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Spontaneous flow reversals in buoyancy-driven flows are ubiquitous in many fields of
science and engineering, often characterized by violent, intermittent occurrences. In this
study, we present a complex-network-based reduced-order model to analyse intermittent
events in turbulent flows, using temporal and spatial snapshot data. This framework
combines elements of dynamical system theory with network science. We demonstrate
its utility by applying it to data sequences from intermittent flow reversal events in
two-dimensional thermal convection. This approach has proven robust in detecting and
quantifying structures and predicting reversals. Additionally, it provides a perspective on
the physical mechanisms underlying flow reversals through cluster evolution. This purely
data-driven methodology shows the potential to enhance our understanding, prediction and
control of turbulent flows and complex systems.
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1. Introduction
Spontaneous flow reversals occur in various buoyancy-driven fluid dynamical systems
(Sugiyama et al. 2010; Wang et al. 2018), such as large-scale flows in the ocean (Nunes
& Norris 2006), the atmosphere (Cai et al. 2021), or the inner core of stars or the Earth,
where such reversals are associated with the reversal of the magnetic field (Glatzmaier
et al. 1999). They are characterized by a large range of temporal and spatial scales,
high dimensionality, and intermittence. Various models, either of a stochastic nature
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(Brown & Ahlers 2007, 2008) or based on simplified (nonlinear) dynamical equations
(Araujo, Grossmann & Lohse 2005; Chandra & Verma 2013; Suri 2024), have been
developed to account for the reversals. However, these models are mostly qualitative
or often inaccurate in predicting the reversals. Progress in analysing and manipulating
turbulent fluid motion is needed to better predict and control these dynamic structures. This
is crucial not only for the reversals in buoyancy-driven flows but also for other problems in
which the flow switches between either two competing states or a persistent state and a rare
event, such as von Kármán swirling flow (de la Torre & Burguete 2007), rotating spherical
Couette flow (Zimmerman, Triana & Lathrop 2011), flow mixing (Schikarski et al. 2019),
near-wall turbulence (Jiménez & Moin 1991; Jiménez 2023), pipe flow (Avila, Barkley
& Hof 2023), zonal flow bursts (von Hardenberg et al. 2015), Taylor–Couette turbulence
(Borrero-Echeverry, Schatz & Tagg 2010) or aerodynamic bifurcation (Gayout, Bourgoin
& Plihon 2021).

Data-driven modelling has advanced significantly in recent decades due to algorithmic
improvements, increased data availability, and faster hardware. This approach is suitable
for modelling intermittent events and is pivotal for physical insight, state estimation from
limited data, prediction, control and optimization (Brunton, Noack & Koumoutsakos
2020). Typically, such modelling relies on a low-dimensional approximation of the
state and system identification within that approximation. The commonly used reduced-
order modelling methods include proper orthogonal decomposition (POD) (Holmes
2012; Lumey 2012), dynamic mode decomposition (DMD) (Schmid 2010) and Koopman
analysis (Mezić 2013; Giannakis et al. 2018), which can reduce computational costs
and extract the dominant flow patterns effectively, and has been applied broadly (Kutz
et al. 2016; Kou & Zhang 2017; Kou, Le Clainche & Zhang 2018; Schmid 2022; Yang
et al. 2022). For Rayleigh–Bénard convection, Podvin and Sergent use POD modes to
comprehensively investigate the large-scale circulation (LSC) and the reversal dynamics
(Podvin & Sergent 2012, 2015, 2017; Castillo-Castellanos et al. 2019; Soucasse et al. 2019)
in two- and three-dimensional turbulent convection. Xu, Chen & Xi (2021) use POD
modes to study the reversal dynamics in two-dimensional circular convection cells, and
compare them with the Fourier modes. Chandra & Verma (2011) use large-scale Fourier
modes, coupled with symmetry transformations, to identify the dynamics of flow reversals.

Recent developments in data-driven modelling include the sparse identification of
nonlinear dynamics (SINDy) algorithm, which identifies accurate parsimonious models
from data (Brunton, Proctor & Kutz 2016) but is challenging to scale to large-scale
problems due to the size of the associated feature spaces; in addition, we have, among
many other models, access to neural network models (Vlachas et al. 2018) that avoid high
computational cost but have limited interpretability and provide little physical insights. An
alternative paradigm based on cluster modelling has recently been applied to fluid flows,
as it presents a promising course of action for understanding the physics behind complex
fluid motions (Kaiser et al. 2014; Fernex, Noack & Semaan 2021; Deng et al. 2022; Hou,
Deng & Noack 2024), including large-scale flow structures in three-dimensional Rayleigh–
Bénard convection (Maity et al. 2022, 2023), flow past cylinder wakes (Deng et al. 2022;
Hou et al. 2024), and Lagrangian vortex dynamics (Hadjighasem et al. 2016).

