x1, . . . , xn] is a good cubic form. Let
R, φ > 0, with R 6 P 3/2 and φ 6R−2. Then for any v ∈ [0, 2] and any H ∈ [1, P ] ∩ Z we have

Mv(R, φ,±)� P 3 +R2φ1−v/2
(
ψHP

2n−1+ε

Hn−1
F

)v/2
,

where

ψH := φ+
1

P 2H
, F := 1 + (RH3ψH)n/2 +

Hn

Rn/2(P 2ψH)(n−2)/2
.

Proof. It is clear that M0(R, φ,±)�R2φ. Hence it follows from Hölder’s inequality that

Mv(R, φ,±)� (R2φ)1−v/2M2(R, φ,±)v/2.

On employing Heath-Brown’s estimate for M2(R, φ,±), which follows from [Hea07, (4.5) and
(5.1)], we therefore deduce that

Mv(R, φ,±)� (R2φ)1−v/2
(
ψHR

2

(
P 2H +

P 2n−1+ε

Hn−1
F

))v/2
.

As in the deduction of Lemma 5, the fact that we are working with differently weighted
exponential sums makes no difference to the final outcome of the argument.

Using the fact that R 6 P 3/2 and φ 6R−2, with H 6 P , it easily follows that the term
involving P 2H contributes

� (R2φ)1−v/2(φR2P 3 +R2)v/2�R2φP 3v/2 +R2φ1−v/2� P 3,

since 0 6 v 6 2. This completes the proof of the lemma. 2

Lemma 7 is based on an averaged version of van der Corput’s method and comprises the key
innovation in the work of Heath-Brown [Hea07] already alluded to. Although we have presented
it in the context of denominators q and values of α= a/q ± t restricted to dyadic intervals, the
general result consists of a bound for

∫
|S(α)|2 dα, where the integral is taken over a certain set

of minor arcs. For cubic forms in few variables we will have better results available. When n= 1
and w ∈W(2)

1 , Hua’s inequality [Dav05, Lemma 3.2] implies that∫ 1

0
|S(α)|2j dα� P 2j−j+ε,

for any j 6 3. The following result is due to Wooley [Woo99], and generalises this to binary forms.

Lemma 8. Let ε > 0, let w ∈W(2)
2 and let C ∈ Z[x1, x2] be a binary cubic form, not of the shape

a(b1x1 + b2x2)3, for integers a, b1, b2. Then we have∫ 1

0
|S(α)|2j−1

dα� P 2j−j+ε,

for any j 6 3.
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Our next selection of results concern the approximation of S(α) on a certain set of arcs in the
interval [0, 1]. For given A, B, C > 0, define A=A(A, B, C) to be the set of α ∈ [0, 1] for which
there exists a, q ∈ Z such that 0 6 a < q 6 PA and gcd(a, q) = 1, with

α ∈ Aq,a :=
[
a

q
− 1
qBP 3−C ,

a

q
+

1
qBP 3−C

]
. (3.6)

The major arcs in our work will be a subset of these, but it will be useful to maintain a certain
degree of generality. When dealing with cubic forms whose singular locus is very small, we have
rather good control over the approximation of S(α) on the arcs A=A(A, B, C), provided that
we work with the class of smooth weight functions W(1)

n . Recall the definition of Sa,q from (3.4)
and let

Iw(ψ) :=
∫
Rn
w(x)e(ψC(x)) dx,

for ψ ∈ R. We will need to work with the familiar quantity

S∗(α) := q−nPnSa,qIw(θP 3), (3.7)

concerning which we have the following result.

Lemma 9. Let ε > 0 and n > 3. Assume that C ∈ Z[x1, . . . , xn] is a good cubic form defining
a projective hypersurface that is not a cone, with singular locus of dimension σ ∈ {−1, 0}. Let

A, B, C > 0 such that A< 1 and B ∈ {0, 1}, and let α ∈ Aq,a. Then there exists w ∈W(1)
n such

that

S(α)− S∗(α)� PA(n/3+σ/2)+(n+1)/2+ε + PA(1−B)(n+1+σ)/2+C(n+1/2)+ε.

Furthermore, if kn > 12 and k 6 9, then we have∫
A
|S∗(α)|k dα� P kn−3+ε.

Proof. The proof of this result is based on the investigation carried out by Heath-Brown [Hea83]
into non-singular cubic forms in 10 variables. One of the key ingredients in his approach is the
Poisson summation formula, and it is this part of the argument that we plan to take advantage of.

We begin by choosing z1 ∈ Rn to be a point at which the matrix of second derivatives of C has
full rank at z1. The existence of such a point follows from the work of Hooley [Hoo91, Lemma 26].
With this choice of z1 we now select w to be the weight function in (3.2), which belongs toW(1)

n .
Let

Sa,q(v) :=
∑

y mod q

eq(aC(y) + v.y),

Jw(ψ, v) :=
∫
Rn
w(P−1x)e(ψC(x)− v.x) dx,

for any v ∈ Rn, and let α= a/q + θ ∈ Aq,a. Then [Hea83, Lemma 8] yields

S(α)− S∗(α)� 1 + q−n
∑
v∈Zn

16|v|�V

Sa,q(v)Jw(θ, q−1v),

where V := (log P )7q(P−1 + |θ|P 2), and furthermore,

Jw(θ,w)� Pn(log P )7n min{1, (|θ|P 3)−1}(n−1)/2, (3.8)

862

https://doi.org/10.1112/S0010437X0900459X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X0900459X


Rational points on cubic hypersurfaces

for any w ∈ Rn. The main difference between what we have recorded here and the statement
of [Hea83, Lemma 8] is that our definition of S(α) does not involve a summation over a. This
deviation makes no difference to the final outcome. Note that once the existence of a suitable
point z1 is established for the definition of the weight function, the manipulations involving the
exponential integral remain valid even when C is singular.

The summation over v in our upper bound for S(α)− S∗(α) implies in particular V � 1.
Since A< 1 we automatically have (log P )7qP−1 6 (log P )7PA−1 = o(1). Hence the condition
V � 1 implies that

(log P )7q|θ|P 2 6 V � (log P )7q|θ|P 2

and

q−1P−2(log P )−7� |θ| 6 q−BP−3+C . (3.9)

Putting everything together it follows that

S(α)− S∗(α)� 1 + q−n(log P )7nP (3−n)/2|θ|(1−n)/2T (V ),

where

T (V ) :=
∑

16|v|�V

|Sa,q(v)|.

We will show that

T (V )� q(n+1+σ+ε)/2(V n + qn/3), (3.10)

for σ ∈ {−1, 0}. Before doing so let us see how this suffices to complete the proof of the first
part of the lemma. Recalling from above that V has order of magnitude (log P )7q|θ|P 2, and
employing (3.9), we deduce that

S(α)− S∗(α)� q−n/2+(1+σ)/2+2ε/3P−(n−3)/2|θ|−(n−1)/2((q|θ|P 2)n + qn/3)
� q(n+1+σ)/2+2ε/3|θ|(n+1)/2P 3(n+1)/2

+ q−n/6+(1+σ)/2+2ε/3|θ|−(n−1)/2P−(n−3)/2

� q(1−B)n/2−B/2+(1+σ)/2PC(n+1)/2+ε + PA(n/3+σ/2)+(n+1)/2+ε.

If B = 1 then the first term here is O(PC(n+1)/2+ε), since σ 6 0. Alternatively, if B = 0, then
the first term is O(PA(n+1+σ)/2+C(n+1)/2+ε). This establishes the first part of the lemma subject
to (3.10).

To establish (3.10) we return to the manipulations in [BH09b, § 5]. Things are simplified
slightly by no longer needing to keep track of the dependence on C in each implied constant.
In particular we may take H � 1 throughout. The sum Sa,q(v) satisfies a basic multiplicativity
property, as recorded in [BH09b, Lemma 10]. Write q = bc2d, where

b :=
∏
pe‖q
e62

pe, d :=
∏
pe‖q
e>3,2-e

p.

In particular d | c and we deduce from [BH09b, Lemmas 7, 10 and 11] that

T (V )� qn/2b(1+σ)/2+ε/2
∑

16|v|�V

∑
a mod c

c|(a∇C(a)+v)

Nd(a)1/2.

Here Nm(x) is the number of y modulo m such that M(x)y ≡ 0 mod m, where M(x) is the
matrix of second derivatives of C(x). Recalling the notation of [BH09b, Lemma 12], in which we
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take v0 = 0 and g = C, it follows that there is an absolute constant κ > 0 such that

T (V )� qn/2b(1+σ+ε)/2S(κV, a).

