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Abstract

Consider two independent Goldstein–Kac telegraph processes X1(t) and X2(t) on the
real line R. The processesXk(t), k = 1, 2, describe stochastic motions at finite constant
velocities c1 > 0 and c2 > 0 that start at the initial time instant t = 0 from the origin
of R and are controlled by two independent homogeneous Poisson processes of rates
λ1 > 0 and λ2 > 0, respectively. We obtain a closed-form expression for the probability
distribution function of the Euclidean distance ρ(t) = |X1(t)−X2(t)|, t > 0, between
these processes at an arbitrary time instant t > 0. Some numerical results are also
presented.
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1. Introduction

The classical telegraph processX(t) describes the stochastic motion of a particle that moves
on the real line R at some constant finite speed c and alternates between two possible directions
of motion (forward and backward) at Poisson-distributed random instants of intensity λ > 0.
This random walk was first introduced in the works of Goldstein [10] and Kac [12] (of which the
latter is a reprinting of an earlier 1956 article). The most remarkable fact is that the transition
density of X(t) is the fundamental solution to the hyperbolic telegraph equation (which is one
of the classical equations of mathematical physics) and, under increasing c and λ, it transforms
into the transition density of the standard Brownian motion on R. Thus, the telegraph process
can be treated as a finite-velocity counterpart of the one-dimensional Brownian motion. The
telegraph process X(t) can also be treated in a more general context of random evolutions
(see [20]).

Over several decades the Goldstein–Kac telegraph process and its numerous generalizations
have become the subject of extensive research and a great deal of relevant works have been
published. The properties of the solution space of the Goldstein–Kac telegraph equation were
studied in [2]. The process of one-dimensional random motion at finite speed governed by a
Poisson process with a time-dependent parameter was considered in [13]. The relationships
between the Goldstein–Kac model and physical processes, including some emerging effects
of relativity theory, were examined in [1], [4], and [5]. Formulae for the distributions of
the first exit time from a given interval and of the maximum displacement of the telegraph
process were obtained in [8], [18], [19], and [20, Section 0.5]. The behavior of the telegraph
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process with absorbing and reflecting barriers was examined in [9] and [22]. A one-dimensional
stochastic motion with an arbitrary number of velocities and of governing Poisson processes
was examined in [15]. The telegraph processes with random velocities were studied in [24].
The behavior of telegraph-type evolutions in inhomogeneous environments were considered
in [23]. Probabilistic methods of solving Cauchy problems for the telegraph equation were
developed in [11], [12], [14], and [25]. A generalization of the Goldstein–Kac model for
the case of a damped telegraph process with logistic stationary distributions was given in [7].
A random motion with velocities alternating at Erlang-distributed random times was studied
in [6]. A detailed moment analysis of the telegraph process was carried out in [16]. Explicit
formulae for the occupation time distributions of the telegraph process were recently obtained
in [3].

In this paper we examine the Euclidean distance between two independent telegraph pro-
cesses represented by two particles moving randomly at finite speed on the real line R and
whose evolutions are driven by two independent homogeneous Poisson processes. Such a
problem is motivated by its great importance in describing various kinds of interactions between
the particles arising in physics, chemistry, biology, financial markets, and other fields. For
example, in physics and chemistry the particles are atoms or molecules of the substance and
their interaction can provoke a physical or chemical reaction. In biology the particles represent
biological objects, such as cells, bacteria, animals, etc., and their ‘interaction’can mean creating
a new cell (or, contrarily, killing the cell), launching an infection mechanism, or founding a new
animal population, respectively. In financial markets the moving particles can be interpreted as
oscillating exchange rates or stock prices and their ‘interaction’ can mean gaining or ruining.

LetX1(t) andX2(t) be two telegraph processes representing the positions of these particles
on R at an arbitrary time instant t > 0. In describing the phenomena of interaction the Euclidean
distance between these processes,

ρ(t) = |X1(t)−X2(t)|, t > 0, (1.1)

is of a special importance. It is quite natural to consider that the particles do not ‘feel’ each
other if ρ(t) is large. In other words, the forces acting between the particles are negligible if
the distance ρ(t) is sufficiently large. However, as soon as the distance between the particles
becomes less than some given r > 0, the particles can start interacting with some positive
probability. This means that the occurrence of the random event {ρ(t) < r} is the necessary
(but, maybe, not sufficient) condition for launching the process of interaction at time instant
t > 0. Therefore, the distribution P{ρ(t) < r} plays a crucial role in analyzing such processes
and is thus the main focus of this research.

The paper is organized as follows. In Section 2 we recall some basic properties of the
telegraph processX(t) that we will heavily rely on. In Section 3 we obtain a series representation
of the probability of being in an arbitrary subinterval of the support of X(t) at time t > 0 and
derive a closed-form expression for the probability distribution function of X(t), which to the
best of the author’s knowledge, have not been obtained in the literature. These results are given
in terms of Gauss hypergeometric functions, as well as in terms of Gegenbauer polynomials with
noninteger negative upper indices. In Section 4 we formulate and prove our principal result,
yielding the closed-form expression for the probability distribution function of the Euclidean
distance (1.1) between two independent telegraph processes at an arbitrary time instant t > 0.
The derivation is based on determining the probability that the particle is located at time t in an
r-neighborhood of the second particle. Some approximate numerical results are presented in
Section 5. In Appendix A we prove two auxiliary lemmas related to some indefinite integrals
of the modified Bessel functions and conditional probabilities that are used in our analysis.
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2. Some basic properties of the telegraph process

The telegraph stochastic process describes a particle that starts at the initial time instant
t = 0 from the origin x = 0 of the real line R and moves with some finite constant speed c.
The motion has an initial positive or negative direction with equal probability 1

2 , and is driven
by a homogeneous Poisson process N(t) of rate λ > 0 as follows. Upon a Poisson event,
the particle instantaneously takes on the opposite direction and keeps moving with the same
speed c until the next Poisson event occurrence, at which time it takes on the opposite direction
again independently of its previous motion, and so on. This random motion was first studied
by Goldstein [10] and Kac [12], and was thereafter called the telegraph process.

Let X(t) denote the particle’s position on R at an arbitrary time instant t > 0. Since the
speed c is finite, then, at instant t > 0, the distribution P{X(t) ∈ dx} is concentrated in the
finite interval [−ct, ct] which is the support of the distribution of X(t). The density f (x, t),
x ∈ R, t ≥ 0, of the distribution P{X(t) ∈ dx} has the structure

f (x, t) = f s(x, t)+ f ac(x, t),

where f s(x, t) and f ac(x, t) are the densities of the singular (with respect to the Lebesgue
measure on the line) and the absolutely continuous components of the distribution of X(t),
respectively.