In this work, we promote an alternative cluster modelling technique based on a complex
network, which explicitly considers the topology of the network and is designed to handle
directionality in the patterns of connecting edges between nodes. The main goal of this
approach is to leverage a cluster-based framework for better understanding, predicting
and potentially controlling intricate flow behaviour. As a model system, we concentrate
on two-dimensional turbulent Rayleigh–Bénard convection (Ahlers, Grossmann & Lohse
2009; Lohse & Xia 2010; Shishkina 2021; Lohse & Shishkina 2024), consisting of a fluid
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layer heated from below and cooled from above, where intermittent flow reversals are
readily observed (Sugiyama et al. 2010; Chandra & Verma 2013). Starting with a time-
resolved snapshot sequence of a trajectory in a high-dimensional phase space spanned
by appropriate coherent flow fields (given by e.g. POD modes), the thus reduced-order
phase space is discretized, and the resulting trajectory is converted into a Markov matrix
describing the transition probabilities between various phase-space elements over one
time step. This Markov matrix is subsequently interpreted as a directed, weighted graph
(Chartrand & Zhang 2013) consisting of all occupied phase-space elements, encoding
the dynamics of the data sequence probabilistically. Different from a K -means clustering
algorithm used in previous cluster-based models (Kaiser et al. 2014; Fernex et al. 2021;
Hou et al. 2024), we reorganize the original network into larger communities, defined
as groups of nodes with strong intraconnectivity and weak interconnectivity, to isolate
persistent motion from rare outlier events (Newman 2006; Leicht & Newman 2008;
Schmid et al. 2018). This clustering method has proven itself effective in classifying
communities, and makes use of the information contained in the edges, i.e. the links
between nodes. An explicit network model of the flow reversals is obtained, which
effectively categorizes and predicts the intermittent reversal events. Each of the procedural
steps will be further explained in detail.

The organization of the paper is as follows. § 2 introduces the flow configuration,
including the direct numerical simulations of thermal convection, together with the
control and response parameters. § 3 introduces details of the complex-network model
and presents results. Conclusions are offered in § 4.

2. Flow configuration
Direct numerical simulations (DNS) for incompressible Oberbeck–Boussinesq flow are
performed (Verzicco & Orlandi 1996), which have been widely used to study thermal
convection (Yang et al. 2016, 2020; Blass et al. 2020). The non-dimensionalized governing
equations, including the incompressibility condition, are given by

∂t ui + uj ∂j ui = −∂i p +
√

Pr

Ra
∂ j∂ j ui + T δi z, (2.1)

∂t T + ui ∂i T = 1√
Ra Pr

∂ j∂ j T, (2.2)

∂i ui = 0, (2.3)

where u, T and p are the dimensionless velocity, temperature and pressure. The
dimensionless control parameters include the Rayleigh number Ra = αgH3�/(νκ), the
Prandtl number Pr = ν/κ , and the aspect ratio of the container Γ , where α, ν and κ denote
the thermal expansion coefficient, the kinematic viscosity and the thermal diffusivity
of the fluid, respectively. The parameter g denotes the gravitational acceleration, and Δ

stands for the temperature difference between the bottom and top boundaries. The time,
lengths and temperature are rendered dimensionless by the free-fall time t f = √

H/(αg�),
the free-fall velocity U = √

αg�H , the height H of the container, and the temperature
difference Δ, respectively. The simulations are conducted in a two-dimensional square
box with no-slip and impermeable boundary conditions for all walls. The governing
equations in a Cartesian geometry were solved by a second-order finite-difference scheme
in space and by a fractional-step third-order Runge–Kutta scheme combined with the
Crank–Nicolson scheme for the implicit terms in time (Verzicco & Orlandi 1996).
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Ra Pr ttotal Grid

106 4.3 10 000 72 × 72
1 × 108 (model) 4.3 10 000 288 × 288
1 × 108 (test) 4.3 10 000 288 × 288
2 × 108 4.3 10 000 288 × 288
107 3 10 000 144 × 144
107 4.3 10 000 144 × 144
107 10 10 000 144 × 144

Table 1. Simulation parameters and grid information. The columns from left to right indicate the Rayleigh
number Ra , the Prandtl number Pr , the total simulation time ttotal in free-fall time units, and the grid
information.