We would now like a version of [BH09b, Lemma 16] which applies to singular forms as well. We
claim that

S(κV, a)� cεd(1+σ)/2V n

(
1 +

c2d

V 3

)n/2
. (3.11)

This relies completely on first establishing suitable analogues of [BH09b, Lemmas 13 and 14].
A little thought reveals that in the present setting we have∑

|r|6R

Nm(r)1/2�mn/2

(
1 +

R3

m

)n/2
Rε,

for any m ∈ N and R > 1. Here we have used the fact that C is good to bound the number of
|r| 6R such that rankM(r) = t, rather than using [BH09b, Lemma 2], as there. Furthermore,
we have ∑

a mod d

Nd(a)� dn+1+σ+ε.

When c < V it follows from the latter bound and an application of Cauchy’s inequality that
S(κV, a)� d(1+σ+ε)/2V n, which is acceptable for (3.11). In the alternative case, when c > V , the
necessary modifications to the proof of [BH09b, Lemma 16] are straightforward and we omit full
details here.

We may now insert (3.11) into the preceding estimate for T (V ) to conclude that

T (V )� q(n+1+σ+ε)/2V n

(
1 +

q

V 3

)n/2
.

If q1/3 6 V then this is clearly satisfactory for (3.10). Alternatively, if V < q1/3 then we can only
enlarge our bound for T (V ) if we replace V by q1/3. But then T (V ) is easily seen to be bounded
by (3.10) in this case too. This therefore completes the proof of (3.10).

Our final task is to establish the second part of the lemma. Since C is good, we may combine
Lemma 6 with (3.8) to deduce that

S∗(α)� q−n/6Pn(log P )7n min{1, (|θ|P 3)−1}(n−1)/2.

Let us write T = q−BP−3+C for convenience. It therefore follows that∫
A
|S∗(α)|k dα� P kn+ε/2

∑
q6PA

q1−kn/6
∫ T

−T
min{1, (|θ|P 3)}−k(n−1)/2 dθ

� P kn−3+ε/2
∑
q6PA

q1−kn/6

� P kn−3+ε,

since kn > 12 and k 6 9. 2

We remark that when σ = 0 it seems likely that an even sharper error term is available in
Lemma 9 through a more careful analysis of the complete exponential sums Sa,q(v), when q
is prime. It follows from [Hoo91, Lemma 28] that the form C is automatically good when the
corresponding hypersurface has at most isolated singularities and these are suitably mild.
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In the setting of one-dimensional exponential sums, we have even better control over S(α)
on the arcs A=A(A, B, C). Let C(x) = cx3 for some non-zero coefficient c ∈ Z. Then for any
a, q ∈ Z such that 0 6 a < q 6 PA and gcd(a, q) = 1, and any α= a/q + θ ∈ Aq,a, the standard
major arc analysis would provide an estimate of the shape

S(α) = S∗(α) +O(PA + PA+C−AB),

where S∗(α) is given by (3.7). Our final result in this section improves on this substantially, and
is readily derived from the book of Vaughan [Vau97, § 4].

Lemma 10. Let ε > 0, let n= 1 and let w ∈W(2)
1 . Let A, B, C > 0 with A, B 6 1. Then for any

α ∈ Aq,a we have

S(α) = S∗(α) +O(PA/2+ε + P (A+C−AB)/2+ε).
Furthermore, if k > 4, then we have∫

A
|S∗(α)|k dα� P k−3+ε.

4. Density of rational points on cubic hypersurfaces

Let X ⊂ Pn−1 be a cubic hypersurface, not equal to a cone, that is defined by an absolutely
irreducible cubic form F ∈ Z[x1, . . . , xn]. For P > 1, let

Nn,F (P ) := #{x ∈ Zn : |x| 6 P, F (x) = 0}.

According to the conjecture of Manin [FMT89] one expects Nn,F (P )∼ cPn−3 for some constant
c > 0 as soon as F is non-singular and n > 5. When F is not necessarily non-singular, or the
number of variables is small, there is the dimension growth conjecture due to Heath-Brown. This
predicts that

Nn,F (P )� Pn−2+ε, (4.1)
and has received a great deal of attention in recent years. Let σ denote the projective dimension
of the singular locus of X. The dimension growth conjecture has been established by the
author [Bro07] when n > 6 + σ. The following result, which may of independent interest, shows
that one can do better than (4.1) if larger values of n are permitted.

Lemma 11. We have Nn,F (P )� Pn−5/2+ε when n > 9 + σ.

Proof. Our proof of the lemma is based on the approach developed in [Bro07]. Arguing with
hyperplane sections, as in [Bro07, § 2], we see that it will suffice to show that there is an absolute
constant θ > 0 such that

Nw(g; P ) :=
∑
x∈Zn
g(x)=0

w(P−1x)�HθPn−5/2+ε, (4.2)

for any weight function w : Rn→ R>0 belonging to the class of weight functions described at
the start of [Bro07, § 2], any H > ‖g‖P , and any cubic polynomial g ∈ Z[x1, . . . , xn] such that
n > 8 and the cubic part g0 is non-singular. Here we recall that ‖g‖P := ‖P−3g(Px)‖, where ‖h‖
denotes the height of a polynomial h.

The bulk of [Bro07] goes through verbatim, and we are left with reevaluating the estimation of
Σ2 = Σ2(R,R; t) and Σ1 = Σ1(R,R; t) in [Bro07, § 5.1] and [Bro07, § 5.2], respectively. Beginning
with the former, we note from [Bro07, (5.5)] that this breaks into an estimation of Σ2,a and Σ2,b.
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The first of these is estimated as O(HθP 3n/4−3/4+ε +HθPn−3+ε). Both of the exponents of P
are clearly at most n− 5/2 + ε when n > 8, as required for (4.2). Turning to Σ2,b, one easily
traces through the argument, finding that

Σ2,b�HθP ε(P 3n/4−3/4 + Pn−2En + P 13n/16−1 + P 7n/8−5/3),

where

En = P−1−7n/40R2−3n/20R
3n/10−3/2
2 � P−1−7n/40R5/4� P 7/8−7n/40.

Here the first term (respectively second term, sum of the final two terms) corresponds to the case
V >R2 (respectively (R2

2R3)1/3 6 V < R2, V < (R2
2R3)1/3). A modest pause for thought reveals

that all of these exponents are satisfactory when n > 8.
We now turn to the estimation of Σ1 in [Bro07, § 5.2], which is again written as a sum

Σ1,a + Σ1,b. Beginning with Σ1,a, we easily observe that

Σ1,a�HθP ε(P 3n/4−3/4 + Pn−2En + Pn−3),

this time with

En = P 2−n/4t1−n/12R11/6−n/4(R2
2R3)n/9−1/2

� P−1/2R−1/9 + P−1R2/9� P−1/2.

This therefore shows that Σ1,a�HθPn−5/2+ε, as required for (4.2). Turning to Σ1,b, we will need
to modify the argument slightly. On noting that R3/2

2 R
1/2
3 � (R2

2R3)2/3, we easily deduce that

Σ1,b�HθP ε(P 3n/4−3/4 + Pn−2+7/8−7n/40 + T ),

where we have set

T := PntR2−n/2(R2
2R3)−(2/3) min

{
Rn2 ,

(
R2

2R3

V

)n/2
, R3n/8 min{1, (tP 3)−n/8}

}
.

The first and second terms here are satisfactory for n > 8. Moreover the third term is clearly
satisfactory for n > 16, on taking min{A, B, C}= C. To handle the contribution from the final
term when 8 6 n < 16, it will be convenient to recall that V has order of magnitude Rt1/2P 1/2

when t > P−3 and R/P when t < P−3.
Suppose first that R > P . When t > P−3 we deduce that

T � Pn−3 min{R2−n(R2
2R3)n/2−2/3Pn/2, R2−n/8(R2

2R3)−2/3}
� Pn−7/3R5/6−n/8� P 7n/8−3/2,

on taking

min{A, B} 6A4/(3n)B1−4/(3n). (4.3)

This is clearly satisfactory for n > 8. When t < P−3 we easily deduce that the same bound holds
on taking V to be of size R/P in the definition of T .