The singular component of the distribution is obviously concentrated at the two terminal
points ±ct of the interval [−ct, ct] and corresponds to the case when no one Poisson event
occurs until the moment t ; hence, the particle does not change its initial direction. Therefore,
the probability of being at the terminal points ±ct at an arbitrary instant t > 0 is

P{X(t) = ct} = P{X(t) = −ct} = 1
2 e−λt .

The absolutely continuous component of the distribution of X(t) is concentrated in the open
interval (−ct, ct) and corresponds to the case when at least one Poisson event occurs by the
moment t ; hence, the particle changes its initial direction. The probability of this event is

P{X(t) ∈ (−ct, ct)} = 1 − e−λt . (2.1)

The principal result by Goldstein [10] and Kac [12] states that the density f = f (x, t),
x ∈ [−ct, ct], t > 0, of the distribution of X(t) satisfies the hyperbolic partial differential
equation

∂2f

∂t2
+ 2λ

∂f

∂t
− c2 ∂

2f

∂x2 = 0 (2.2)

(which is referred to as the telegraph or damped wave equation), and can be found by solving
(2.2) with initial conditions

f (x, t)|t=0 = δ(x),
∂f (x, t)

∂t

∣∣∣∣
t=0

= 0,

where δ(x) is the Dirac delta function. This means that the transition density f (x, t) of the
processX(t) is the fundamental solution (i.e. Green’s function) to the telegraph equation (2.2).
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The explicit form of the density f (x, t) is given by the formula (see, for instance,
[17, Section 2.5]) or [20, Section 0.4]

f (x, t) = e−λt

2
[δ(ct − x)+ δ(ct + x)]

+ λe−λt

2c

[
I0

(
λ

c

√
c2t2 − x2

)

+ ct√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)]
�(ct − |x|), (2.3)

where I0(z) and I1(z) are the modified Bessel functions of the zero and first orders, respectively
(that is, the Bessel functions with imaginary argument), given by

I0(z) =
∞∑
k=0

1

(k!)2
(
z

2

)2k

, I1(z) =
∞∑
k=0

1

k! (k + 1)!
(
z

2

)2k+1

,

and �(x) is the Heaviside step function

�(x) =
{

1 if x > 0,

0 if x ≤ 0.

The first term in (2.3), f s(x, t) = 1
2 e−λt [δ(ct − x)+ δ(ct + x)], is the singular part of the

density of the distribution of X(t) concentrated at the two terminal points ±ct of the interval
[−ct, ct], while the second term in (2.3),

f ac(x, t) = λe−λt

2c

[
I0

(
λ

c

√
c2t2 − x2

)

+ ct√
c2t2 − x2

I1

(
λ

c

√
c2t2 − x2

)]
�(ct − |x|), (2.4)

represents the density of the absolutely continuous part of the distribution ofX(t) concentrated
in the open interval (−ct, ct).

Other important properties of the telegraph random processes can be found in the recently
published book [17].

3. Distribution function of the telegraph process

Consider a telegraph process X(t) describing the stochastic motion of a particle that starts
at the initial time instant t = 0 from the origin x = 0 of the real line R and moves with some
finite constant speed c > 0 whose evolution is driven by a homogeneous Poisson process N(t)
of rate λ > 0, as described above.

As noted above, at an arbitrary time instant t > 0 the process X(t) is concentrated in the
interval [−ct, ct]. Let a, b ∈ R, a < b, be arbitrary points of R such that the intervals (a, b)
and (−ct, ct) have a nonempty intersection, that is, (a, b) ∩ (−ct, ct) 	= ∅. We are interested
in the probability P{X(t) ∈ (a, b) ∩ (−ct, ct)} that the process X(t) at time instant t > 0
is located in the subinterval (a, b) ∩ (−ct, ct) ⊆ (−ct, ct). This result is presented in the
following proposition.
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Proposition 3.1. For an arbitrary time instant t > 0 and an arbitrary open interval (a, b) ⊂ R,
a, b ∈ R, a < b, such that (a, b) ∩ (−ct, ct) 	= ∅,

P{X(t) ∈ (a, b) ∩ (−ct, ct)} = λe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)

×
[
βF

(
−k, 1

2
; 3

2
; β

2

c2t2

)
− αF

(
−k, 1

2
; 3

2
; α2

c2t2

)]
, (3.1)

where
α = max{−ct, a}, β = min{ct, b} (3.2)

and

F(ξ, η; ζ ; z) = 2F1(ξ, η; ζ ; z) =
∞∑
k=0

(ξ)k(η)k

(ζ )k

zk

k!
is the Gauss hypergeometric function.

Proof. By integrating density (2.4) and applying formulae (A.4) and (A.5) given in Ap-
pendix A, we obtain

P{X(t) ∈ (a, b) ∩ (−ct, ct)}

= λe−λt

2c

[∫ β

α

I0

(
λ

c

√
c2t2 − x2

)
dx + ct

∫ β

α

I1(λ
√
c2t2 − x2/c)√
c2t2 − x2

dx

]

= λe−λt

2c

[
x

∞∑
k=0

1

(k!)2
(
λt

2

)2k

F

(
−k, 1

2
; 3

2
; x2

c2t2

)

+ x

∞∑
k=0

1

k! (k + 1)!
(
λt

2

)2k+1

F

(
−k, 1

2
; 3

2
; x2

c2t2

)]∣∣∣∣
x=β

x=α

= λe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)

×
[
βF

(
−k, 1

2
; 3

2
; β

2

c2t2

)
− αF

(
−k, 1

2
; 3

2
; α2

c2t2

)]
,

proving (3.1).

Remark 3.1. Let x ∈ (−ct, ct) be an arbitrary interior point of the open interval (−ct, ct),
and let r > 0 be an arbitrary positive number such that (x − r, x + r) ⊆ (−ct, ct). Then,
according to (3.1), we obtain the following formula for the probability of being in the subinterval
(x − r, x + r) ⊆ (−ct, ct) of radius r centered at the point x:

P{X(t) ∈ (x − r, x + r)}

= λe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)

×
[
(x + r)F

(
−k, 1

2
; 3

2
; (x + r)2

c2t2

)
− (x − r)F

(
−k, 1

2
; 3

2
; (x − r)2

c2t2

)]
(3.3)

for − ct ≤ x − r < x + r ≤ ct.
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By setting x = 0 in (3.3) we obtain

P{X(t) ∈ (−r, r)} = λre−λt

c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)
F

(
−k, 1

2
; 3

2
; r2

c2t2

)
, (3.4)

yielding the probability of being in the symmetric (with respect to the starting point x = 0)
subinterval (−r, r) ⊆ (−ct, ct).