Reversals can be detected by the volume-averaged angular momentum about the centre of
the box L , which is defined as

L(t) = 〈−(z − H/2) u(x, t) + (x − H/2) v(x, t)〉V , (2.4)

where u, v are the horizontal and vertical velocities, respectively. Statistics were collected
after a sufficiently long start-up to ensure that the flow had reached a quasi-statistical
stationary state. Here, we restrict ourselves to the study of flow reversals in a two-
dimensional square geometry (Γ = 1) and span the parameter ranges 106 ≤ Ra ≤ 2 ×
108, 3 ≤ Pr ≤ 10. The numerical details of the simulations are listed in table 1. We
choose Ra = 108 and Pr = 4.3 as the default case, unless otherwise specified. Typical
flow structures with a domain-size LSC are shown in figure 1(a) from one simulation but
at different time instants. The flow reversal is indicated by the arrow directions.

3. Complex-network modelling and results

3.1. Dimensionality reduction by phase-space embedding
The first step in our approach is to project the original dataset onto a lower-dimensional
space, which is an optional process but significantly reduces the overall computational
costs. We choose the POD modes (Holmes 2012; Lumey 2012) as a convenient starting
point. The output frequency of the temperature and velocity fields is linked to one free-fall
time unit. This choice ensures that we have sufficient data points to capture the transient
reversal process. Selecting a time step that is too large would result in a loss of information
regarding the transition, and could compromise the quality of the clustering analysis. By
downsampling and projecting the original flow fields (consisting of temperature T and
velocity u, v fields collected into a composite data matrix; see figure 1b) onto the retained
POD modes, we obtain a time series for the expansion coefficients.

Figure 1(c) shows the magnitude of POD modes, in descending order and numbered by
k. The first mode (k = 0) is the steady mode representing the mean field, and the following
two modes, M1 and M2, are the dominant modes contributing to the flow reversal.
Figure 1(d) shows the time series of L , M1 and M2. Surprisingly, the reconstructed
angular momentum L ′, based on M1 and M2 only, can well reproduce the original L ,
indicating that it suffices to consider only the first two POD modes, beyond the mean
flow mode. More details on other POD modes are described in Appendix A. From the
temporal evolution of L , one can clearly detect the random and intermittent occurrence
of reversals of the LSC orientation. Such reversal events have been found to obey a
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Figure 1. Sketch of the clustering procedure. (a) Temperature fields from the original data; two snapshots show
different LSC orientations. (b) Data collection and reorganization into a matrix, including the state variables
T , u and v. (c) The normalized magnitude of POD modes in descending order k. Here, M1 and M2 represent
the first two dominant modes after the steady mode at k = 0. (d) The time series of the value of L and the first
two POD modes M1 and M2. The dashed line in the plot of L represents the reconstructed L ′ from M1 and
M2. (e) The reconstructed velocity magnitude field based on M1 and M2; the velocity direction is shown by
streamlines.

Poisson process, i.e. successive reversal events are independent of each other (see Xi &
Xia 2007).

Figure 1(e) shows the reconstructed flow field based on M1 and M2, where M1 stands for
the single-roll structure with the changing of sign representing the flow reversal, and M2
corresponds to the three-roll flow structure. The two-dimensional phase space of M1 and
M2 is displayed in figure 2(a). We observe two distinct regions representing stable LSCs
with different directions, and the centre region capturing the transitions between the two
stable LSCs. We also checked that higher-order phase-space modes describe noisy signals
and do not contribute additional information beyond the two retained modes. A video of
the temporal evolution process of the POD phase space can be found in the supplementary
material (available at https://doi.org/10.1017/jfm.2025.371).

3.2. Constructing the Markov matrix
Following the phase-space trajectory in the lower-dimensional representation of the flow
reversal, we proceed by discretizing the phase space to estimate transition probabilities.
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Figure 2. (a) Phase space spanned by the two dominant POD coefficients M1 and M2, each point representing
one instant in time. The cyan lines show the direction of the motion. (b) An illustration of the discretized
network of the phase space from (a). (c) The final complex network based on (3.3) with N = 30. The circles
represent nodes, with the size indicating the density. The arrows represent the edges.