Suppose now that R< P and t > P−3. If t > (R2P )−1, then it is not hard to see that

T � Pn−1R−n/2(R2
2R3)−2/3 min{(R2

2R3)n/2, R5n/8P−n/4}
� P 3n/4−2/3Rn/8−5/6� P 7n/8−3/2,

using (4.3). This is satisfactory for n > 8. Alternatively, if P−3 6 t 6 (R2P )−1, then one finds that

T � PnR2−n/2(R2
2R3)−2/3 min{t(R2

2R3)n/2, R3n/8t1−n/8P−3n/8}.
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Using (4.3) it easily follows that

T � P 5n/8+1/2t7/6−n/8R3/2−n/8.

Since t 6 (R2P )−1 and R< P this is clearly satisfactory when n= 8. If instead n > 9 then we
deduce that

T � Pn−3R5−n/2(R2
2R3)n/2−14/3,

on taking min{A, B} 6A1−8/nB8/n rather than (4.3). Since R< P we easily conclude that
T � Pn−5/2 in this case too. Finally, when R< P and t < P−3, we see that

T � Pn−3 min{R2−n/2(R2
2R3)n/2−2/3, R2−n/8(R2

2R3)−2/3}
� Pn−3R3/2−n/8� Pn−5/2,

using (4.3). This therefore concludes the proof of the lemma. 2

It is clear from the proof of Lemma 11 that one actually achieves an estimate of the shape

Nn,F (P ) 6 cε,n‖F‖θPn−5/2+ε,

for a constant θ > 0, when n > 9 + σ. It seems likely that one can push the analysis further,
obtaining Nn,F (P )� Pn−3+ε for n > 11 + σ, as predicted by Manin.

A key step in our argument involves generating good estimates for the moments

Mn(P ) :=
∫ 1

0
|S(α)|2 dα, (4.4)

where S(α) is the cubic exponential sum (3.1), for an appropriate weight w ∈Wn. By the
orthogonality of the exponential function we have

Mn(P ) =
∑

x,y∈Zn
C(x)=C(y)

w(P−1x)w(P−1y).

It is clear that there exists a constant c > 0 depending on w such that the overall contribution
to Mn(P ) from x, y such that max{|x|, |y|}> cP is O(1), if P is taken to be sufficiently large.
Hence it follows that

Mn(P )�N2n,C−C(cP ).

When C is a non-singular form in n variables it is obvious that C − C is a non-singular form
in 2n variables, defining a hypersurface of dimension 2n− 2. When C has a finite non-empty
singular locus it is not hard to see that C − C has singular locus of dimension one. The following
result now flows very easily from (4.1) and Lemma 11.

Lemma 12. Let ε > 0 and let n > 3. Assume that C ∈ Z[x1, . . . , xn] is a cubic form defining a
projective hypersurface whose singular locus has dimension σ ∈ {−1, 0}. Then we have

Mn(P )�

{
P 4+ε if n= 3 and σ =−1,

P 2n−5/2+ε if n > 5 + σ.

5. Cubics splitting off a form

In this section we establish Theorem 1. Let n1, n2 > 1 such that

n1 + n2 = n > 13.
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It will be convenient to write x = (x1, . . . , xn1) and y = (y1, . . . , yn2). We henceforth fix our
attention on cubic forms of the shape

C(x, y) = C1(x) + C2(y),

with C1 ∈ Z[x] and C2 ∈ Z[y]. In what follows we may always suppose that C = C1 + C2 is non-
degenerate, by which we mean that it is not equivalent over Z to a cubic form in fewer variables,
since such forms have obvious non-zero integral solutions. Recall the definition of ‘good’ cubic
forms from § 2. It follows from [Dav05, § 14] that when n1 > 3 either C1 is good or else the
cubic hypersurface C1 = 0 has a rational point. The analogue is true for the cubic forms C2 and
C1 + C2. Since the existence of a rational point on any of these hypersurfaces is enough to ensure
that X(Q) 6= ∅ in the statement of Theorem 1, so we may proceed under the assumption that
C1, C2 and C1 + C2 are all good when they possess at least three variables.

Let w = w1w2 ∈Wn, as introduced in § 3. When C1 satisfies the hypotheses in Lemma 9 we
will assume that w1 ∈W(1)

n1 is the weight function constructed there. Our argument revolves
around establishing an asymptotic formula for the sum

N(P ) :=
∑

(x,y)∈Zn
C1(x)+C2(y)=0

w1(P−1x)w2(P−1y),

as P →∞. As is usual in applications of the Hardy–Littlewood circle method, the starting point
is the simple identity

N(P ) =
∫ 1

0
S1(α)S2(α) dα,

where

Si(α) :=
∑

x∈Zni
wi(P−1x)e(αCi(x))

for i= 1, 2. It will be convenient to define

S(α) := S1(α)S2(α) =
∑

(x,y)∈Zn
w(P−1(x, y))e(α(C1(x) + C2(y))),

where w = w1w2. Then S(α) = Sw(α; C1 + C2, P ) is a cubic exponential sum of the sort
introduced in (3.1).

In the usual way one divides the interval [0, 1] into a set of major arcs and minor arcs. For
major arcs we will take the union of intervals

M :=
⋃

q6P∆

q−1⋃
a=0

gcd(a,q)=1

[
a

q
− P−3+∆,

a

q
+ P−3+∆

]
,

which is equal to A(∆, 0,∆) in the notation of (3.6). The corresponding set of minor arcs is
defined modulo 1 as m = [0, 1]\M. Here ∆> 0 is an arbitrary small parameter. It turns out
the choice

∆ := 1
10

is acceptable. We may deduce from Lemma 15.4 and §§ 16–18 in [Dav05] (see also [Hea07,
Lemma 2.1]) that ∫

M
S(α) dα= SIPn−3 + o(Pn−3),
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where

S :=
∞∑
q=1

∑
a mod q

gcd(a,q)=1

q−nS(1)
a,qS

(2)
a,q ,

I :=
∫ ∞
−∞

∫
Rn1

∫
Rn2

w(x, y)e(θ(C1(x) + C2(x))) dx dy dθ

are both absolutely convergent. Here, the absolute convergence of S follows from Lemma 6, and
we have written

S(i)
a,q :=

∑
u∈(Z/qZ)ni

eq(aCi(u)),

for i= 1, 2. Since S is absolutely convergent and C = C1 + C2 is non-degenerate, it follows from
standard arguments (see [Dav59, Lemma 7.3], for example) that S> 0. The treatment of the
singular integral is routine and we omit giving the details here, all of which can be supplied by
consulting [Dav05, § 16] and [Hea83, § 4]. Assuming that neither C1 nor C2 has a linear factor
defined over Q it is possible to choose (z1, z2) ∈ Rn in the definition of w = w1w2, so that each zi
is a non-singular real solution to Ci = 0. On selecting a sufficiently small value of ρ > 0 in the
definition of w2 we can then ensure I> 0. The case in which C1 or C2 does factorise over Q
clearly enables us to deduce the statement of Theorem 1 very easily.

In order to conclude the proof of Theorem 1 it remains to show that the overall contribution
from the minor arcs

E :=
∫
m
S1(α)S2(α) dα, (5.1)

is satisfactory. This is where the bulk of our work lies and we will find it necessary to undertake
a lengthy case by case analysis to handle the different values of n1 and n2. In doing so it will
suffice to handle the case n1 + n2 = 13, the case n1 + n2 > 13 being taken care of by [Hea07].
Without loss of generality we assume henceforth that 1 6 n1 6 6.

Let Q > 1 and let α ∈m. By Dirichlet’s approximation theorem we may find coprime integers
1 6 a 6 q such that q 6Q and |qα− a| 6 1/Q. The value of Q should satisfy 1 6Q 6 P 3/2 and
is chosen to optimise the final stages of the argument. The obvious approach involves applying
estimates for each individual exponential sum S1(α) and S2(α) for α ∈m, before then deriving
an estimate for the integral over the full set of minor arcs. While we have rather good control
over these sums when n1 and n2 are both large, the case in which one of n1 or n2 is small presents
more of an obstacle. Instead we apply Hölder’s inequality to deduce that

|E| 6
(∫

m
|S1(α)|u dα

)1/u(∫
m
|S2(α)|v dα

)1/v

, (5.2)

for any u, v > 0 such that 1/u+ 1/v = 1. This will allow us to separate out the behaviour of the
exponential sums S1(α) and S2(α) on the minor arcs.

Before embarking on the case by case analysis alluded to above, it will save needless repetition
if we give some reasonably general estimates here that can be applied in various contexts. Our
principal means for dealing with small values of n1 relies on taking the inequality∫

m
|S1(α)|u dα 6

∫ 1

0
|S1(α)|u dα (5.3)
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in (5.2). This will in turn be estimated as O(P k+ε) for an appropriate k > 0, whence a typical
scenario entails studying

Iu,v(k; n) := P k/u+ε

(∫
n
|S2(α)|v dα

)1/v

, (5.4)

for u, v > 0 such that 1/u+ 1/v = 1 and certain subsets n⊆m. We will always assume that
6/5< v 6 2.