For further analysis, we need

F

(
−k, 1

2
; 3

2
; 1

)
= (2k)!!
(2k + 1)!! = 2kk!

(2k + 1)!! , k ≥ 0, (3.5)

which is the particular case of the more general relation (see [21, Formula 163 p. 465])

F

(
−k, 1

2
; 3

2
; z

)
= − 2kk!

(2k + 1)!!√z C
−k−1/2
2k+1 (

√
z), k ≥ 0, (3.6)

where the Cνn(z) are the Gegenbauer polynomials with negative noninteger upper indices.
Setting r = ct in (3.4) and applying (3.5), we obtain

P{X(t) ∈ (−ct, ct)} = λte−λt
∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)
F

(
−k, 1

2
; 3

2
; 1

)

= λte−λt
∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)
2kk!

(2k + 1)!!

= e−λt
∞∑
k=0

(λt)2k+1

2kk! (2k + 1)!!
(

1 + λt

2k + 2

)

= e−λt
∞∑
k=0

(λt)2k+1

(2k + 1)!
(

1 + λt

2k + 2

)

= e−λt
[ ∞∑
k=0

(λt)2k+1

(2k + 1)! +
∞∑
k=0

(λt)2k+2

(2k + 2)!
]

= e−λt [sinh(λt)+ cosh(λt)− 1]
= e−λt (eλt − 1)

= 1 − e−λt ,

which is (2.1).

From Proposition 3.1 we can extract the explicit form of the probability distribution function
of X(t).

Proposition 3.2. The probability distribution function of the telegraph process X(t) has the
form
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P{X(t) < x}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ∈ (−∞,−ct],
1

2
+ λxe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)

×F
(

−k, 1

2
; 3

2
; x2

c2t2

)
, x ∈ (−ct, ct],

1, x ∈ (ct,+∞).

(3.7)

Proof. According to Proposition 3.1, for arbitrary x ∈ (−ct, ct), we have

P{X(t) ∈ (−ct, x)}

= λe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)

×
[
xF

(
−k, 1

2
; 3

2
; x2

c2t2

)
+ ctF

(
−k, 1

2
; 3

2
; 1

)]

= λxe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)
F

(
−k, 1

2
; 3

2
; x2

c2t2

)

+ e−λt
∞∑
k=0

1

(k!)2
(
λt

2

)2k+1(
1 + λt

2k + 2

)
F

(
−k, 1

2
; 3

2
; 1

)
.

We separately consider the second term of this expression. Applying (3.5) we obtain

e−λt
∞∑
k=0

1

(k!)2
(
λt

2

)2k+1(
1 + λt

2k + 2

)
F

(
−k, 1

2
; 3

2
; 1

)

= e−λt
∞∑
k=0

2k

k! (2k + 1)!!
(
λt

2

)2k+1(
1 + λt

2k + 2

)

= e−λt
∞∑
k=0

22k

2kk! (2k + 1)!!
(
λt

2

)2k+1(
1 + λt

2k + 2

)

= e−λt

2

∞∑
k=0

(λt)2k+1

(2k + 1)!
(

1 + λt

2k + 2

)

= e−λt

2

[ ∞∑
k=0

(λt)2k+1

(2k + 1)! +
∞∑
k=0

(λt)2k+2

(2k + 2)!
]

= e−λt

2
[sinh(λt)+ cosh(λt)− 1]

= 1

2
− e−λt

2
.
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Therefore, for arbitrary x ∈ (−ct, ct], we obtain

P{X(t) < x}
= P{X(t) = −ct} + P{X(t) ∈ (−ct, x)}

= e−λt

2
+ λxe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)
F

(
−k, 1

2
; 3

2
; x2

c2t2

)
+ 1

2
− e−λt

2

= 1

2
+ λxe−λt

2c

∞∑
k=0

1

(k!)2
(
λt

2

)2k(
1 + λt

2k + 2

)
F

(
−k, 1

2
; 3

2
; x2

c2t2

)
.

This completes the proof.

The shape of probability distribution function (3.7) at time instant t = 2 in the interval
(−2, 2] (for parameters c = 1 and λ = 1.5) is plotted in Figure 1.

Remark 3.2. In view of (3.6), formulae (3.1) and (3.7) can also be represented in terms of
Gegenbauer polynomials, i.e.

P{X(t) ∈ (a, b) ∩ (−ct, ct)}

= e−λt

2

∞∑
k=0

(λt)2k+1

(2k + 1)!
(

1 + λt

2k + 2

)

×
[

sgn(α)C−k−1/2
2k+1

( |α|
ct

)
− sgn(β)C−k−1/2

2k+1

( |β|
ct

)]
,

where α and β are given in (3.2), and

P{X(t) < x}

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, x ∈ (−∞,−ct],
1

2
− e−λt

2
sgn(x)

∞∑
k=0

(λt)2k+1

(2k + 1)!
(

1 + λt

2k + 2

)

×C−k−1/2
2k+1

( |x|
ct

)
, x ∈ (−ct, ct],

1, x ∈ (ct,+∞).

Remark 3.3. We see that distribution function (3.7) has discontinuities at the points ±ct
determined by the singularities concentrated at these two points. It is easy to check that
distribution function (3.7) produces the expected equalities:

lim
ε→0+0

P{X(t) < −ct + ε} = e−λt

2
, P{X(t) < ct} = 1 − e−λt

2
.

This means that probability distribution function (3.7) is left continuous and has jumps at the
terminal points ±ct of the same amplitude e−λt /2.
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Figure 1: The shape of the probability distribution function (3.7) at time instant t = 2 (for c = 1 and
λ = 1.5).

4. Euclidean distance between two telegraph processes

Consider two independent telegraph processes X1(t) and X2(t) that describe the stochastic
motions of two particles (as described in Section 2) with finite speeds c1 > 0 and c2 > 0,
driven by two independent Poisson processes N1(t) and N2(t) of rates λ1 > 0 and λ2 > 0,
respectively. We suppose that at the initial time instant t = 0 both the processesX1(t) andX2(t)

simultaneously start from the origin x = 0 of the real line R. For the sake of definiteness, we
also suppose that c1 ≥ c2 (otherwise, we could merely change the numeration of the processes).