A straightforward and efficient discretization uses rectangular boxes (more generally
hypercubes for phase spaces of any dimension) and a counting measure. More formally, we
denote the set of box elements from our discretization by {B1, . . . , BN }, where N denotes
the number of boxes, and write the indicator function for Bi as

IBi (x) =
{

1, if x ∈ Bi ,

0, otherwise.
(3.1)

We further introduce a suitable density measure m(Bi ) for each box Bi , which we take as
the number of instances (phase-space points) that it contains, and a continuous operator
P that describes the transition probabilities between phase-space elements. A Galerkin
projection of P onto a subspace spanned by the indicator function is expressed by∫

IBjP IBi dm = m
(

Bi ∩F−1 (
Bj

))
. (3.2)

The resulting transition probability matrix P can be defined by its elements according to

Pi j = m
(
Bi ∩F−1 (

Bj
))

m (Bi )
, i, j = 1, . . . , N , (3.3)

where F−1 denotes the temporal backstep operator, i.e. we evaluate its argument at the
previous time step, which is identical to the original data interval for a time-discrete
formulation. The numerator in (3.3) represents the number of transitions into box Bi
from box B j over a single time step, while the denominator denotes the total number of
states located within the box Bi . The ratio approximates the Markov transition probability
between boxes B j and Bi . The complete matrix P furnishes an approximation of the
Markov transition probability matrix for all boxes in our phase-space discretization. Our
particular discretization is referred to as the Ulam–Galerkin method (Ulam 1960; Li
1976; Kaiser et al. 2014). Mathematically, this matrix P constitutes a finite-dimensional
approximation of the Frobenius–Perron operator – the adjoint of the Koopman operator
(Lasota & Mackey 2013; Kaiser et al. 2014). The above approximation of the Frobenius–
Perron operator can be thought of as the analogue of the DMD matrix for approximating
the Koopman operator.
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We use a discretization with 24 boxes in each direction, which yields 257 cells in
total; see the illustration in figure 2(b). The result of the discretized phase space is
shown in figure 2(c): the circles represent nodes in the network, with the size indicating
local measure density, and the arrows represent the edges indicating the cell-to-cell
transitions. The network reveals two stable regions characterized by larger nodes. Before
proceeding with our analysis, it is important to note that the resolution of the phase-
space discretization remains an adjustable parameter in our study. A low-resolution
discretization leads to too few communities and may lose pertinent information about
the transition regions. A high-resolution discretization, on the other hand, identifies too
many independent communities and noisy signals, since the data points that fall inside
the control volumes are far too sparse. A more detailed discussion of balancing these two
extreme cases is included in the Appendix B. For our case, we choose a proper resolution
of the phase-space trajectory that yields a suitable number of communities.

3.3. Community clustering
To regroup the network into coherent clusters, we define a community as a
collection of nodes that exhibits strong intraconnectivity (within the community) but
weak interconnectivity (to other communities). Several algorithms are available for
detecting graph communities within large networks, many of which use a measure of
interconnectivity referred to as modularity (Newman 2006; Leicht & Newman 2008;
Schmid et al. 2018) and defined as

Q = 1
N

∑
i, j

[
Pi j − kin

i kout
j

N

]
δci ,cj (3.4)

where kin,out
i represents the in-degree (the number of edges that point into the node) or

out-degree (the number of edges that point out from the node) of the i th node, and ci
denotes the i th community. The Kronecker symbol is represented by δi, j . Based on this
definition, we seek a partition of the graph into communities ci such that Q attains a
maximum value. To this end, we employ a modularity-based approximation algorithm
(Leicht & Newman 2008), which incrementally improves the modularity Q by exploiting
the spectral properties of the graph; it is computationally efficient, and produces good and
robust results in practice (Danon et al. 2005; Leicht & Newman 2008).

Starting with a simplified configuration with only two communities, we define si to be
+1 when i is in the first community, and −1 if it is in the second community. Then δci ,cj

can be represented by 1/2(si sj + 1), and (3.4) can be rewritten as

Q = 1
2m

∑
i j

[
Ai j − kin

i kout
j

m

]
(si sj + 1) = 1

4m
sT (B + BT )s, (3.5)

where s is the vector form of si , and B is the so-called modularity matrix, whose entries
are defined as

Bi j = Ai j − kin
i kout

j

m
. (3.6)

The goal is then to find the vector s that maximizes Q for a given B. In the algorithm,
the eigenvector corresponding to the largest positive eigenvalue of the symmetric matrix
B + BT is calculated, after which communities are assigned based on the signs of the
elements of this eigenvector. The reasoning behind this procedural step is the goal to
align s maximally parallel to the leading eigenvector of B + BT (Leicht & Newman 2008).
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Figure 3. (a) The phase space of M1 and M2, with colours representing different communities, identified
based on (3.4). The symbols mark the centroids of each community, and the snapshots show the averaged
velocity magnitudes field in the communities. (b) The time series of L , with the colours representing different
communities. (c) Fill pattern of the transition probability matrix after applying the clustering algorithm,
displaying six distinct communities. (d) Separated PDF of M1 for each community. (e) The PDF of M ′

1
for composite symmetric modes. The dashed lines represent Gaussian distributions and the extreme value
distribution (Wang et al. 2018).