Let α ∈ n and let Q > 1. There exist coprime integers 0 6 a < q 6Q such that |qα− a| 6 1/Q.
An argument based on dyadic summation reveals that

Iu,v(k; n)� P k/u+ε(log P )2 max
R,φ,±

Mv(R, φ,±)1/v, (5.5)

where Mv(R, φ,±) is given by (3.5), and the maximum is over the possible sign changes and
R, φ such that

0<R 6Q, 0< φ 6 (RQ)−1. (5.6)

Furthermore, R, φ should satisfy whatever conditions are appropriate to ensure we are dealing
with points on n. In particular, since n⊆m the inequalities R 6 P∆ and φ 6 P−3+∆ cannot both
hold simultaneously.

Let u, v, k be given. Define

ρn :=
n(vn− 8− v)

vn2 − (3v + 4)n+ 2v
, πn :=

−2v(n2 − (18− 2k/u)n− 2)
vn2 − (3v + 4)n+ 2v

, (5.7)

and

ρ′n :=
2v

2− v

(
n2

2(3n− 2)
− 2
v

)
, π′n :=

2v
2− v

(
n− 23

2
+
k

u

)
. (5.8)

Let

δ :=
1

104
. (5.9)

Recall that our task is to show that E = o(P 10) when n= n1 + n2 = 13. The following result
provides us with easily checked conditions on u, v, k and n2 under which Iu,v(k; n) makes a
satisfactory contribution.

Lemma 13. Let 6/5< v < 2. Assume that n2 > 6 and

ρn2 + ρn′2 > 1. (5.10)

Define m0 to be the set of α ∈m for which there exist coprime integers 0 6 a < q such that

q 6 P (π′n2
−πn2 )/(ρ′n2

+ρn2 )+2δ, qρ
′
n2P−π

′
n2
−δ 6

∣∣∣∣α− a

q

∣∣∣∣ 6 q−ρn2P−πn2+δ.

Then

Iu,v(k; n\m0) = o(P 10),

for any n⊆m, provided that

2
v

+
21
2
− n2 6

k

u
<

103
10
− 4n2

5
(5.11)

and

π′n2
> 3. (5.12)
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Proof. We will commence under the assumption that 6/5< v 6 2, saving the restriction v < 2
until later in the argument. It is clear that Iu,v(k; n\m0) 6 Iu,v(k; m\m0). Let us consider the
consequences of applying Lemma 7 in our estimate (5.5) for Iu,v(k; m\m0). Throughout the proof
of Lemma 13 we will denote m\m0 by a and we will set n= n2. We may deduce from Lemma 7
and (5.4) that

Iu,v(k; a)� P k/u+ε

(
P 3/v + max

R,φ
R2/vφ1/v−1/2

(
ψHP

2n−1

Hn−1
F

)1/2)
,

where ψH and F are as in the statement of the lemma and H ∈ [1, P ] ∩ Z is arbitrary.
Furthermore the maximum is over R, φ such that (5.6) holds with any choice of Q > 1 that
we care to choose. We write Q= P κ, with

κ :=
3(2n− 21 + 2k/u)

n− 1
+ 3ε. (5.13)

In particular one easily checks that 0 6 κ 6 3/2 if (5.11) holds and ε > 0 is sufficiently small.
It follows from (5.11) that k/u < 11/2 since n > 6. Hence the term involving P 3/v contributes
O(P 8+ε), which is satisfactory.

Let us now turn to the contribution from the term involving F in our estimate for Iu,v(k; a).
Define

φ0 := (R−2/vP−(2n−23/2+k/u))2v/(v(n−1)+2). (5.14)

Then our investigation will be optimised by taking

H :=

{
bP ε max{1, R2/vφ1/vPn−21/2+k/u}2/(n−1)c if φ > φ0,
bP ε max{1, R2/vφ1/v−1/2Pn−23/2+k/u}2/nc if φ 6 φ0.

One checks that ψH � φ when φ > φ0 and ψH � (P 2H)−1 when φ 6 φ0. If F � 1 then

Pn−1/2+k/u+εR2/vφ1/v−1/2ψ
1/2
H

H(n−1)/2
F 1/2� P 10−3ε/2,

since n > 6. We deduce from (5.6) that

(R2/vφ1/vPn−21/2+k/u)2/(n−1) 6 P 2(n−21/2+k/u)/(n−1),

(R2/vφ1/v−1/2Pn−23/2+k/u)2/n 6 P 2(n−10+k/u)/n.

In either case the final exponent of P is less than 1, by (5.11). Hence H is an integer in the
interval [1, P ] and it remains to show that F � 1 with this choice of H. Recall the definition
of F from Lemma 7.

Suppose first that φ > φ0, with φ0 given by (5.14). Then ψH � φ and it follows that

RH3ψH �RφP 3ε(1 +R2/vφ1/vPn−21/2+k/u)6/(n−1)� 1 + P−κP 6(n−21/2+k/u)/(n−1)+3ε,

by (5.6). It follows from our expression (5.13) for κ that this is O(1). Turning to the third term
in the definition of F , we see that

Hn

Rn/2(P 2ψH)(n−2)/2
� Pnε

Rn/2φ(n−2)/2Pn−2
(1 +R2/vφ1/vPn−21/2+k/u)2n/(n−1).

The exponent of φ in the second term is 2n/(v(n− 1))− (n− 2)/2, which is negative since
v > 6/5 and n > 6. Hence this quantity is O(1) provided that φ > φ1, with

φ1 :=R−ρnP−πn+δ, (5.15)
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with ρn, πn given by (5.7) and δ given by (5.9). Here, as is customary, we have assumed that ε
is sufficiently small. One also checks that taking φ > φ1 is enough to ensure that the first
term is O(1), in view of the lower bound for k/u in (5.11).

Suppose now that φ 6 φ0. Then ψH � (P 2H)−1 and it follows that

RH3ψH �
RP 2ε

P 2
(1 +R2/vφ1/v−1/2Pn−23/2+k/u)4/n

� 1 +R1+8/(vn)(RQ)−(1/v−1/2)(4/n)P (n−23/2+k/u)(4/n)−2+2ε

� 1 + P κ(1+4/n)P 2−46/n+4k/(un)+2ε,

since Q= P κ. It follows from (5.11) and (5.13) that this is O(1). Thus the second term makes a
satisfactory contribution in F . Turning to the third term, we find that

Hn

Rn/2(P 2ψH)(n−2)/2
� P (3n−2)ε/2

Rn/2
(1 +R2/vφ1/v−1/2Pn−23/2+k/u)(3n−2)/n.

We now make the assumption 6/5< v < 2. Hence the overall contribution from the second term
is O(1) provided that φ 6 φ2, with

φ2 :=Rρ
′
nP−π

′
n−δ, (5.16)

with ρ′n, π
′
n given by (5.8) and δ given by (5.9). Assuming (5.12) we note that if φ 6 φ2 and

R 6 P (3n−2)ε/n then we would have a point on the major arcs if ε is sufficiently small in terms
of ∆, which we have seen to be impossible. Hence the inequality φ 6 φ2 is also enough to ensure
that the first term is O(1).

When v = 2 the exponent of φ is zero in the above and we will have an overall contribution
of O(1) unless

R 6 P (3n−2)(2n−23+k)/(n2−6n+4)+δ. (5.17)

We will return to this case shortly. Recall the definitions (5.14)–(5.16) of φ0, φ1, φ2. It follows
from the inequality φ2 < φ1 that Rρ

′
n+ρn < P π

′
n−πn+2δ. We now employ the assumption (5.10)

on the size of ρ′n + ρn. Combining the above we conclude that there is an overall contribution
of o(P 10) to Iu,v(k; a) from all of the relevant values of R, φ, apart from those which satisfy the
inequalities

R< P (π′n−πn)/(ρ′n+ρn)+2δ, φ2 < φ < φ1.