We are interested in the Euclidean distance

ρ(t) = |X1(t)−X2(t)|, t > 0, (4.1)

between the above processes at time instant t > 0.
It is clear that 0 ≤ ρ(t) ≤ (c1 + c2)t , that is, the interval [0, (c1 + c2)t] is the support of

the distribution P{ρ(t) < r} of process (4.1). The distribution of ρ(t), t > 0, consists of two
components. The singular part of the distribution is concentrated at two points, (c1 − c2)t and
(c1 + c2)t , of the support. For arbitrary t > 0, the process ρ(t) is located at the point (c1 − c2)t

if and only if both the particles take the same initial direction (the probability of this event is 1
2 ),

and no one Poisson event occurs till time instant t (the probability of this event is e−(λ1+λ2)t ).
Similarly, ρ(t) is located at the point (c1 + c2)t if and only if the particles take different initial
directions (the probability of this event is 1

2 ), and no one Poisson event occurs till time instant t
(the probability of this event is e−(λ1+λ2)t ). Thus, we have

P{ρ(t) = (c1 − c2)t} = 1
2 e−(λ1+λ2)t , P{ρ(t) = (c1 + c2)t} = 1

2 e−(λ1+λ2)t , t > 0.

Therefore, the singular part, ϕs(r, t), of the density ϕ(r, t) of the distribution P{ρ(t) < r} is
the generalized function

ϕs(r, t) = 1
2 e−(λ1+λ2)t [δ(r − (c1 − c2)t)+ δ(r − (c1 + c2)t)], r ∈ R, t > 0,

where δ(x) is the Dirac delta function.
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The remaining part of the distribution is concentrated in the area

Mt = (0, (c1 − c2)t) ∪ ((c1 − c2)t, (c1 + c2)t), t > 0

(note that if c1 = c2 = c then Mt transforms into the interval (0, 2ct)). This is the support of
the absolutely continuous part of the distribution P{ρ(t) < r}, corresponding to the case when
at least one Poisson event occurs before time instant t > 0.

Our goal is to obtain an explicit formula for the probability distribution function

�(r, t) = P{ρ(t) < r}, r ∈ R, t > 0, (4.2)

of the Euclidean distance ρ(t). The form of this distribution function is somewhat different
for the cases c1 = c2 and c1 > c2 due to the fact that if c1 = c2 then the singularity point
(c1 − c2)t = 0 and this is the terminal point, while in the case c1 > c2 this point is an interior
point of the support. This is why in the following theorem we derive the probability distribution
function in the more difficult case c1 > c2. Similar results concerning the more simple case
c1 = c2 will be given separately at the end of this section.

Theorem 4.1. Under the condition c1 > c2, probability distribution function (4.2) has the form

�(r, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if r ∈ (−∞, 0],
G(r, t) if r ∈ (0, (c1 − c2)t],
Q(r, t) if r ∈ ((c1 − c2)t, (c1 + c2)t],
1 if r ∈ ((c1 + c2)t,+∞),

r ∈ R, t > 0, c1 > c2, (4.3)

where the functions G(r, t) and Q(r, t) are given by

G(r, t) = λ1e−(λ1+λ2)t

2c1

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

×
[
(c2t + r)F

(
−k, 1

2
; 3

2
; (c2t + r)2

c2
1t

2

)

− (c2t − r)F

(
−k, 1

2
; 3

2
; (c2t − r)2

c2
1t

2

)]

+ λ1λ2e−(λ1+λ2)t

4c1c2

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)
Ik(r, t), (4.4)

Q(r, t) = 1
2 [(1 − e−λ1t )e−λ2t + (1 − e−λ2t )e−λ1t + e−(λ1+λ2)t ]

− λ1(c2t − r)e−(λ1+λ2)t

2c1

×
∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)
F

(
−k, 1

2
; 3

2
; (c2t − r)2

c2
1t

2

)

− λ2(c1t − r)e−(λ1+λ2)t

2c2
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×
∞∑
k=0

1

(k!)2
(
λ2t

2

)2k(
1 + λ2t

2k + 2

)
F

(
−k, 1

2
; 3

2
; (c1t − r)2

c2
2t

2

)

+ λ1λ2e−(λ1+λ2)t

4c1c2

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)
Ik(r, t), (4.5)

with the integral factor

Ik(r, t) =
∫ c2t

−c2t

[
β(x, r)F

(
−k, 1

2
; 3

2
; (β(x, r))

2

c2
1t

2

)

− α(x, r)F

(
−k, 1

2
; 3

2
; (α(x, r))

2

c2
1t

2

)]

×
[
I0

(
λ2

c2

√
c2

2t
2 − x2

)
+ c2t√

c2
2t

2 − x2
I1

(
λ2

c2

√
c2

2t
2 − x2

)]
dx, (4.6)

where the variables α(x, r) and β(x, r) are defined by

α(x, r) = max{−c1t, x − r}, β(x, r) = min{c1t, x + r}, x ∈ (−c2t, c2t), r ∈ Mt.

Proof. For probability distribution function (4.2), we have

�(r, t) = e−(λ1+λ2)tP{ρ(t) < r | N1(t) = 0, N2(t) = 0}
+ (1 − e−λ1t )e−λ2tP{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}
+ e−λ1t (1 − e−λ2t )P{ρ(t) < r | N1(t) = 0, N2(t) ≥ 1}
+ (1 − e−λ1t )(1 − e−λ2t )P{ρ(t) < r | N1(t) ≥ 1, N2(t) ≥ 1}. (4.7)

Let us evaluate the conditional probabilities on the right-hand side of (4.7) separately. Obvi-
ously, the first conditional probability is

P{ρ(t) < r | N1(t) = 0, N2(t) = 0} =

⎧⎪⎨
⎪⎩

0 if r ∈ (−∞, (c1 − c2)t],
1
2 if r ∈ ((c1 − c2)t, (c1 + c2)t],
1 if r ∈ ((c1 + c2)t,+∞).

(4.8)

Evaluation of P{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}. We note that the following equalities
for random events hold:

{N1(t) ≥ 1} = {X1(t) ∈ (−c1t, c1t)}, {N2(t) = 0} = {X2(t) = −c2t} + {X2(t) = c2t}.
Then, according to (A.8) given in Appendix A we have

P{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}
= P{ρ(t) < r | {X1(t) ∈ (−c1t, c1t)} ∩ ({X2(t) = −c2t} + {X2(t) = c2t})}
= 1

2 [P{ρ(t) < r | {X1(t) ∈ (−c1t, c1t)} ∩ {X2(t) = −c2t}}
+ P{ρ(t) < r | {X1(t) ∈ (−c1t, c1t)} ∩ {X2(t) = c2t}}]
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= 1

2

[
P{{X1(t) ∈ (X2(t)− r,X2(t)+ r)} ∩ {X1(t) ∈ (−c1t, c1t)} ∩ {X2(t) = −c2t}}

P{X1(t) ∈ (−c1t, c1t)}P{X2(t) = −c2t}
+ P{{X1(t) ∈ (X2(t)− r,X2(t)+ r)} ∩ {X1(t) ∈ (−c1t, c1t)} ∩ {X2(t) = c2t}}

P{X1(t) ∈ (−c1t, c1t)}P{X2(t) = c2t}
]

= 1

2(1 − e−λ1t )
[P{{X1(t) ∈ (−c2t − r,−c2t + r)} ∩ {X1(t) ∈ (−c1t, c1t)}}
+ P{{X1(t) ∈ (c2t − r, c2t + r)} ∩ {X1(t) ∈ (−c1t, c1t)}}]

= 1

2(1 − e−λ1t )
[P{X1(t) ∈ (α,−c2t + r)} + P{X1(t) ∈ (c2t − r, β)}],

where
α = max{−c1t,−c2t − r}, β = min{c1t, c2t + r}.