Scaling to more than two communities, we follow a simple course: we first divide the
network into two communities, then subdivide those communities, and so on, until we
reach a point where further divisions no longer increase Q. A more detailed description of
the clustering process can be found in Newman (2006) and Leicht & Newman (2008).

By applying community clustering on the POD-reduced data of flow reversals, we
obtained six distinct communities, as depicted in figure 3(a), along with the centroid-
averaged flow field for each community. These communities include (i) two stable
communities (S1, S2) where the LSC dominates and the flow state is stable, (ii) two
precursor communities (P1, P2) where the LSC is weaker but nonetheless sustained, and
(iii) two transition communities (T1, T2) where the LSC breaks down and the flow-state
switches from one direction to the opposite. The precursor community is named based on
the fact that the trajectory must pass through P1 or P2 in a reversal event. Consequently,
the transition from P1 (P2) to T1 (T2) carries information that signals the initiation of a
reversal. In our following predictions, we also use this precursor information as the start of
a reversal. Our method explicitly accounts for the network’s topology and is particularly
suited to handle directionality in the patterns of edges between nodes, which the K -means
algorithm neglects. To further illustrate this difference, we provide a comparison of results
from a K -means clustering method and from our modularity-based method in Appendix C.

Figure 3(b) shows the time series of L , with different colours representing different
communities. By retaining the identities of the original snapshots within each community,
we reorganize the original transition probability matrix P into a block diagonal form.
The dense blocks on the diagonal describe motion within each community, while the
sparse off-diagonal blocks represent transitions between communities. The fill pattern
of the 257 × 257 transition matrix, shown in figure 3(c), highlights the six diagonal
blocks representing the distinct communities. The fill pattern represents the presence or
absence of edges between nodes in a graph, and helps us to visualize the connectivity of
the graph. A non-zero entry (black points in figure 3c) at position (i, j) indicates an edge
between nodes i and j , while a zero indicates no link. The dashed boxes represent the
identified communities based on (3.4). The on-diagonal points indicate that the state stays
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in the same node, the near-diagonal points within each box show a strong connectivity
among different nodes in the same community, and the sparse points outside boxes
indicate connections between different communities, including precursor and transition
states. These precursor structures could be targeted for effective control efforts to prevent
reversals, thereby maintaining the system in a single direction of LSC.

We further analyse the probability distribution of M1 for each community in figure 3(d).
Stable communities exhibit a steeper curve and shorter tail, while transition communities
show a much broader distribution. Combining the symmetric communities, we plot the
probability density function (PDF) in figure 3(e), which shows that the stable communities
follow a Gaussian distribution, whereas the precursor communities contribute to the
long tail of the extreme value distribution. This behaviour can be well described by the
generalized extreme-value distribution function (Lucarini et al. 2016; Wang et al. 2018)

PDF(M ′
1) = 1

β
(1 + χ M ′

1)
−(1/χ+1) e−(1+χ M ′

1)
−1/χ

, (3.7)

where M ′
1 = (M1 − μ)/β, the variable χ denotes the shape parameter, set to χ = 0.1,

and μ(χ) and β(χ) are both functions of χ (for details, see Lucarini et al. 2016;
Wang et al. 2018). This distribution aligns with the previous observations of the reversal
statistics (Wang et al. 2018), and the classification successfully delineates the precursor
and transition states from the stable states – another demonstration of the effectiveness of
the cluster model.

3.4. Prediction based on the Markov matrix
Given that the Markov matrix describes the probabilities of transition between various
phase-space elements over one time step, it can be used to predict flow reversals by
calculating the transition probability for subsequent time steps as follows:

at+1,i =
{

1, if at P is max at i,

0, otherwise.
(3.8)

Here, a is the state vector with unity at the current state, and zeros at all other states, and
the index ranges from i = 1 to i = 257, which covers the total number of possible states
(nodes). The next state is determined by the transition route with the highest probability
among all possible paths, given an initial state with x0 = [0, 0, . . . , 1, 0, . . . , 0], where
the location of the coefficient 1 represents the location of the initial state. We compute the
next state using the Markov matrix to obtain the probability vector [P1, P2, . . . , PN ]. This
vector represents the probability of the state location at the next step. We then update the
state by selecting the location with the highest probability in the vector, e.g. Pi , and then
reset the state as x1 = [0, 0, . . . , 1, 0, . . . , 0], where 1 is located at i . This updated state is
then used for subsequent calculations.