But then the relevant point is forced to lie in the set m0 that was defined in the statement of
the lemma. This is impossible, and so completes the proof of Lemma 13. 2

Our next result deals with the corresponding case in which u= v = 2. In this setting (5.7)
becomes

ρn =
n(n− 5)

n2 − 5n+ 2
, πn =

−2(n2 − (18− k)n− 2)
n2 − 5n+ 2

. (5.18)

Define

ρ′′n :=
(3n− 2)(2n− 23 + k)

n2 − 6n+ 4
(5.19)

and

ψn := ρ′′n

(
1 +

n

8
− (4 + n)ρn

8

)
+ n+

k

2
− (4 + n)πn

8
, (5.20)

for any k and n, and recall the definition (5.9) of δ. Then we have the following result.
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Lemma 14. Let u= v = 2. Assume that n2 > 6. Define m0 to be the set of α ∈m for which there
exist coprime integers 0 6 a < q such that

q 6 P ρ
′′
n2

+δ,

∣∣∣∣α− a

q

∣∣∣∣ 6 q−(n2−8)/(n2−4)P−(80−5n2−4k)/(n2−4)+δ.

Then

I2,2(k; n\m0) = o(P 10),
for any n⊆m, provided that (5.11) holds and

ψn2 6 10− 1
10 . (5.21)

Proof. We continue to write a = m\m0 and n= n2 throughout the proof, in order to improve the
appearance of our expressions. Our starting point is the proof of Lemma 13, which on passing to
dyadic intervals via (5.5), shows that I2,2(k; a) = o(P 10) unless φ < φ1, in the notation of (5.15),
and the inequality (5.17) holds for R. This much is valid subject to (5.11).

We now consider the effect of applying Lemma 5 in (5.5) when R and φ are in the remaining
ranges, with u= v = 2. This gives

I2,2(k; a)� Pn+k/2+2ε max
R,φ

(R2φ)1/2(Rφ+ (RφP 3)−1)n/8

� P 2ε max
R,φ

(R1+n/8φ(4+n)/8Pn+k/2 +R1−n/8φ(4−n)/8P 5n/8+k/2).

Taking φ < φ1 and recalling the assumed inequality (5.17) for R we see that the first term here
is

�R1+n/8(R−ρnP−πn+δ)(4+n)/8Pn+k/2+2ε

�R1+n/8−(4+n)ρn/8Pn+k/2−(4+n)πn/8+2ε+((4+n)/8)δ

� Pψn+2ε+(1+n/8−(4+n)ρn/8+(4+n)/8)δ,

where ψn is given by (5.20). According to (5.21) this contribution is satisfactory. Turning to the
second term in the above estimate for I2,2(k; a), we will have O(P 10−ε) as an upper bound for
this quantity provided that φ > φ3, with

φ3 :=R−(n−8)/(n−4)P−(80−5n−4k)/(n−4)+δ,

since n > 6 by assumption.
Our investigation has therefore allowed us to handle all α apart from those for which

R 6 P ρ
′′
n+δ and φ < φ3, where ρ′′n is given by (5.19). Such points are forced to lie on the set

of arcs defined in m0. This therefore completes the proof of Lemma 14. 2

The ideal scenario is when we can apply Lemma 14 with

k = 2n1 − 3 = 23− 2n2,

and we will find this is possible for certain ranges of n1, n2 such that n1 + n2 = 13. When
this comes to pass it follows from (5.18), (5.19) that πn2 = 2 and ρ′′n2

= 0, and furthermore,
ψn2 = 21/2− n2/4. One easily checks that the conditions in (5.11) and (5.21) are satisfied for
n2 > 6. Finally we note that m\m0 = m in the statement of Lemma 14 since clearly any element
of m0 is forced to lie on the major arcs. We may conclude as follows.

Lemma 15. Assume that n2 > 6. Then we have

I2,2(2n1 − 3; m) = o(P 10).
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We are now ready to apply this collection of estimates in our case by case analysis of the
minor arc integral E in (5.1).

5.1 The case n1 = 1
We will assume that w ∈W(2)

n throughout this section. One of the ingredients in our treatment
of this case is the use of ‘pruning’. We will find it convenient to sort the minor arcs into subsets

∅= n3 ⊆ n2 ⊆ n1 ⊆ n0 := m.

Recall the definition (5.9) of δ. We define n1 to be the set of α ∈m for which there exists a, q ∈ Z
such that 0 6 a < q 6 P 17/24+2δ and gcd(a, q) = 1, with

q42/17P−4−δ 6

∣∣∣∣α− a

q

∣∣∣∣ 6 q−1P−37/24+2δ. (5.22)

We denote by n2 the corresponding set of α ∈ n1 with the property that whenever (5.22) holds
with gcd(a, q) = 1 and 0 6 a < q 6 P 17/24+δ, then

q 6 P 27/50.

We will write Ei for the overall contribution to E from integrating over the set ni\ni+1, for
i= 0, 1, 2. Our task is to show that Ei = o(P 10) for each i.

To handle the case i= 0 we begin as in (5.2) and (5.3) with (u, v) = (4, 4/3). It easily follows
that ∫ 1

0
|S1(α)|4 dα� P 2+ε,

on interpreting the integral as a sum over the solutions of the equation x3
1 + x3

2 = x3
3 + x3

4, with
xi� P , and applying standard estimates for the divisor function. Hence we have

E0� I4,4/3(2; m\n1),

in the notation of (5.4). When (u, v) = (4, 4/3), k = 2 and n2 = 12 we have

ρ12 = 30
37 , π12 = 62

37 , ρ′12 = 42
17 , π′12 = 4,

in (5.7) and (5.8). In particular (5.10), (5.11) and (5.12) are satisfied. Now it is easily to see that
m\n1 ⊂m\m0, where m0 is as in the statement of Lemma 13, since for α ∈m0 we have

q42/17P−4−δ 6

∣∣∣∣α− a

q

∣∣∣∣ 6 q−30/37P−62/37+δ = q−1q7/37P−62/37+δ 6 q−1P−37/24+2δ.

It therefore follows from Lemma 13 that E0 = o(P 10), as required.
Turning to the case i= 1, we begin as above with the observation that

E1� I4,4/3(2; n1\n2).

This time we appeal to Lemma 5. On observing that∣∣∣∣α− a

q

∣∣∣∣ 6 q−1P−37/24+2δ 6 q−1P−3/2,

for any α ∈ n1, we deduce from the second part of this result that

E1� P 25/2+2ε max
R,φ

(R2φ)3/4R−3/2 min{1, (φP 3)−3/2}� P 8+2ε max
R,φ

φ−3/4,

where the maximum is over all R, φ > 0 such that

P 27/50 <R 6 P 17/24+2δ, R42/17P−4−δ < φ <R−1P−37/24+2δ.
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Taking the lower bounds for φ and R that emerge from these inequalities therefore implies that

E1� P 11+3δ/4+2ε max
R

R−63/34 = o(P 10),

on recalling that δ = 10−4 from (5.9) and ε > 0 is arbitrary.
The key idea in our treatment of E2 is to take advantage of the fact that we have rather good

control of the one-dimensional exponential sum S1(α) on suitable sets of ‘major arcs’. Recall the
definition (3.6) of A=A(A, B, C). We will take (A, B, C) = (24/50, 1, 35/24 + 2δ), whence we
may deduce from Lemma 10 that

S1(α) = S∗1(α) +O(P 35/48+δ+ε),

for any α ∈ Aa,q, where S∗1(α) is given by (3.7). It follows that

E2�
∫
n 2

|S∗1(α)S2(α)| dα+ P 35/48+δ+ε

∫
n 2

|S2(α)| dα= I1 + I2, (5.23)

say. We will show that I1 and I2 are both o(P 10).
Let us begin by analysing the first term in this bound. Now it follows from the second part

of Lemma 10 and Hölder’s inequality that

I1� I4,4/3(1, n2),

in the notation of (5.4). A straightforward application of Lemma 13 reveals that I4,4/3(1, n2\n∗) =
o(P 10), where n∗ is the set of α ∈ n1 for which there exists a, q ∈ Z such that 0 6 a < q 6 P 17/48+2δ

and gcd(a, q) = 1, with

q42/17P−3−δ 6

∣∣∣∣α− a

q

∣∣∣∣ 6 q−30/37P−68/37+δ.

To estimate I4,4/3(1, n∗) we employ the second part of Lemma 5 in much the same way that we
did in our analysis of E1. This implies that

I4,4/3(1, n∗)� P 49/4+2ε max
R,φ

(R2φ)3/4R−3/2 min{1, (φP 3)−3/2},

where the maximum is over all R, φ > 0 such that

R 6 P 17/48+2δ, R42/17P−3−δ < φ <R−30/37P−68/24+δ,

with the inequalities R 6 P∆ and φ 6 P−3+∆ not both holding simultaneously. Taking the lower
bound for φ we obtain the contribution

� P 31/4+2εφ−3/4� P 10+3δ/4+2εR−63/34.