Applying (3.1) we obtain

P{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}
= 1

2(1 − e−λ1t )

×
{
λ1e−λ1t

2c1

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

×
[
βF

(
−k, 1

2
; 3

2
; β

2

c2
1t

2

)
− (c2t − r)F

(
−k, 1

2
; 3

2
; (c2t − r)2

c2
1t

2

)]

+ λ1e−λ1t

2c1

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

×
[
(−c2t + r)F

(
−k, 1

2
; 3

2
; (−c2t + r)2

c2
1t

2

)

− αF

(
−k, 1

2
; 3

2
; α2

c2
1t

2

)]}
. (4.9)

It is easy to check that

β =
{
c2t + r if r ∈ (0, (c1 − c2)t],
c1t if r ∈ ((c1 − c2)t, (c1 + c2)t],

α =
{

−c2t − r if r ∈ (0, (c1 − c2)t],
−c1t if r ∈ ((c1 − c2)t, (c1 + c2)t].

From these formulae we see that α = −β independently of r . Therefore, (4.9) becomes

P{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}
= λ1e−λ1t

2c1(1 − e−λ1t )

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

×
[
βF

(
−k, 1

2
; 3

2
; β

2

c2
1t

2

)

− (c2t − r)F

(
−k, 1

2
; 3

2
; (c2t − r)2

c2
1t

2

)]
. (4.10)
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If r ∈ (0, (c1 − c2)t] then β = c2t + r and, therefore, (4.10) becomes

P{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}
= λ1e−λ1t

2c1(1 − e−λ1t )

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

×
[
(c2t + r)F

(
−k, 1

2
; 3

2
; (c2t + r)2

c2
1t

2

)

− (c2t − r)F

(
−k, 1

2
; 3

2
; (c2t − r)2

c2
1t

2

)]
if r ∈ (0, (c1 − c2)t]. (4.11)

If r ∈ ((c1 − c2)t, (c1 + c2)t] then β = c1t and formula (4.10) becomes

P{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}
= 1

1 − e−λ1t

{
λ1e−λ1t

2c1

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

×
[
c1tF

(
−k, 1

2
; 3

2
; 1

)

− (c2t − r)F

(
−k, 1

2
; 3

2
; (c2t − r)2

c2
1t

2

)]}
if r ∈ ((c1 − c2)t, (c1 + c2)t]. (4.12)

Formula (4.12) can be simplified. In view of (3.5), we can easily show that

λ1e−λ1t

2c1

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)
c1tF

(
−k, 1

2
; 3

2
; 1

)
= 1 − e−λ1t

2
,

and, therefore, (4.12) takes the form

P{ρ(t) < r | N1(t) ≥ 1, N2(t) = 0}

= 1

2
− λ1(c2t − r)e−λ1t

2c1(1 − e−λ1t )

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

× F

(
−k, 1

2
; 3

2
; (c2t − r)2

c2
1t

2

)
if r ∈ ((c1 − c2)t, (c1 + c2)t]. (4.13)

Evaluation of P{ρ(t) < r | N1(t) = 0, N2(t) ≥ 1}. It is obvious that the following relation
holds:

P{ρ(t) < r | N1(t) = 0, N2(t) ≥ 1} = 0 if r ∈ (0, (c1 − c2)t]. (4.14)

Now let r ∈ ((c1 − c2)t , (c1 + c2)t]. Since

{N1(t) = 0} = {X1(t) = −c1t} + {X1(t) = c1t},
{N2(t) ≥ 1} = {X2(t) ∈ (−c2t, c2t)},
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then, similarly as above, we can show that

P{ρ(t) < r | N1(t) = 0, N2(t) ≥ 1}
= 1

2(1 − e−λ2t )
[P{X2(t) ∈ (−c2t,−c1t + r)} + P{X2(t) ∈ (c1t − r, c2t)}].

Applying (3.1) we obtain

P{ρ(t) < r | N1(t) = 0, N2(t) ≥ 1}

= 1

2(1 − e−λ2t )

{
λ2e−λ2t

2c2

∞∑
k=0

1

(k!)2
(
λ2t

2

)2k(
1 + λ2t

2k + 2

)

×
[
(−c1t + r)F

(
−k, 1

2
; 3

2
; (−c1t + r)2

c2
2t

2

)

+ c2tF

(
−k, 1

2
; 3

2
; 1

)]

+ λ2e−λ2t

2c2

∞∑
k=0

1

(k!)2
(
λ2t

2

)2k(
1 + λ2t

2k + 2

)

×
[
c2tF

(
−k, 1

2
; 3

2
; 1

)
− (c1t − r)F

(
−k, 1

2
; 3

2
; (c1t − r)2

c2
2t

2

)]}

= 1

1 − e−λ2t

{
λ2e−λ2t

2c2

∞∑
k=0

1

(k!)2
(
λ2t

2

)2k(
1 + λ2t

2k + 2

)

×
[
c2tF

(
−k, 1

2
; 3

2
; 1

)

− (c1t − r)F

(
−k, 1

2
; 3

2
; (c1t − r)2

c2
2t

2

)]}
.

Taking into account the fact that

λ2e−λ2t

2c2

∞∑
k=0

1

(k!)2
(
λ2t

2

)2k(
1 + λ2t

2k + 2

)
c2tF

(
−k, 1

2
; 3

2
; 1

)
= 1 − e−λ2t

2

we finally obtain

P{ρ(t) < r | N1(t) = 0, N2(t) ≥ 1}

= 1

2
− λ2(c1t − r)e−λ2t

2c2(1 − e−λ2t )

∞∑
k=0

1

(k!)2
(
λ2t

2

)2k(
1 + λ2t

2k + 2

)

× F

(
−k, 1

2
; 3

2
; (c1t − r)2

c2
2t

2

)
if r ∈ ((c1 − c2)t, (c1 + c2)t]. (4.15)

Evaluation of P{ρ(t) < r | N1(t) ≥ 1, N2(t) ≥ 1}. Since

{N1(t) ≥ 1} = {X1(t) ∈ (−c1t, c1t)}, {N2(t) ≥ 1} = {X2(t) ∈ (−c2t, c2t)},
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then, for the fourth conditional probability on the right-hand side of (4.7), we have

