BULL. AUSTRAL. MATH. SOC. VOL. 9 (1973), 291-298.

A converse of Bernstein's inequality for locally compact groups

Walter R. Bloom

Let G be a Hausdorff locally compact abelian group, Γ its character group. We shall prove that, if S is a translationinvariant subspace of $L^{p}(G)$ $(p \in [1, \infty])$,

 $\omega(\alpha) = \sup \left\{ \left\| \tau_{\alpha} f - f \right\|_{p} : f \in S, \ \left\| f \right\|_{p} \leq 1 \right\}$

for each $a \in G$ and $\lim_{a \to 0} \omega(a) = 0$, then $\bigcup_{f \in S} \Sigma(f)$ is $f \in S$

relatively compact (where $\Sigma(f)$ denotes the spectrum of f). We also obtain a similar result when G is a Hausdorff compact (not necessarily abelian) group. These results can be considered as a converse of Bernstein's inequality for locally compact groups.

Throughout this paper we shall follow the notation of [1]. We require two technical lemmas.

LEMMA 1. Suppose we are given $\chi \in \Gamma$ and $k \in L^{1}(G)$ such that $\hat{k}(\chi) = 1$. Then for $\varepsilon > 0$, we can find $l \in L^{1}(G)$ such that $\hat{kl} = 1$ on a neighbourhood of χ and $\|l\|_{1} < 1 + \varepsilon$.

Proof. Choose $\delta \in (0, 1)$ satisfying

(1)
$$\delta(1-\delta)^{-1} < \varepsilon/2 .$$

Since $(\chi k)^{(0)} = 1$, [7], Chapter 5, 2.3 (5), p. 114, asserts the

Received 5 June 1973. Communicated by R.E. Edwards. The author would like to thank his supervisor, Professor Robert E. Edwards, for suggesting the problem.

existence of $\tau \in L^{1}(G)$ such that $\|\tau\|_{1} < 1 + \varepsilon/2$, $\hat{\tau} = 1$ on a neighbourhood of zero, and

$$\|(\overline{\chi}k)\star\tau-\tau\|_{1} < \delta .$$

Putting $\tau_{\chi} = \chi \tau$, (2) yields

(3)
$$||k*\tau_{\chi}-\tau_{\chi}||_{1} < \delta$$
,

and clearly, $\hat{\tau}_{\chi} = 1$ on a neighbourhood V_{χ} of χ and $\|\tau_{\chi}\|_{1} < 1 + \epsilon/2$.

As $\delta < 1$, it appears from (3) that the series

(4)
$$\tau_{\chi} + \sum_{n \ge 1} (-1)^n (k * \tau_{\chi} - \tau_{\chi})^{*n}$$

converges in $L^1(G)$ to l, say. For $\gamma \in V_{\chi}$, we have

$$\hat{k}(\gamma)\hat{l}(\gamma) = \hat{k}(\gamma)\left[1 + \sum_{n \ge 1} (-1)^n [\hat{k}(\gamma) - 1]^n\right]$$
$$= 1 .$$

A combination of (1), (3) and (4) gives us

$$\|\mathcal{I}\|_{1} \leq \|\tau_{\chi}\|_{1} + \sum_{n \geq 1} \delta^{n}$$
$$< 1 + \varepsilon/2 + \delta(1-\delta)^{-1}$$
$$< 1 + \varepsilon . //$$

LEMMA 2. Let $\delta \in (0, 1)$. Suppose that $\chi \in \Gamma$ and $a \in G$ satisfy

$$|\chi(a)-1| > 1 - \delta$$
.

Then we can find p, q in $L^{1}(G)$ such that $\hat{p} = 1$ on a neighbourhood of χ ,

$$p = \tau_a q - q$$

and

$$\|q\|_{1} < (1-\delta)^{-1}(1+\delta)$$

Proof. By [8], 2.6.1, we can find $k \in L^{1}(G)$ such that $\hat{k}(\chi) = 1$ and $||k||_{1} = 1$. Since

$$(\overline{\chi}(a)-1)^{-1}(\tau_a k-k)^{(\chi)} = 1$$
,

we can appeal to Lemma 1 to deduce the existence of $l \in L^{1}(G)$ such that $\|l\|_{1} < 1 + \delta$ and

(5)
$$(\overline{\chi}(a)-1)^{-1}(\tau_a k-k)^2 = 1$$

on a neighbourhood of χ . Now put

(6)
$$q = (\overline{\chi}(a)-1)^{-1}k \star l .$$

Then, if

 $p=\tau_{a}q-q,$

(5) shows that $\hat{p} = 1$ on a neighbourhood of χ , and from (6),

$$\|q\|_{1} \leq \|\overline{\chi}(a) - 1\|^{-1} \|k\|_{1} \|l\|_{1}$$
$$< (1 - \delta)^{-1} (1 + \delta) . //$$