This is o(P 10) if R > P δ. If on the other hand R< P δ 6 P∆ we must automatically have
φ > P−3+∆, whence we still obtain a satisfactory contribution. This completes the treatment
of I4,4/3(1, n∗), and so that of I1.

We now turn to the contribution from I2 in (5.23). Breaking the ranges for q and |α− a/q|
into dyadic intervals as usual, and applying the second part of Lemma 5, we have

I2� P 12+35/48+δ+2ε max
R,φ

R1/2φmin{1, (φP 3)−3/2},

where the maximum is over all R, φ such that

0<R 6 P 27/50, 0< φ <R−1P−37/24+2δ,
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with the inequalities R 6 P∆ and φ 6 P−3+∆ not both holding simultaneously. If φ > P−3 then
this is

�R1/2P 9+35/48+δ+2ε� P 10−1/1200+δ+2ε = o(P 10),

whereas if on the other hand φ 6 P−3, then the same basic conclusion holds.
Once taken all together, this therefore completes the treatment of the minor arcs when

(n1, n2) = (1, 12).

5.2 The case n1 = 2
We will continue to assume that w ∈W(2)

n throughout this section. In what follows we may
assume that C1 does not take the shape a(b1x1 + b2x2)3, for integers a, b1, b2, since otherwise
the resolution of Theorem 1 is trivial.

Recall the manipulations in (5.2) and (5.3). Taking (u, v) = (4, 4/3) it follows from Lemma 8
that the latter inequality is bounded by O(P 5+ε). Thus we are led to estimate I4,4/3(5; m), as
given by (5.4). We clearly have

ρ11 = 44
57 , π11 = 103

57 , ρ′11 = 56
31 , π′11 = 3,

in (5.7) and (5.8). One easily checks that the conditions (5.10), (5.11) and (5.12) in the statement
of Lemma 13 are satisfied with our choice of u, v, k and n2. Recall the definition (5.9) of δ. Define
m0 to be the set of α ∈m for which there exist coprime integers 0 6 a < q such that

q 6 P 31/67+2δ, q56/31P−3−δ 6

∣∣∣∣α− a

q

∣∣∣∣ 6 q−44/57P−103/57+δ.

Then we may conclude from Lemma 13 that I4,4/3(5; m\m0) = o(P 10).
It remains to deal with the contribution from α ∈m0. We will use Lemma 5 to handle this

remaining range. Now it follows that∣∣∣∣α− a

q

∣∣∣∣ 6 q−1q13/57P−103/57+δ < q−1P−3/2.

Recalling the definition (5.4) of I4,4/3(5; m0), we therefore deduce from the second part of
Lemma 5 with n= 11 that

I4,4/3(5; m0)� P 49/4+2ε

(∑
q

q−5/6

∫
min{1, (|θ|P 3)−11/6} dθ

)3/4

,

where the integral is over q56/31P−3−δ 6 |θ| 6 q−44/57P−103/57+δ and the sum is over integer
q 6 P 31/67+2δ, with the inequalities q 6 P∆ and |θ| 6 P−3+∆ not both holding simultaneously.
The contribution from q 6 P∆ is therefore

� P 10+2ε−5∆/8

( ∑
q6P∆

q−5/6

)3/4

� P 10+2ε−∆/2,

which is satisfactory. Taking |θ| > q56/31P−3−δ, we see that the corresponding contribution from
q > P∆ is

� P 10+5δ/8+2ε

( ∑
q>P∆

q−145/62

)3/4

� P 10+5δ/8−∆+2ε.

This too is satisfactory, and so completes our analysis of the case (n1, n2) = (2, 11).
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5.3 The case n1 = 3
According to Lemma 2 we may proceed under the assumption that either C1 is non-singular
or else our cubic form C splits off a ternary norm form. In the latter case Theorem 3 readily
ensures that X(Q) 6= ∅, and so we may focus our efforts on the case C1 is non-singular. We will
assume that w = w1w2, with (w1, w2) ∈W(1)

3 ×W(2)
10 , throughout this section.

Our argument relies upon the same notion of pruning that was put to good effect in § 5.1. Let
us define m1 to be the set of α ∈m for which there exists a, q ∈ Z such that 0 6 a < q 6 P 16/25

and gcd(a, q) = 1, with ∣∣∣∣α− a

q

∣∣∣∣ 6 q−1P−143/75.

It will be convenient to refer to the set m\m1 as the set of ‘proper minor arcs’, and m1 will be the
set of ‘improper minor arcs’. Let us write Eprop and Eimprop for the corresponding contributions
to E.

We begin by estimating Eprop. Taking u= v = 2 in (5.2) and (5.3), and applying Lemma 12,
we deduce that Eprop� I2,2(4; m\m1). When u= v = 2, k = 4 and n2 = 10 we have

ρ10 = 25
26 , π10 = 21

13 , ρ′′10 = 7
11 , ψ10 = 839

88 = 9.53 . . . ,

in (5.18), (5.19) and (5.20). Now it is easily to see that m\m1 ⊂m\m0, where m0 is as in the
statement of Lemma 14, since for α ∈m0 we have∣∣∣∣α− a

q

∣∣∣∣ 6 q−1/3P−7/3+δ = q−1q2/3P−7/3+δ 6 q−1P−21/11+2δ < q−1P−143/75,

where δ is given by (5.9). On observing that ψ10 satisfies (5.21), and that the inequalities in (5.11)
are trivially satisfied, it therefore follows from Lemma 14 that Eprop = o(P 10).

We now turn to the argument needed to control the overall contribution to E from the
improper minor arcs, which we denote by Eimprop. We select (A, B, C) = (16/25, 1, 82/75) in
the definition (3.6) of A=A(A, B, C). It now follows from taking n= 3 and σ =−1 in Lemma 9
that

S1(α)− S∗1(α)� PA/2+2+ε + P 2C+ε� P 58/25+ε,

for any α ∈ Aq,a, where S∗1(α) is given by (3.7). Hence

Eimprop�
∫
m 1

|S∗1(α)S2(α)| dα+ P 58/25+ε

∫
m 1

|S2(α)| dα= I1 + I2,

say. Our goal is to show that Eimprop = o(P 10).
We begin by handling the contribution from I2. Using dyadic summation it follows from

Lemma 5 that

I2� P 10+58/25+2ε max
R,φ

R3/4φmin{1, (φP 3)−5/4}� P 7+58/25+2εR3/4� P 10−1/5+2ε,

where the maximum is over R, φ dictated by the definition of m1. This is plainly satisfactory
and so completes our treatment of I2.

We now turn to an upper bound for I1. Combining Hölder’s inequality with the second part
of Lemma 9 gives

|I1| 6
(∫

m 1

|S∗1(α)|4 dα
)1/4(∫

m 1

|S2(α)|4/3 dα
)3/4

� I4,4/3(9; m1),
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in the notation of (5.4). Let us dissect m1 into ma
1 ∪mb

1, where ma
1 is the set of α ∈m1 for

which there exist coprime integers 0 6 a < q such that q 6 P 16/25 and |α− a/q| 6 q1/2P−3+δ,
and mb

1 = m1\ma
1. An application of Lemma 5 yields

I4,4/3(9; mb
1)� P 10+9/4+2ε

( ∑
q6P 16/25

q−2/3

∫ q−1P−143/75

q1/2P−3+δ

(θP 3)−5/3 dθ

)3/4

� P 10+9/4+2ε

(∑
q

q−2/3P−5(q1/2P−3+δ)−2/3

)3/4

� P 10−δ/2+2ε log P,

which is satisfactory. Turning to I4,4/3(9; ma
1), we note that when (u, v) = (4, 4/3) and k = 9 one

has
ρ10 = 5

7 , π10 = 37
21 , ρ′10 = 8

7 , π′10 = 3,
in (5.7) and (5.8). Since (5.10), (5.11) and (5.12) are evidently satisfied in Lemma 13, a modest
pause for thought reveals that I4,4/3(9; ma

1) = o(P 10), as required.

5.4 The case n1 = 4
We follow the strategy of the preceding section. According to Lemma 3 we may assume that
either C1 is non-singular or else the surface C1 = 0 contains precisely 3 conjugate double points.
In the latter case (2.2) implies that our cubic form C can be written as

NK/Q(x1ω1 + · · ·+ x3ω3) + ax2
4 TrK/Q(x1ω1 + · · ·+ x3ω3) + bx3

4 + C2(x5, . . . , x13),

for appropriate coefficients ω1, ω2, ω3 ∈K and a, b ∈ Z, and where K is a certain cubic number
field. Setting x4 = 0 we arrive at a cubic form in 12 variables which is exactly of the type
considered in Theorem 3. Hence X(Q) 6= ∅ in this case, and so we are free to proceed under
the assumption that C1 is non-singular. Throughout this section we will take w = w1w2 as our
weight function, with w1 ∈W(1)

4 and w2 ∈W(2)
9 .