Using this approach, the state traverses the phase space. We first build the cluster model
(Markov matrix) using a test dataset with 10 000 snapshots, then apply this model to a new
dataset with another 10 000 snapshots. If we rely solely on the above method, then the state
will eventually converge to the stable communities (which are always characterized by the
highest probabilities). This results in the model’s failure to capture rare reversal states. To
overcome this limitation, we introduce a simple correction to the state before the reversal
starts, denoted as tcorr . The correction scheme adjusts the predicted state from the stable
community to the actual state near the transition community in phase space at tcorr . After
this correction, the state evolves again following the Markov matrix (as described in (3.8)),
until it once more reaches the next reversal. We define ttran as the time when the actual
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Figure 4. Test of the predictability of the cluster model. (a) The grey line shows the time series of M1 for the
test dataset, and the black line shows the prediction based on the Markov matrix and (3.8). The blue symbols
represent the locations when a correction is added. (b) The accuracy of prediction as a function of the shift
time τ .

state is in a precursor community and is moving to a transition community at the next
step. To assess the effect of the corrective time tcorr relative to ttran , we introduce the shift
time τ = ttran − tcorr . A value τ = 0 implies that the correction is applied right when the
state switches to the transition community at the next step. The prediction accuracy (or,
more specifically, the fraction of successful predictions; Farazmand & Sapsis 2017; Vela-
Martín & Avila 2024) is defined as Nm/Nt , where Nm denotes the number of correctly
matched reversal events between the actual reversal of mode M1 and the predicted reversal,
which is determined by the change in sign of M1; the denominator Nt represents the total
number of predicted reversals.

The prediction results, shown in figure 4(a), demonstrate that the cluster model
accurately captures the reversals even for the new (unseen) data. Further analysis
reveals that the prediction accuracy peaks at approximately 92 % when using ttran for
corrections – and starts to decrease if the correction is applied earlier than ttran , as
shown in figure 4(b). High prediction accuracy is achieved primarily when the system
is near a transition point (τ → 0). This is due to strong fluctuations in the L(t) evolution
curve. Occasionally, L exhibits a drop without leading to a subsequent transition, which
complicates the identification of real reversals. As a result, the prediction accuracy tends
to diminish when attempting to predict upstream of a transition. Nonetheless, we found
that ttran is a good indicator and provides useful insight into how far in advance of a
transition an accurate prediction of a reversal process is possible. We also compared the
prediction of reversals from our model and from a simple threshold-based approach that
uses an arbitrary value of |L| (see Appendix D). The results demonstrate that the identified
community structure provides a basis for a meaningful prediction of likely reversals, which
can potentially be used for effective control strategies for the reversal processes (Zhang
et al. 2020; Zhao et al. 2022; Guo et al. 2023).

3.5. Extension to different Ra and Pr values
Finally, we extend our analysis to different values of Ra and Pr . The identified
communities are shown in figure 5. From the cluster pattern, one can also gain insight
into the dependence of flow reversals on Ra and Pr , in combination with the flow
strength shown in figure 6. At low Ra, the flow reversal occurs periodically, and the cluster
becomes well mixed without distinct branches; see figure 5(a). As Ra increases, the two
stable regions increasingly separate, making transitions between the two different stable
communities more difficult, as shown in figure 5(b). This separation continues until the
Rayleigh number Ra exceeds a critical value (e.g. Ra > 2 × 108 at Pr = 4.3), at which
point the LSC is sufficiently strong (see the increasing flow strength as Ra increases in
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Figure 5. The two-dimensional phase space for different values of Ra and Pr , with the colours representing
the communities identified based on (3.4), and the corresponding time series of the dominant mode M1.
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Figure 6. Snapshots of the temperature and flow strength fields for different Ra and Pr values.

figure 6) and flow reversals cease to occur. At both low and high Prandtl numbers Pr , the
two stable communities in the cluster pattern are not well separated, as shown in figures
5(c,d). This situation corresponds to a weaker LSC (see the flow strength in figure 6 at
Pr = 10), which is due to chaotic plume emission that impedes the establishment of a
stable LSC (Li et al. 2021). Consequently, flow reversals disappear at higher Ra due to
a strong LSC, which suppresses the reversal, while they also diminish at low and high
Prandtl numbers owing to a weak LSC.