We can now prove:

THEOREM 1. Suppose that S is a translation-invariant subspace of $L^{p}(G)$ ($p \in [1, \infty]$), that

(7)
$$\omega(a) = \sup\{\|\tau_a f - f\|_p : f \in S, \|f\|_p \le 1\}$$

for each $a \in G$, and that $\lim_{\omega \to 0} \omega(a) = 0$. Then $D = \bigcup_{\sigma \in S} \Sigma(f)$ is $f \in S$

relatively compact.

Proof. As ω is unchanged if we replace S by S⁻ in (7), we can assume that S is closed.

Suppose D is not relatively compact. Then, if V is any neighbour-hood of zero and $\delta > 0$ is given, we can find $a_V \in V$, $f_V \in S$ and $\chi_V \in \Sigma(f_V)$ such that

(8)
$$|\chi_{V}(a_{V})-1| > 1 - \delta$$

(for if $|\chi(a)-1| \leq 1-\delta$ for all $a \in V$ and all $\chi \in D$, we could appeal to (23.16) of [6] to deduce that D^- is compact, contrary to assumption). In the case $p = \infty$, it follows from (7), the assumption that lim $\omega(a) = 0$, and the main result of [2] that f_V is equal locally almost $a \to 0$ everywhere to a uniformly continuous function. Taking $\delta = 1/4$, and recalling (8), Lemma 2 implies the existence of an open neighbourhood W_V

of χ_V , and p_V , q_V in $L^1(G)$ such that $\hat{p}_V = 1$ on W_V ,

$$p_V = \tau_{a_V} q_V - q_V$$

and $||q_V||_1 < 2$.

Choose any $k_V\in L^1_{W_V}(G)$ such that $\hat{k}_V(\chi_V)$ = 1 . Using the definitions of p_V and q_V , we have

(9)
$$k_{V} \star f_{V} = p_{V} \star k_{V} \star f_{V}$$
$$= \left(\tau_{a_{V}} q_{V} - q_{V}\right) \star k_{V} \star f_{V}$$
$$= q_{V} \star \left(\tau_{a_{V}} k_{V} - k_{V}\right) \star f_{V}.$$

Since S is assumed to be a closed translation-invariant subspace of $L^p(G)$, the proof of [7], Chapter 3, 5.8, p. 78, can be used to show that (10) $h * f_V \in S$

for all $h \in L^{1}(G)$ (recall that when $p = \infty$, f_{V} is equal locally almost everywhere to a uniformly continuous function). Combining (7), (9) and (10),

$$(11) ||k_{v}*f_{v}||_{p} \leq ||q_{v}||_{1} ||\tau_{a_{v}}k_{v}*f_{v}-k_{v}*f_{v}||_{p} \\ \leq 2\omega(a_{v}) ||k_{v}*f_{v}||_{p} .$$

As $\chi_V \in \Sigma(f_V)$ and $\hat{k}_V(\chi_V) \neq 0$, we see that $k_V \star f_V \neq 0$ and so, by (11),

https://doi.org/10.1017/S0004972700043185 Published online by Cambridge University Press

A converse of Bernstein's inequality

(12)
$$\omega(a_V) \ge 1/2$$

Now consider the net (a_V) , where V ranges over the set of neighbourhoods of zero, partially ordered by

(13)
$$V \prec V'$$
 if and only if $V \supset V'$

It is seen that (13) entails that (a_V) converges to zero; but (12) holds for all V, contradicting the assumption that $\lim_{a \to 0} \omega(a) = 0$. Hence our assumption that D is not relatively compact was false. //

REMARK. It can be shown that for the spaces $L^{1}(G)$ and C(G), we do not require that $\lim_{\alpha \to 0} \omega(\alpha) = 0$ but only that there exists a compact set $\alpha \to 0$ F of strictly positive measure such that $\omega(\alpha) < \alpha < 1$ for all $\alpha \in F$.

COROLLARY 1. Let $M_b(G)$ denote the space of bounded Radon measures on G. Suppose that S is a translation-invariant subspace of $M_b(G)$, that

(14)
$$\omega(a) = \sup \{ \|\tau_{a} \mu - \mu\|_{M} : \mu \in S, \|\mu\|_{M} \leq 1 \}$$

for each $a \in G$, and that $\lim_{a \to 0} \omega(a) = 0$. Then $\bigcup_{\mu \in S} \sup_{\mu \in S} \mu$ is relatively

Proof. It follows from (14) and [3], Corollary 3, that any $\mu \in S$ is generated by an L^1 -function. Let

$$S' = \{f \in L^{\perp}(G) : f \text{ generates a measure in } S\}$$
.