Let m1 be the set of α ∈m for which there exists a, q ∈ Z such that 0 6 a < q 6 P 21/50 and
gcd(a, q) = 1, with ∣∣∣∣α− a

q

∣∣∣∣ 6 q−1P−113/50.

As previously we define m\m1 to be the proper minor arcs and m1 to be the improper minor
arcs, with the same notation Eprop, Eimprop for the corresponding contributions to E.

We begin by estimating Eprop. Taking u= v = 2 in (5.2) and (5.3), and applying Lemma 12,
we find that Eprop� I2,2(11/2; m\m1). When u= v = 2, k = 11/2 and n2 = 9 we have

ρ9 = 18
19 , π9 = 67

38 , ρ′′9 = 25
62 , ψ9 = 9 + 15

124 = 9.12 . . . ,

in (5.18), (5.19) and (5.20). Furthermore, it is easily checked that m\m1 ⊂m\m0, where m0 is
as in the statement of Lemma 14. On observing that (5.21) and (5.11) are satisfied, it therefore
follows from Lemma 14 that Eprop = o(P 10).

It remains to estimate Eimprop, for which we select

(A, B, C) = (21
50 , 1,

37
50)

in the definition (3.6) of A. Taking n= 4 and σ =−1 in Lemma 9 therefore gives

S1(α)− S∗1(α)� P 5C/2+ε + P 5A/6+5/2+ε� P 57/20+ε,
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for any α ∈ Aq,a. It now follows that

Eimprop�
∫
m 1

|S∗1(α)S2(α)| dα+ P 57/20+ε

∫
m 1

|S2(α)| dα= I1 + I2,

say. We begin by handling the contribution from I2. Using dyadic summation it follows from
Lemma 5 that

I2� P 9+57/20+2ε max
R,φ

R7/8φmin{1, (φP 3)−(9/8)}� P 6+57/20+2εR7/8� P 9.2175+2ε,

where the maximum is over R, φ such that

0<R 6 P 21/50, 0< φ <R−1P−113/50.

This is plainly satisfactory and so completes our treatment of I2.
We now turn to an upper bound for I1. Since C1 is assumed to be good as well as non-

singular, we may apply the second part of Lemma 9 with k = 3 and n= 4 to conclude that
I1� I3,3/2(9,m1). As in the case n1 = 3 we write m1 = ma

1 ∪mb
1, where now ma

1 is the set of α ∈m1

for which there exist coprime integers 0 6 a < q such that q 6 P 21/50 and |α− a/q| 6 qP−3+δ, and
mb

1 = m1\ma
1. It follows from Lemma 5 that

I3,3/2(9; mb
1)� P 12+2ε

( ∑
q6P 21/50

q1−27/16

∫ q−1P−113/50

qP−3+δ

(θP 3)−27/16 dθ

)2/3

� P 12+2ε

( ∑
q6P 21/50

q−11/16P−81/16(qP−3+δ)−11/16

)2/3

� P 10−11δ/24+2ε.

To handle I3,3/2(9; ma
1) we note that when (u, v) = (3, 3/2) and k = 9 we have

ρ9 = 3
4 , π9 = 29

16 , ρ′9 = 43
25 , π′9 = 3,

in (5.7) and (5.8). Lemma 13 easily gives I3,3/2(9; ma
1) = o(P 10), as required. This completes the

treatment of the improper minor arcs when (n1, n2) = (4, 9).

5.5 The case n1 = 5

An application of Lemma 4 reveals that we are free to assume that C1 defines a projective cubic
hypersurface whose singular locus is either empty or finite. Throughout this section we will take
w = w1w2 as our weight function, with (w1, w2) ∈W(1)

5 ×W(2)
8 .

We let the improper minor arcs m1 be the set of α ∈m for which there exists a, q ∈ Z such
that 0 6 a < q 6 P 11/20+δ and gcd(a, q) = 1, with∣∣∣∣α− a

q

∣∣∣∣ 6 P−5/2+δ,

with δ given by (5.9), and we let m\m1 be the proper minor arcs. As above, let Eprop, Eimprop

denote the corresponding contributions to E.
Taking u= v = 2 in (5.2) and (5.3), and applying Lemma 12 with n= 5 and σ 6 0, we find

that Eprop� I2,2(15/2; m\m1). When u= v = 2, k = 15/2 and n2 = 8 we have

ρ8 = 12
13 , π8 = 22

13 , ρ′′8 = 11
20 , ψ8 = 9.55,
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in (5.18), (5.19) and (5.20). Furthermore, it is easily checked that m\m1 ⊂m\m0, where m0 is
as in the statement of Lemma 14. On observing that (5.11) and (5.21) are satisfied, it therefore
follows from Lemma 14 that Eprop = o(P 10).

It remains to estimate Eimprop, for which we select

(A, B, C) = (11
20 + δ, 0, 1

2 + δ)

in the definition (3.6) of A. Taking n= 5 and σ 6 0 in Lemma 9 therefore gives

S1(α)− S∗1(α)� P 3+5A/3+ε + P 3(A+C)+ε� P 3.92,

for any α ∈ Aq,a. It now follows that

Eimprop�
∫
m 1

|S∗1(α)S2(α)| dα+ P 3.92

∫
m 1

|S2(α)| dα= I1 + I2,

say.
We begin by handling the contribution from I2. Using dyadic summation it follows from

Lemma 5 that

I2� P 3.92+ε max
R,φ

RφP 8 min{1, (φP 3)−1}� P 8.92+εR� P 9.47+δ+ε,

where the maximum is over R, φ such that

0<R 6 P 11/20+δ, 0< φ < P−5/2+δ.

This is plainly satisfactory and so completes our treatment of I2.
We now turn to an upper bound for I1. Since C1 is assumed to be good, we may apply the

second part of Lemma 9 with k = 12/5 and n= 5 to conclude that I1� I12/5,12/7(9; m1), in
the notation of (5.4). When (u, v) = (12/5, 12/7), k = 9 and n2 = 8 we have

ρ8 = 4
5 , π8 = 66

35 , ρ′8 = 38
11 , π′8 = 3,

in (5.7) and (5.8). Furthermore one easily checks that k/u= 15/4 satisfies the inequalities in
(5.11). It therefore follows from Lemma 13 that I12/5,12/7(9; m1\m2) = o(P 10), where m2 is the
set of α ∈m1 for which there exist coprime integers 0 6 a < q such that

q 6 P 11/42+2δ, q38/11P−3−δ 6

∣∣∣∣α− a

q

∣∣∣∣ 6 q−4/5P−66/35+δ. (5.24)

Note that q−4/5P−66/35+δ 6 q−1P−3/2. To handle I12/5,12/7(9; m2) we appeal to Lemma 5,
deducing that

I12/5,12/7(9; m2)� P 8+15/4+2ε max
R,φ

(R2φ)7/12R−1 min{1, (φP 3)−1}

� max
R,φ

P 5+15/4+2εR1/6φ−5/12

� P 10+δ/2+2εR−14/11,

on taking φ >R38/11P−3−δ. Here the maximum is over the relevant R, φ determined by (5.24),
with the inequalities R 6 P∆ and φ 6 P−3+∆ not both holding simultaneously. Now either
R> P∆ and this estimate is satisfactory, or else R 6 P∆ and it follows that we may actually
take the lower bound φ > P−3+∆ in the second term, giving instead

� P 10−5∆/12+2εR1/6� P 10−∆/4+2ε.

This too is satisfactory, and so completes the proof that I1 = o(P 10), thereby completing the
treatment of the minor arcs in the case (n1, n2) = (5, 8).
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5.6 The case n1 = 6

We now come to the final case that we need to analyse in our proof of Theorem 1. We take
w = w1w2 with (w1, w2) ∈W(2)

6 ×W(2)
7 , and seek an estimate for

M6(P ; m) :=
∫
m
|S1(α)|2 dα.

Note that the integral is now taken over the set of minor arcs, rather than the entire interval
[0, 1] as in (4.4). As usual we assume that C1 and C2 are good. We will show that

M6(P ; m)� P 9+ε. (5.25)

Once in place, we may take u= v = 2 in (5.2) and (5.4) to conclude that E� I2,2(9; m), whence
the desired conclusion is given by Lemma 15.

