Representations of quivers over finite fields

JIUZHAO HUA

Let \mathbb{F}_q be the finite field of q elements. Let Γ be a connected graph with vertices $\{1,2,\cdots,n\}$, and let a_{ij} be the number of edges connecting i and j. Let $\Delta\subset\mathbb{Z}^n$ be the root system associated with Γ . For any $\alpha\in\mathbb{N}^n$, let $A_{\Gamma}(\alpha,q)$ be the number of classes of absolutely indecomposable representations of Γ (with respect to a fixed orientation) over \mathbb{F}_q with dimension α . A theorem of Kac asserts that $A_{\Gamma}(\alpha,q)\neq 0$ if and only if $\alpha\in\Delta^+$. It is known that $A_{\Gamma}(\alpha,q)$ is a polynomial in q with integer coefficients; these have been conjectured to be non-negative by Kac. Thus, we may assume that $A_{\Gamma}(\alpha,q)=\sum_{i=0}^{u_{\alpha}}t_i^{\alpha}q^i$ with $t_i^{\alpha}\in\mathbb{Z}$.

Let $\mathcal P$ denote the set of all partitions. For $\lambda \in \mathcal P$, we let $\lambda' = (\lambda'_1, \lambda'_2, \cdots)$ denote the partition conjugate to λ . For any λ , $\mu \in \mathcal P$, we define $\langle \lambda, \mu \rangle = \sum_{i \geqslant 1} \lambda'_i \mu'_i$. For any $\lambda = (1^{n_1} 2^{n_2} \cdots) \in \mathcal P$, we define $b_{\lambda}(q) = \prod_{i \geqslant 1} (1-q) (1-q^2) \cdots (1-q^{n_i})$. Let X_1, \cdots, X_n be n independent commuting variables, and for $\alpha = (\alpha_1, \cdots, \alpha_n) \in \mathbb Z^n$, we set $X^{\alpha} = X_1^{\alpha_1} \cdots X_n^{\alpha_n}$.

The main result in this thesis can be stated as the following formal identity:

$$\sum_{\substack{\lambda_1,\cdots,\lambda_n\in\mathcal{P}\\ \lambda_i\leq i\leq n}}\frac{\prod\limits_{\substack{1\leq i\leq j\leq n\\ 1\leq i\leq n}}q^{a_{ij}(\lambda_i,\lambda_j)}}{\prod\limits_{1\leq i\leq n}q^{\langle\lambda_i,\lambda_i\rangle}b_{\lambda_i}(q^{-1})}\,X_1^{|\lambda_1|}\cdots X_n^{|\lambda_n|}=\prod_{\alpha\in\Delta^+}\prod_{i=0}^\infty\prod_{j=0}^{u_\alpha}\left(1-q^{i+j}X^\alpha\right)^{t_j^\alpha}.$$

Kac has conjectured that if Γ does not contain edge-loops then the constant term of $A_{\Gamma}(\alpha,q)$ equals the multiplicity of α , which is defined to be the dimension of the root space corresponding to α of the Kac-Moody algebra determined by Γ . By assuming this conjecture, the above identity turns out to be a q-analogue of the Weyl-Macdonald-Kac denominator identity.

Another result in this thesis is as follows. Let A be a finite dimensional algebra over a perfect field K, and let M be a finitely generated indecomposable module over

Received 24th September, 1998

Thesis submitted to the University of New South Wales, February 1998. Degree approved, July 1998. Supervisor: Peter Donovan.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/99 \$A2.00+0.00.

 $A \otimes_{\mathbb{K}} \overline{\mathbb{K}}$, where $\overline{\mathbb{K}}$ denotes the algebraic closure of \mathbb{K} . If there exists a module N over $A \otimes_{\mathbb{K}} \mathbb{E}$, where \mathbb{E} is a finite extension of \mathbb{K} , such that $M \cong N \otimes_{\mathbb{E}} \overline{\mathbb{K}}$, then \mathbb{E} is called a *field of definition* of M. It is proved that for each M there exists a unique indecomposable module M^{\dagger} over A such that M is a direct summand of $M^{\dagger} \otimes_{\mathbb{K}} \overline{\mathbb{K}}$, and there exists a positive integer s such that $M^s = M \oplus \cdots \oplus M$ (s copies) has a unique minimal field of definition which is isomorphic to the centre of the division algebra $\left(\operatorname{End}_{\Gamma}(M^{\dagger})\right) / \left(\operatorname{rad}\left(\operatorname{End}_{\Gamma}(M^{\dagger})\right)\right)$. If \mathbb{K} is a finite field, then s can be taken to be 1.

Part of this thesis has already been published in [1].

REFERENCES

[1] J. Hua, 'Generalizing the recursion relationship for the partition function', J. Combin. Theory Ser. A 79 (1997), 105-117.

School of Mathematics
University of NSW
Sydney NSW 2052
Australia
e-mail: hua@maths.unsw.edu.au