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ON THE BOAS-BELLMAN INEQUALITY IN
INNER PRODUCT SPACES

S.S. DRAGOMIR

New results related to the Boas-Bellman generalisation of Bessel's inequality in inner
product spaces are given.

1. INTRODUCTION

Let (H; (•, •)) be an inner product space over the real or complex number field K. If
(eOisji^n are orthonormal vectors in the inner product space H, that is, (ei,e,) = <Jy for
alH, j € { 1 , . . . , n} where <5y is the Kronecker delta, then the following inequality is well
known in the literature as Bessel's inequality (see for example [6, p. 391]):

n

(1-1) 3 (* ,eO| 2 «SM| a for any x e H.

For other results related to Bessel's inequality, see [3, 4, 5] and Chapter XV in the
book [6].

In 1941, Boas [2] and in 1944, independently, Bellman [1] proved the following
generalisation of Bessel's inequality (see also [6, p. 392]).

THEOREM 1 . If x,yi,... ,yn are elements of an inner product space (H; (•, •)),

then the following inequality:

n r *

Cl 21 Y ^ l (r n) I2 < l l r l l 2 m a x \U, II2 4- I Y ^

holds.

A recent generalisation of the Boas-Bellman result was given in Mitrinovic-Pecaric-
Fink [6, p. 392] where they proved the following.

THEOREM 2 . If x, yi,..., yn are as in Theorem 1 and Ci,...,Cn € K, then one

has the inequality:

n 2

(1.3) ~
i=\

\ 1/2n
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218 S.S. Dragomir [2]

They also noted that if in (1.3) one chooses Q = (x, yt), then this inequality becomes
(1.2).

For other results related to the Boas-Bellman inequality, see [4].
In this paper we point out some new results that may be related to both the Mitri-

novic-Pecaric-Fink and Boas-Bellman inequalities.

2. SOME PRELIMINARY RESULTS

We start with the following lemma which is also interesting in itself.

LEMMA 1. Let zi,..., zn € H and a\,..., an £ K. Tien one has the inequality:

ii n n2

(2.1)
1 i=l

where l,i + i

i = l

max {lon

wiere 7 > 1, —I- -r = 1;
7 0

PROOF: We observe that

(2.2)
n 2 / n n

(
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Using Holder's inequality, we may write that

(2.3)

max \<Xi\2 E INI21
lS.t$fl i 1

i = i
. where a > 1,1 + i

a p

By Holder's inequality for double sums we also have

(2.4) £ Kllaj-IK*,*,)!

I I \"** I ( \ I •

E loil

\ 1/7 /

max

where 7 > 1, —I- -r = 1;
7 (3

l / 7r / n \ 2 / n \1 1/7 /

(EN 7 ) - (EN 2 7 ) ( E |(*,*i
L \t=l / \i=l / J Xl̂ t^j^n

where 7 > 1, —V -z = 1;
7 d

Utilising (2.3) and (2.4) in (2.2), we may deduce the desired result (2.1). D

REMARK 1. Inequality (2.1) contains in fact 9 different inequalities which may be ob-
tained combining the first 3 ones with the last 3 ones.

A particular case that may be related to the Boas-Bellman result is embodied in the
following inequality.
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COROLLARY 1 . With the assumptions in Lemma 1, we have

" C IYY"1" \n \2\2 V " I/T, l4H/2 / \ X / 2 1

t=l k - ^ t = l l"«l \&ft$n ' }

The first inequality follows by taking the third branch in the first curly bracket with the
second branch in the second curly bracket for 7 = 8 — 2.

The second inequality in (2.5) follows by the fact that

2 n -I 1/2 n

Applying the following Cauchy-Bunyakovsky-Schwarz type inequality

2
/ %

(2.6)

we may write that

(2.7)
t=i

and
2 n n

(2.8) ( E O

Also, it is obvious that:

(2.9) max {|a,aj|} ^ max \oti\2

II II
Consequently, we may state the following coarser upper bounds for XIa«'z« tlmt, may

be useful in applications.
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COROLLARY 2 . With the assumptions in Lemma 1, we have the inequalities:

2

(2.10)
t = i

(gwr) , - > 1 , 1 + 1

t = l

+
( n -

/ n \ V7 /

X><|27

, 1 1
where 7 > 1, —1-7

7 6

The proof is obvious by Lemma 1 in applying the inequalities (2.7)-(2.9).