P{ρ(t) < r | N1(t) ≥ 1, N2(t) ≥ 1}
= P{{ρ(t) < r} ∩ {X1(t) ∈ (−c1t, c1t)} ∩ {X2(t) ∈ (−c2t, c2t)}}

P{X1(t) ∈ (−c1t, c1t)}P{X2(t) ∈ (−c2t, c2t)}
= 1

(1 − e−λ1t )(1 − e−λ2t )

× P{{X1(t) ∈ (X2(t)− r,X2(t)+ r)} ∩ {X1(t) ∈ (−c1t, c1t)}
∩ {X2(t) ∈ (−c2t, c2t)}}

= 1

(1 − e−λ1t )(1 − e−λ2t )

× P{{X1(t) ∈ (max{X2(t)− r,−c1t},min{X2(t)+ r, c1t})}
∩ {X2(t) ∈ (−c2t, c2t)}}

= 1

(1 − e−λ1t )(1 − e−λ2t )

×
∫ c2t

−c2t

P{X1(t) ∈ (α(x, r), β(x, r)) | X2(t) = x}P{X2(t) ∈ dx},

where
α(x, r) = max{x − r,−c1t}, β(x, r) = min{x + r, c1t}.

In view of (3.1) and (2.4), we obtain

P{ρ(t) < r | N1(t) ≥ 1, N2(t) ≥ 1}
= 1

(1 − e−λ1t )(1 − e−λ2t )

×
∫ c2t

−c2t

{
λ1e−λ1t

2c1

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)

×
[
β(x, r)F

(
−k, 1

2
; 3

2
; (β(x, r))

2

c2
1t

2

)

− α(x, r)F

(
−k, 1

2
; 3

2
; (α(x, r))

2

c2
1t

2

)]}
f ac2 (x, t) dx

= λ1λ2e−(λ1+λ2)t

4c1c2(1 − e−λ1t )(1 − e−λ2t )

∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)
Ik(r, t), (4.16)

where the integral factor Ik(r, t) is defined by (4.6) and f ac2 (x, t) is the density of the absolutely
continuous part of the distribution of the telegraph process X2(t) given by (2.4).

Substituting (4.8), (4.11), (4.14), and (4.16) into (4.7) we obtain theG(r, t) term in distribu-
tion function (4.3) defined in the interval r ∈ (0, (c1 − c2)t] and given by (4.4). Similarly, by
substituting (4.8), (4.13), (4.15), and (4.16) into (4.7) we obtain theQ(r, t) term in distribution
function (4.3) defined in the interval r ∈ ((c1 − c2)t, (c1 + c2)t] and given by (4.5). This
completes the proof of the theorem.
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Remark 4.1. We can easily see that if r ∈ (0, (c1 −c2)t] then the variables α(x, r) and β(x, r)
take the values

α(x, r) = x − r, β(x, r) = x + r, for r ∈ (0, (c1 − c2)t],
independently of x ∈ (−c2t, c2t). In this case the integral factor Ik(r, t) can be rewritten in
a slightly more explicit form. In contrast, if r ∈ ((c1 − c2)t, (c1 + c2)t] then each of these
variables can take both possible values.

Remark 4.2. Taking into account that, for any x ∈ (−c2t, c2t),

α(x, 0) = β(x, 0) = x, α(x, (c1 + c2)t) = −c1t, β(x, (c1 + c2)t) = c1t,

α(x, (c1 − c2)t) = x − (c1 − c2)t, β(x, (c1 − c2)t) = x + (c1 − c2)t,

we can easily prove the following limiting relations:

lim
r→0+0

G(r, t) = 0, lim
r→(c1+c2)t−0

Q(r, t) = 1 − 1
2 e−(λ1+λ2)t ,

lim
r→(c1−c2)t+0

Q(r, t)− lim
r→(c1−c2)t−0

G(r, t) = 1
2 e−(λ1+λ2)t .

(4.17)

Formulae (4.17) show that probability distribution function (4.3) is left continuous with jumps
of the same amplitude e−(λ1+λ2)t /2 at the singularity points (c1 ± c2)t . This is in agreement
with the structure of the distribution of the process ρ(t) described above.

Remark 4.3. The crucial point to note when using probability distribution function (4.3) is
the possibility of computing the integral term Ik(r, t) given in (4.6). By means of tedious
computations and by applying formulae (A.6) and (A.7) given in Appendix A we can obtain
a series representation of integral Ik(r, t); however, it has an extremely complicated and
cumbersome form and is therefore omitted here. This is why for practical purposes it is
more convenient to use just the integral form of factor Ik(r, t), which is easily computable on a
personal computer (for more details, see Section 5 where we numerically evaluate the formulae
obtained in Theorem 4.1).

We end this section by presenting a result related to the more simple case of equal velocities.
Suppose that both the telegraph processesX1(t) andX2(t) have the same speed c1 = c2 = c. In
this case the support of distribution (4.2) is the closed interval [0, 2ct]. The singular component
of distribution has the density (as a generalized function)

ϕs(r, t) = e−(λ1+λ2)t

2
[δ(r)+ δ(r − 2ct)], r ∈ R, t > 0,

concentrated at the terminal points 0 and 2ct , while the open interval (0, 2ct) is the support
of the absolutely continuous part of distribution (4.2). The form of probability distribution
function (4.2) for the case of equal velocities is presented in the following theorem.

Theorem 4.2. Under the condition c1 = c2 = c, probability distribution function (4.2) has the
form

�(r, t) =

⎧⎪⎨
⎪⎩

0 if r ∈ (−∞, 0],
H(r, t) if r ∈ (0, 2ct],
1 if r ∈ (2ct,+∞),

r ∈ R, t > 0, (4.18)
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where the function H(r, t) is given by

H(r, t) = 1
2 [(1 − e−λ1t )e−λ2t + e−λ1t (1 − e−λ2t )+ e−(λ1+λ2)t ]
− e−(λ1+λ2)t

(
1 − r

ct

)

×
∞∑
k=0

1

(k!)2
[(
λ1t

2

)2k+1(
1 + λ1t

2k + 2

)
+

(
λ2t

2

)2k+1(
1 + λ2t

2k + 2

)]

× F

(
−k, 1

2
; 3

2
;
(

1 − r

ct

)2)

+ λ1λ2

4c2 e−(λ1+λ2)t
∞∑
k=0

1

(k!)2
(
λ1t

2

)2k(
1 + λ1t

2k + 2

)
Jk(r, t)

with the integral factor

Jk(r, t) =
∫ ct

−ct

[
β(x, r)F

(
−k, 1

2
; 3

2
; (β(x, r))

2

c2t2

)
− α(x, r)F

(
−k, 1

2
; 3

2
; (α(x, r))

2

c2t2

)]

×
[
I0

(
λ2

c

√
c2t2 − x2

)
+ ct√

c2t2 − x2
I1

(
λ2

c

√
c2t2 − x2

)]
dx, (4.19)

where the variables α(x, r) and β(x, r) are defined by

α(x, r) = max{−ct, x − r}, β(x, r) = min{ct, x + r}, x ∈ (−ct, ct), r ∈ (0, 2ct).