It remains to establish (5.25). Let us consider the consequences of applying Lemma 7 to
estimate M =M6(P ; m), following the general approach in the proof of Lemmas 13 and 14. We
have

M � P 3 + P ε max
R,φ

ψHR
2P 11

H10
F,

where ψH and F are as in the statement of Lemma 7 and H ∈ [1, P ] ∩ Z is arbitrary. Furthermore
the maximum is over R, φ such that (5.6) holds with any choice of Q > 1 that we care to choose.
We will take Q= P 3/2. In our deduction of (5.25) it will be convenient to allow the value of ε > 0
to take different values at different parts of the argument.

We define φ0 :=R−2/11P−2 and take

H :=

{
bP ε max{1, (φR2P 2)1/10}c if φ > φ0,
bP εR2/11c if φ 6 φ0.

If we can show that F � P ε with this choice of H then (5.25) will follow. It is clear that H is
an integer in the interval [1, P ].

Suppose first that φ > φ0. Then ψH � φ and it follows that

RH3ψH � P εRφ(1 + φR2P 2)3/10� 1 +Q−1P 3/5+ε� 1,

by (5.6) and the fact that Q= P 3/2. The third term in F is

H6

R3(P 2ψH)2
� P ε

R3P 4φ2
(1 + φR2P 2)3/5� P ε

R3P 4φ2
0

+
P ε

R9/5P 14/5φ
7/5
0

� P ε,

which is satisfactory.

Suppose now that φ 6 φ0. Then ψH � (P 2H)−1 and it follows that

RH3ψH �
RH2

P 2
� RP ε

P 2
(1 +R2/11)� 1 +

Q13/11P ε

P 2
� 1.

Turning to the third term in F , we find that

H6

R3(P 2ψH)2
� H8

R3
� P ε

R3
(1 +R16/11)� P ε,

which is also satisfactory. This therefore completes the proof of (5.25), and so our treatment of
the case (n1, n2) = (6, 7).
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Appendix. Groupe de Brauer non ramifié des

hypersurfaces cubiques singulières (d’après

P. Salberger)

J.-L. Colliot-Thélène

En réponse à une question de R. Heath-Brown, P. Salberger en 2006 a indiqué les grandes lignes
de la démonstration de l’énoncé suivant, qui étend un résultat connu dans le cas lisse [Col04].
Nous donnons le détail de la démonstration. On utilise les notations usuelles dans ce domaine.
Pour X un schéma on note Pic X =H1

ét(X,Gm) son groupe de Picard et Br X =H2
ét(X,Gm)

son groupe de Brauer. Pour les propriétés usuelles de ces groupes, nous renvoyons le lecteur à
[CS87].

Théorème. Soit k un corps de caractéristique zéro, k une clôture algébrique, G le groupe de
Galois de k sur k. Soit X ⊂Pn

k une intersection complète géométriquement intègre de dimension
au moins 3. Supposons le lieu singulier vide ou de codimension au moins égale à 4 dans X. Alors
pour tout k-modèle projectif et lisse Y de X :

(a) le groupe de Picard de Y = Y ×k k est un module galoisien Z-libre de type fini qui est
stablement de permutation ;

(b) on a H1(G, Pic Y ) = 0 ;

(c) on a Br k '→Ker[Br Y → Br Y ].

Démonstration. Les anneaux locaux de X en codimension au moins 3 sont réguliers, donc
factoriels (théorème d’Auslander–Buchsbaum, voir [Gro05, §XI Theorem 3.13]). Comme X
est une intersection complète, un théorème de Grothendieck [Gro05, §XI Corollary 3.14], ex-
conjecture de Samuel, implique que tous les anneaux locaux de X sont factoriels. Ainsi les
diviseurs de Weil sur X sont tous des diviseurs de Cartier. Ceci implique que pour tout ouvert
U ⊂X la flèche de restriction Pic X → Pic U est surjective. Cette flèche est aussi injective. Soit
en effet D un diviseur sur X qui est le diviseur d’une fonction rationnelle f sur U . Comme
le complémentaire de U dans X est de codimension au moins 2 et que sur X diviseurs de
Weil et diviseurs de Cartier cöıncident, on conclut que D est le diviseur de f sur X. Le même
argument montre que toute fonction rationnelle sur X définie et inversible sur U est définie et
inversible sur X, et comme X est projectif et géométriquement intègre, toute telle fonction est
une constante, elle appartient à k∗.

L’hypothèse sur la codimension du lieu singulier est géométrique, elle vaut pour XK pour
toute extension K/k de corps, par exemple k/k. Les mêmes conclusions s’appliquent donc à X.
En particulier la flèche de restriction Pic X → Pic U est un isomorphisme.

Par ailleurs, le Corollaire 3.7 de [Gro05, §XII] montre que la flèche de restriction

Z = Pic Pn
k → Pic X
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qui envoie la classe de 1 ∈ Z sur la classe du faisceau inversible OX(1) est un isomorphisme. Il en
est de même de Z = Pic Pn

k
→ Pic X, et l’action du groupe de Galois sur Z' Pic X est triviale.

En conclusion, sous les hypothèses du théorème, le module galoisien Pic U est le
module galoisien trivial Z et l’on a k

∗ '→k[U ]∗, où k[U ] est l’anneau des fonctions définies
sur U . L’argument ci-dessus montre aussi que l’application naturelle Pic U → Pic U est un
isomorphisme.

D’une suite exacte bien connue (cf. [CS87, p. 386]) on déduit que la flèche naturelle
Br k→Ker[Br U → Br U ] est un isomorphisme. Par des arguments standards sur le groupe de
Brauer (pureté et injection par passage d’une variété lisse à un ouvert) un tel énoncé implique
le même énoncé pour toute k-variété projective et lisse k-birationnelle à X : c’est l’énoncé (c).

Soit U ⊂ Y une k-compactification lisse de U (le théorème de Hironaka assure l’existence
d’une telle compactification). On a alors la suite exacte de modules galoisiens

0→Div∞Y → Pic Y → Pic U → 0,

où le groupe Div∞Y est le module de permutation sur les points de codimension 1 de Y en dehors
de U , et le zéro à gauche tient au fait que l’on a k∗ ' k[U ]∗. La suite de modules galoisiens ci-
dessus est scindée, car tout groupe H1(G, P ) à valeurs dans un module de permutation est nul
(lemme de Shapiro). Ainsi Pic Y est la somme directe de deux modules de permutation, et est
donc un module de permutation. Il en résulte que pour tout autre modèle projectif et lisse Y ′,
le module galoisien Pic Y ′ est stablement de permutation [CS87, Proposition 2.A.1 on p. 461].
L’énoncé (b) en résulte. 2

Corollaire. Soit X ⊂Pn
k une hypersurface cubique géométriquement intègre de dimension au

moins 3 qui n’est pas un cône. Supposons le lieu singulier vide ou de codimension au moins égale
à 4 dans X. Alors pour tout modèle projectif et lisse Y de X, on a Br k '→Br Y .

Démonstration. Au vu du théorème ci-dessus, il suffit de montrer Br Y = 0.

Si l’hypersurface X est lisse, on a Br X = 0 comme il est établi dans [Col04] sans restriction
sur le degré de l’hypersurface. Par l’invariance birationnelle du groupe de Brauer pour les variétés
projectives et lisses ceci implique Br Y = 0.

Si l’hypersurface cubique X est singulière, comme elle n’est pas un cône, en utilisant les
droites passant par un k-point singulier on obtient une équivalence birationnelle de X avec
l’espace projectif Pn−1

k
, dont le groupe de Brauer est nul. Par l’invariance birationnelle du groupe

de Brauer pour les variétés projectives et lisses ceci implique Br Y = 0. 2

Remarque 1. Il serait intéressant de voir si le corollaire vaut pour les hypersurfaces de degré
supérieur à 3. C’est le cas lorsque les hypersurfaces sont lisses [Col04].

Remarque 2. La condition que la codimension du lieu singulier est au moins égale à 4 est
nécessaire. Dans [CS89] on trouve des hypersurfaces cubiques géométriquement intègres non
coniques dans P4

k, dont le lieu singulier est un ensemble fini non vide de points, et qui admettent
un modèle projectif et lisse Y avec Br Y/Br k 6= 0.

Remarque 3. Lorsque k est un corps de nombres, le corollaire permet de conjecturer que, sous
les hypothèses données, le principe de Hasse et l’approximation faible valent pour le lieu lisse de
l’hypersurface cubique X.
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