REMARK 2. The following inequalities which are incorporated in (2.10) are of special
interest:

(2.11)

(2.12) _ _ _

+0

where p > 1, 1/p + 1/g = 1; and

n 2 n

(2.13) ~

n-i)1/p( E K—i

t = i « = i

zi, Zj)\

3. SOME MITRINOVIC-PECARIC-FINK T Y P E INEQUALITIES

We are now able to point out the following result which complements the inequality

(1.3) due to Mitrinovic, Pecaric and Fink [6, p. 392].

THEOREM 3 . Let x, y\,..., yn be vectors of an inner product space (H; (•, •)) and
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i,..., Cn € K (K = C, K). Then one has the inequalities:

i 2

(3.1)

max

i = i
a > 1, i + i = 1;

up

E|c,|2max||yi||
2

I

+ I X

max E \(vuyj)\;

-(Eh|2 7) l 1 / 7 ( E |(ft,V:

\(t\*\) -EN 2 ] max \{yuyj)\.
I L\i=l / i=l J i^^^n '

where 7 > 1, —I- - = 1;
7 6

P R O O F : We note that

Using Schwarz's inequality in inner product spaces, we have:

t = i

Now using Lemma 1 with cti = Cj, z,- = j/j (i = 1 , . . . , n), we deduce the desired inequality

(3.2). D

The following particular inequalities that may be obtained by the Corollaries 1 and
2 and Remark 2 hold.
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COROLLARY 3 . With the assumptions in Theorem 3, one has the inequalities:

(3.2)
t = i

X <

NI2EW2{max||yi||
2+( E {(yuvM2)

1/2

EN*) EM2' +(n-

ll̂ ll2 E hi2 {max ||yi||
2 + (n - 1) max |(W) yj)\).

where p > 1, - + - = 1;
P Q

REMARK 3. Note that the first inequality in (3.2) is the result obtained by Mitrinovic-
Pecaric-Fink in [6]. The other 3 provide similar bounds in terms of the p—norms of the
vector

4. SOME BOAS-BELLMAN T Y P E INEQUALITIES

If one chooses Cj = (z,2/i) (i — 1, . . . , n ) in (3.2), then it is possible to obtain 9
different inequalities between the Fourier coefficients (a;, yj and the norms and inner
products of the vectors yt (i — 1 , . . . , n). We restrict ourselves only to those inequalities
that may be obtained from (3.2).

As Mitrinovic, Pecaric and Fink noted in [6, p. 392], the first inequality in (3.2) for
the above selection of Cj will produce the Boas-Bellman inequality (1.2).

From the second, inequality in (3.2) for a — (x, yt) we get

t = l
Yl \(v»Vi)\}-

Taking the square root in this inequality we obtain:

(4.1)
/ 2

for any x,yi,..., yn vectors in the inner product space {H; (•, •)).

If we assume that (ej)i^i^n is an orthonormal family in H, then by (4.1) we have

(4.2) | ) x € H.
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From the third inequality in (3.2) for c* = (x, y,) we deduce

/ n K2 / n s. 1/p

(EK*.»)la) <iwi a ( l> . «•)!*)

)l/< W E
forp> 1, 1/p + 1 / ? = 1.

Taking the square root in this inequality we get

l/2p

(4 .3 ) E K | f E K r )
t=i

for any i , yx,..., yn € F , p > 1, 1/p + 1/g = 1.
The above inequality (4.3) becomes, for an orthornormal family

Finally, the choice ct = (x, yt) (i = 1 , . . . , n) will produce in the last inequality in (3.2)

*>2/<)f{max ||W||2 + (n - 1) max \(yi,yj)\}

giving the following Boas-Bellman type inequality

(4.5)
i=l

for any x,y\,... ,yn € H.
It is obvious that (4.5) will give for orthonormal families the well known Bessel

inequality.

REMARK 4. In order the compare the Boas-Bellman result with our result (4.5), it is
enough to compare the quantities

( v - "X l / 2

A : = ( Z , I(K>!
and

B:=(n-1) max\(yi,yj)\.
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Consider the inner product space H = K with (x, y) = xy, and choose n = 3, j/i = a > 0,

j/2 ~ 6 > 0, 2/3 = c > 0. Then

A = \ / 2 ( a V + b2c2 + c V ) 1 / 2 , B = 2 max(a&, ac, be).

Denote ab = p, be = q, ca = r. Then

+ q2 + r2)1'2, B = 2max(p,q,r).

Firstly, if we assume that p — q = r, then A — \/6p, B = 2p which shows that A > B.

Now choose r = 1 and p, q — 1/2. Then A = \ /3 and B — 2 showing that B > A.

Consequently, in general, the Boas-Bellman inequality and our inequality (4.5) can-

not be compared.
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