Note that the mode M1 is always the first dominant mode, while M2 is selected based
on the cluster structures for different Ra and Pr , and the order may change due to the
chaotic nature of the underlying flow; see more details in Appendix A. In previous work
by Castillo-Castellanos et al. (2019), the cluster pattern was also explored for different Ra.
While our cluster patterns differ from theirs due to a different selection of POD modes, the
observed and reported tendency of cluster evolution with varying Ra shows similarities:
for low Ra (∼ 106), the cluster shrinks and is better mixed without a distinct branch,
since the reversal becomes increasingly periodic, while for high Ra (> 2 × 108), only one
branch emerges as the reversal event disappears.
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4. Conclusions
In conclusion, we have presented a purely data-driven cluster-based approach utilizing
set-theoretic tools and cluster analysis to examine reversal events in turbulent thermal
convection. This method effectively represents the temporal evolution of the primary
flow dynamics, including cluster identification and probability distributions for the system
behaviour. The network-based model clearly identifies three types of key communities:
the stable communities, where the large-scale circulation (LSC) maintains a consistent
orientation; the transition communities, where the LSC is changing orientation, and the
precursor community, where the LSC is stable but near transition, which is crucial for
early prediction of reversal events. The cluster model is also capable of predicting flow
reversals, using the cluster community information and the Markov matrix. We quantify
the dependence of the prediction accuracy for the reversal events as a function of τ : for
predictions later in the transition state, the results are very encouraging and accurate,
whereas for predictions from the earlier stable state, we obtain results based on the ergodic
probability. Additionally, the model’s cluster pattern offers insight into the mechanism of
flow reversal within the (Ra, Pr) parameter space. Specifically, reversals are suppressed at
large Rayleigh numbers due to the presence of a strong LSC (represented by M1), reflected
in the separation of stable communities in the cluster pattern. At high and low Pr and low
Ra, on the other hand, the cluster pattern shows a mixing of states without distinct and
well-separated communities due to chaotic plume emissions, and hence a weaker LSC.

It is important to note that we use only two POD modes for the cluster analysis since
they appear sufficient to capture the reversal event and angular momentum dynamics.
Nevertheless, we emphasize that this cluster-based modelling framework can readily be
applied to high-dimensional systems, as demonstrated in recent work (Giorgini, Souza &
Schmid 2024); the cluster dynamics and reversal study in higher-dimensional systems
deserves further exploration in a future effort.

Finally, this purely data-driven approach can be extended to other flow systems
that switch between co-existing states or between persistent dynamics and rare events;
examples, among many others, include bursts in zonal flows (von Hardenberg et al. 2015),
near-wall turbulence (Jiménez & Moin 1991; Jiménez 2023), buoyancy-driven phase-
change flows (Yang et al. 2023; Du, Calzavarini & Sun 2024), and pipe flows (Avila et al.
2023). Furthermore, potential applications in control-oriented extensions (Wang, Zhou &
Sun 2020; Yang et al. 2020; Zhang et al. 2020; Zhao et al. 2022, 2024) could broaden its
utility across various complex dynamical phenomena.

Supplementary movie. Supplementary movie is available at https://doi.org/10.1017/jfm.2025.371.
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Appendix A. Proper orthogonal decomposition details
For high-dimensional data such as turbulent flow fields, data compression with lossless
POD can reduce the computational cost of clustering by decomposing the data field X into
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Figure 7. (a–e) The reconstructed velocity field, based on each of the first five POD modes for Ra = 108,

Pr = 4.3, with the colours representing the magnitude of the flow velocity, and the streamlines representing
the direction of the flow. (f ) The time series of the value of each POD mode.

a set of POD modes according to

X (n, t) =
∞∑

k=1

ak(t) φk(n), (A1)

where φk(n) is a deterministic spatial function, and ak(t) is the corresponding temporal
coefficient.

First, we reorganize the multidimensional data (T, ux , uz)i j in each snapshot into a
corresponding one-dimensional real vector. At this stage we also downsample in space
to further reduce the computational load (Yang et al. 2022). The time series can then
be represented by an ordered sequence X = xn, n = 1, . . . , N , where N represents
the number of snapshots. We next decompose X using a singular value decomposition
according to X = UΣV∗, where U contains the spatial structures φk(n), Σ contains the
magnitudes of each mode, and V∗ contains the temporal coefficients ak(t).