Proof. The proof is similar to that of Theorem 4.1 and is therefore omitted.

Remark 4.4. The results obtained in Theorems 4.1 and 4.2 may be useful for analysing the
distribution of the difference between two independent telegraph processes X1(t) and X2(t).
While the distribution of the difference (as well as of the sum) is given by a respective
convolution, the evaluation of such a convolution is a very difficult (and, maybe, impracticable)
problem owing to a fairly complicated form to the probability law of the telegraph process (see
(2.3) for its density or (3.7) for its distribution function). Let FD(r, t) = P{D(t) < r} denote
the probability distribution function of the difference D(t) = X1(t) − X2(t). The interval
[−(c1 + c2)t, (c1 + c2)t] is the support of the distribution of D(t) with the two singularity
points ±(c1 + c2)t in the case c1 	= c2 and the three singularity points 0,±2ct in the case of
equal velocities c1 = c2 = c.

Then the distribution function FD(r, t) of the difference D(t), and the distribution function
�(r, t) of the Euclidean distance ρ(t) between X1(t) and X2(t) are connected through the
functional relation

FD(r, t)− FD(−r, t)− P{D(t) = −r} = �(r, t), r ∈ R, t > 0.

Note that the term P{D(t) = −r} takes a nonzero value if and only if r is the singular point of
the distribution of process D(t). For regular r , this term vanishes.

5. Some numerical results

While probability distribution functions (4.3) and (4.18) have fairly complicated analytical
forms, they can, nevertheless, be approximately evaluated with good accuracy using a standard
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Table 1: Values of G(r, 3) on the subinterval r ∈ (0, 6].
r G(r, 3) r G(r, 3) r G(r, 3)

0.2 0.0271 2.2 0.2916 4.2 0.5269
0.4 0.0541 2.4 0.3168 4.4 0.5480
0.6 0.0811 2.6 0.3417 4.6 0.5686
0.8 0.1080 2.8 0.3663 4.8 0.5888
1.0 0.1348 3.0 0.3905 5.0 0.6083
1.2 0.1614 3.2 0.4143 5.2 0.6274
1.4 0.1879 3.4 0.4377 5.4 0.6459
1.6 0.2142 3.6 0.4607 5.6 0.6639
1.8 0.2402 3.8 0.4832 5.8 0.6813
2.0 0.2660 4.0 0.5053 6.0 0.6983

Table 2: Values of Q(r, 3) on the subinterval r ∈ (6, 12].
r Q(r, 3) r Q(r, 3) r Q(r, 3)

6.2 0.7146 8.2 0.8472 10.2 0.9294
6.4 0.7302 8.4 0.8576 10.4 0.9350
6.6 0.7455 8.6 0.8674 10.6 0.9405
6.8 0.7601 8.8 0.8768 10.8 0.9461
7.0 0.7741 9.0 0.8855 11.0 0.9510
7.2 0.7877 9.2 0.8945 11.2 0.9554
7.4 0.8006 9.4 0.9019 11.4 0.9589
7.6 0.8131 9.6 0.9093 11.6 0.9631
7.8 0.8250 9.8 0.9170 11.8 0.9673
8.0 0.8364 10.0 0.9233 12.0 0.9704

numerical package (such as MATHEMATICA® or MAPLE®) on a personal computer. As
noted in Remark 4.3, the crucial point is the evaluation of the integral factors Ik(r, t) given in
(4.6) (for c1 > c2) and Jk(r, t) given in (4.19) (for c1 = c2 = c).

To approximately evaluate the series of the functions given in (4.4) and (4.5), we do not need
to compute the integral term in (4.6) for all k ≥ 0. We note that each series contains the factor
1/(k!)2, providing very fast convergence. In fact, we can see that, if we take only five terms of
each series in the functionsG(r, t) andQ(r, t), their approximate values stabilize at the fourth
digit.

Let us set
λ1 = 2, λ2 = 1, c1 = 4, c2 = 2, t = 3 (5.1)

in our model. In this case, the support of the distribution is the interval [0, 18] with the two
singularity points r = 6 (the interior point of the support) and r = 18 (the terminal point). The
results of numerical analysis on probability distribution function (4.3) with parameters (5.1) for
G(r, 3) defined on the subinterval r ∈ (0, 6] andQ(r, 3) defined on the subinterval r ∈ (6, 12]
are respectively given in Tables 1 and 2.

Note that in evaluating these functions we take only seven terms in the series. Also, note
that, although Q(r, 3) is defined on the whole interval (6, 18], we consider it only over (6, 12]
because it has very small increments over (12, 18].

We now consider the behavior of the probability distribution function �(r, 3) in the neigh-
borhoods of singularity points. As noted above, for the parameters given in (5.1), �(r, 3) has
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two singularity points, namely, r = 6 and r = 18. At the first (interior) point r = 6, (4.4) and
(4.5) yield the values

G(6, 3) ≈ 0.698 298, lim
r→6+0

Q(r, 3) ≈ 0.698 360,

and, therefore, their difference is

lim
r→6+0

Q(r, 3)−G(6, 3) ≈ 0.698 360 − 0.698 298 = 0.000 062.

We see that this difference is equal to the value of the jump amplitude at this singularity point:
e−9/2 ≈ 0.000 062.

Similarly, at the second (terminal) singularity point r = 18, (4.5) yields the valueQ(18, 3) ≈
0.999 938 and, therefore, the difference is

1 −Q(18, 3) ≈ 1 − 0.999 938 = 0.000 062.

This is equal to the value of the jump amplitude at this singularity point: e−9/2 ≈ 0.000 062.
Note that in evaluating G(r, 3) and Q(r, 3) at the singularity points r = 6 and r = 18 we

take 15 terms in each series because we need more accuracy in this case.
Suppose that every time the particles close in the distance less than r = 0.6, they can begin

to interact with probability 0.3. The probability of interaction starting at time instant t = 3 is

P{ρ(3) < 0.6} · 0.3 = G(0.6, 3) · 0.3 = 0.0811 · 0.3 = 0.02433.

Here we have used the value of G(r, 3) for r = 0.6 given in Table 1.