For example, the reconstructed flow structures based on each of the first five POD modes
for Ra = 108, Pr = 4.3 are shown in figure 7. Each of them shows a characteristic flow
pattern, related to the LSC. In figure 8, we display the two-dimensional phase spaces
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Figure 9. (a) Fill pattern of the transition probability matrix after the clustering algorithm with box number
15 in both directions, consisting of 112 cells in total, and displaying two communities. (b) The corresponding
phase space of M1 and M2, with the colours representing different clusters. (c) Fill pattern of the transition
probability matrix after the clustering algorithm with box number 40 in both directions, consisting of 601 cells
in total, and displaying ten communities. (d) The corresponding phase space of M1 and M2, with the colours
representing different clusters.

of different combinations of POD modes; from this figure, we conclude that only the
(M1, M2) phase space captures both stable states as well as distinct transition states.
The dominant modes are similar to those reported in Podvin & Sergent (2015), albeit
in different order – a feature attributable to a different Ra or the chaotic nature of the
underlying flow.

Appendix B. The discretization resolution effect on the cluster modelling
The discretization of phase space is marked by crucial adjustable parameters in our
analysis. It must be sufficiently fine to accurately approximate the phase-space trajectory,
and at the same time sufficiently coarse to contain enough trajectory points for a
precise representation of the transition probabilities. To demonstrate the impact of the
discretization box size, we compare results using 15 boxes in both directions (low
resolution), and 40 boxes in both directions (high resolution). As shown in figure 9,
a low-resolution discretization (figures 9a,b) leads to the clusters being divided into
two communities, losing detailed information about the precursor and transition regions.
Conversely, a high-resolution discretization (figures 9c,d) identifies more independent
communities, providing detailed information about the transition regions.

Although higher resolutions may lead to a more discerning subdivision of stable,
transition and precursor communities, the overall flow structures within these sub-
communities remain consistent. If one can reliably identify the main flow structures and
associate the sub-communities with stable, transition or precursor states, then the full
model would still be effective. For clarity and conciseness, we have chosen an intermediate
resolution of 25 boxes in this work; this resolution allows us to distinguish the stable,
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Figure 10. The results of clustering of the (M1, M2) phase space using (a,b) the K -means algorithm with
different random initializations of the centroids, and (c) our method.

precursor and transition regions, without introducing redundant information from too
many clusters.

Appendix C. Comparison with the K -means clustering method
The K -means clustering method is an unsupervised machine learning algorithm, which is
widely used to group unlabelled datasets into different clusters (Brunton & Kutz 2022).
It has also been applied in previous studies of fluid flows (Kaiser et al. 2014; Castillo-
Castellanos et al. 2019; Fernex et al. 2021; Hou et al. 2024). In this appendix, we include
a comparison of our method to K -means clustering for the phase space of our reversal
dynamics, shown in figure 10.

The results confirm the sensitivity of the K -means algorithm to the random initialization
of the centroids (see figures 10a,b), combined with a convergence towards a local
minimum. Even in the case when the K -means algorithm produces acceptable and
symmetric results (figure 10b), an obvious mixing of stable and transition communities
persists. This shortcoming emerges since the K -means algorithm takes into account only
the spatial distribution of data points, ignoring directional information in the network’s
connectivity pattern.

Appendix D. Comparison with a simple threshold-based correction scheme for
predicting reversal
In this appendix, we compare the prediction of reversals from our model to predictions
from a simple threshold-based approach that uses an arbitrary value of |L|. For the
threshold-based method, we predict flow reversals based on the condition (|L(t)| −
Lc)(|L(t + 1)| − Lc) < 0, where Lc denotes a threshold for the reversal, combined with
the sign of the gradient of L(t). The results of the comparison are presented in figure 11.
We observe that the accuracy of the latter method is limited by the presence of natural
fluctuations in the |L| curve. These fluctuations often lead to false predictions or missed
transitions, especially in cases where |L| exhibits declines that do not correspond to actual
reversals. In contrast, our model uses cluster information to effectively filter out most of
these fluctuations, enabling it to produce more robust and systematic predictions without
the need for additional constraints.

Hence a key advantage of our approach lies in its ability to handle fluctuations without
requiring special constraints, which in turn yields a robust and effective framework for
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Figure 11. (a) The prediction of reversals based on our cluster-based method. The blue points represent the
predicted reversal locations. (b) The prediction of the reversal based on the simple threshold-based method.
The blue points represent the predicted reversal locations. The dashed lines show the value of the threshold,
which we adjusted to a value similar to that in our model.

reversal prediction. Despite this advantage, it remains challenging to achieve accurate
predictions in the earlier states due to the chaotic nature of the system. We acknowledge
this limitation, and plan to investigate further improvements in this direction.
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