Remark 5.1. The model considered in this paper can generate some other interesting problems.
The obtained results enable us to compute the probability of starting the interaction at an
arbitrary time instant t > 0. However, for practical needs, it is more important to evaluate the
probability of interaction starting before some fixed time point. Let T > 0 be an arbitrary time
instant, and let krT denote the random variable counting how many times during the time interval
(0, T ) the distance between the particles was less than some given r > 0. The distribution of
the nonnegative integer-valued random variable krT is of special importance because it would
enable us to evaluate the probability of interaction starting before time T .

Appendix A

In this appendix we give two auxiliary lemmas concerning some indefinite integrals of the
modified Bessel functions and a useful formula related to conditional probabilities.

Lemma A.1. For arbitrary q ≥ 0, p > 0 the following formulae hold:∫
xnI0(q

√
p2 − x2) dx

= xn+1

n+ 1

∞∑
k=0

1

(k!)2
(
pq

2

)2k

F

(
−k, n+ 1

2
; n+ 3

2
; x

2

p2

)
+ ψ1, (A.1)

∫
xn
I1(q

√
p2 − x2)√

p2 − x2
dx

= xn+1

p(n+ 1)

∞∑
k=0

1

k! (k + 1)!
(
pq

2

)2k+1

F

(
−k, n+ 1

2
; n+ 3

2
; x

2

p2

)
+ ψ2, (A.2)

for n ≥ 0 and |x| ≤ p, where ψ1 and ψ2 are arbitrary functions not depending on x.
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Proof. Let us check (A.1). First we show that the series on the right-hand side of (A.1)
converges uniformly with respect to x ∈ [−p, p]. To prove this, we need the following
uniform (in z) estimate:

∣∣∣∣F
(

−k, n+ 1

2
; n+ 3

2
; z

)∣∣∣∣ ≤ 2k, |z| ≤ 1, n ≥ 0, k ≥ 0. (A.3)

Using the well-known formulae for the Pochhammer symbol,

(−k)s = (−1)sk!
(k − s)! , k ≥ 0, 0 ≤ s ≤ k,

(a)s

(a + 1)s
= a

a + s
, a > 0, s ≥ 0,

we obtain (for |z| ≤ 1, n ≥ 0, and k ≥ 0)

∣∣∣∣F
(

−k, n+ 1

2
; n+ 3

2
; z

)∣∣∣∣ =
∣∣∣∣
k∑
s=0

(−k)s((n+ 1)/2)s
((n+ 1)/2 + 1)s

zs

s!
∣∣∣∣

=
∣∣∣∣
k∑
s=0

(−1)s
k!

s! (k − s)!
n+ 1

n+ 2s + 1
zs

∣∣∣∣
≤

k∑
s=0

k!
s! (k − s)!

= 2k,

proving (A.3). Now applying estimate (A.3), we obtain

∣∣∣∣
∞∑
k=0

1

(k!)2
(
pq

2

)2k

F

(
−k, n+ 1

2
; n+ 3

2
; x

2

p2

)∣∣∣∣ ≤
∞∑
k=0

1

(k!)2
(
pq

2

)2k

2k = I0(pq
√

2) < ∞,

proving the uniform convergence in x ∈ [−p, p] of the series in (A.1). From this fact, it follows
that one may separately differentiate each term of the series on the right-hand side of (A.1).
Thus, differentiating the expression on the right-hand side of (A.1) with respect to x we obtain

d

dx

[
xn+1

n+ 1

∞∑
k=0

1

(k!)2
(
pq

2

)2k

F

(
−k, n+ 1

2
; n+ 3

2
; x

2

p2

)]

= 1

n+ 1

∞∑
k=0

1

(k!)2
(
pq

2

)2k d

dx

[
xn+1F

(
−k, n+ 1

2
; n+ 3

2
; x

2

p2

)]

= 1

n+ 1

∞∑
k=0

1

(k!)2
(
pq

2

)2k d

dx

[ k∑
s=0

(−1)sk! (n+ 1)

s! (k − s)! (n+ 2s + 1)

xn+2s+1

p2s

]

= xn
∞∑
k=0

1

(k!)2
(
pq

2

)2k[ k∑
s=0

(−1)s
(
k

s

)(
x2

p2

)s]
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= xn
∞∑
k=0

1

(k!)2
(
pq

2

)2k(
1 − x2

p2

)k

= xn
∞∑
k=0

1

(k!)2
(
q

2

)2k

(p2 − x2)k

= xn
∞∑
k=0

1

(k!)2
(
q
√
p2 − x2

2

)2k

= xnI0(q

√
p2 − x2),

yielding the integrand on the left-hand side of (A.1). Formula (A.2) can be checked in the same
manner. This completes the proof.

By setting n = 0 in (A.1) and (A.2), we obtain∫
I0(q

√
p2 − x2) dx

= x

∞∑
k=0

1

(k!)2
(
pq

2

)2k

F

(
−k, 1

2
; 3

2
; x

2

p2

)
+ ψ1, |x| ≤ p, (A.4)

∫
I1(q

√
p2 − x2)√

p2 − x2
dx

= x

p

∞∑
k=0

1

k! (k + 1)!
(
pq

2

)2k+1

F

(
−k, 1

2
; 3

2
; x

2

p2

)
+ ψ2, |x| ≤ p. (A.5)

Applying Lemma A.1 we obtain, for arbitrary real a,∫
(a ± x)nI0(q

√
p2 − x2) dx

=
n∑

m=0

(±1)m
(
n

m

)
an−m x

m+1

m+ 1

∞∑
k=0

1

(k!)2
(
pq

2

)2k

F

(
−k, m+ 1

2
; m+ 3

2
; x

2

p2

)
+ ψ1,

(A.6)∫
(a ± x)n

I1(q
√
p2 − x2)√

p2 − x2
dx

= 1

p

n∑
m=0

(±1)m
(
n

m

)
an−m x

m+1

m+ 1

∞∑
k=0

1

k! (k + 1)!
(
pq

2

)2k+1

× F

(
−k, m+ 1

2
; m+ 3

2
; x

2

p2

)
+ ψ2,

for n ≥ 0 and |x| ≤ p, (A.7)

The next lemma yields a useful formula for the probabilities conditioned on pairwise
independent random events that has been used in the proof of Theorem 4.1.
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Lemma A.2. Let (�,F ,P) be a probability space, and letA,B,C,D ∈ F be random events
such that B is independent of C andD, C ∩D = ∅, P(C) = P(D) 	= 0, and P(B) 	= 0. Then

P(A | B(C +D)) = 1
2 [P(A | BC)+ P(A | BD)]. (A.8)

Proof. The proof straightforwardly follows by applying well-known formulae of elementary
probability theory connecting the conditional and joint probabilities of random events.
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