Then S' is a translation-invariant subspace of $L^1(G)$ satisfying the conditions of Theorem 1, from which we deduce that $\bigcup \Sigma(f)$ is $f \in S'$ relatively compact. Since $\hat{f} = \hat{\mu}_f$, where μ_f is the measure generated by f, and any $\mu \in S$ is μ_f for some $f \in S'$, we can conclude (note that for $f \in L^1(G)$, we have $\Sigma(f) = \operatorname{supp} \hat{f}$) that $\bigcup \operatorname{supp} \hat{\mu}$ is relatively $\mu \in S$ We shall now consider the converse when G is a Hausdorff compact group (G is not assumed to be abelian). We follow the notation used in [5]. Given a finite-dimensional continuous irreducible unitary representation $U \in \hat{G}$, with representation space H_U , d(U) will denote the dimension of H_U , and I_U the identity endomorphism of H_U . The trace function on H_U will be denoted by Tr. We let $(E(G), \|\cdot\|)$ denote any of the spaces $L^P(G)$ ($p \in [1, \infty)$) or C(G), each taken with its usual norm. By L_q , we will mean the left translation operator.

THEOREM 2. Suppose that S is a left translation-invariant subspace of E(G), that

(15)
$$\omega(a) = \sup \{ \|L_{\sigma} f - f\| : f \in S, \|f\| \le 1 \}$$

for each $a \in G$, and that $\lim_{a \to 0} \omega(a) = 0$. Then $\bigcup_{\substack{i \in S \\ f \in S}} \sup_{f \in S} \hat{f}$

Proof. As ω is unchanged if we replace S by S in (15), we can assume that S is closed.

Consider the unit disc in S;

$$B = \{ f \in S : ||f|| \le 1 \}$$

It follows immediately from the Weil criterion ([4], 4.20.1), or when E(G) = C(G), from Ascoli's Theorem ([4], 0.4.11), that B is compact in E(G). We can now use the Riesz Theorem ([4], p. 65) to deduce that S is finite dimensional.

Let $\{f_1, f_2, \ldots, f_n\}$ be a basis for S. Since for every $f \in S$,

$$\operatorname{supp} \hat{f} \subseteq \bigcup_{\substack{j=1}}^n \operatorname{supp} \hat{f}_j$$
,

it will suffice to show that ${\rm supp} \hat{f}_j$ is finite for all $j \in \{1, 2, ..., n\}$.

However if this were false, there would exist $j \in \{1, 2, ..., n\}$ and an infinite sequence $\{U_i\}_{i=1}^{\infty}$ of distinct elements of \hat{G} such that $\hat{f}_j(U_i) \neq 0$ for every $i \in \{1, 2, ...\}$. Define $h_i \in C(G)$ by $h_i(x) = d\{U_i\}Tr[U_i(x)^*]$, where $U_i(x)^*$ denotes the adjoint of $U_i(x)$. Since S is assumed to be a closed left translation-invariant subspace of E(G), it is a left ideal (in E(G)); hence $h_i^* * f_j \in S$ for every $i \in \{1, 2, ...\}$. Also

(16)
$$(h_i * f_j)^{(U_k)} = \hat{h}_i (U_k) \hat{f}_j (U_k)$$
$$= \delta_{ik} \hat{f}_j (U_k) ,$$

where

$$\delta_{ik} = \begin{cases} I_{U_k} , & i = k , \\ 0 & , & i \neq k . \end{cases}$$

We see that $\{h_i * f_j\}_{i=1}^{\infty}$ is linearly independent in S; for suppose there exist $\alpha_i \in \mathbb{C}$ such that

$$\sum_{i=1}^{m} \alpha_i \left(h_i * f_j \right) = 0.$$

Then for all k,

$$\sum_{i=1}^{m} \alpha_i (h_i * f_j)^{\wedge} (U_k) = 0$$

and by (16),

$$\sum_{i=1}^{m} \alpha_i \delta_{ik} \hat{f}_j(U_k) = 0 ,$$

that is,

$$\alpha_k^I U_k^{\hat{f}} (U_k) = 0 .$$

Since $\hat{f}_j(U_k) \neq 0$, it follows that $\alpha_k = 0$ for all k. Hence $\{h_i \cdot f_j\}_{i=1}^{\infty}$ is linearly independent in S, contradicting the fact that S is finite dimensional.

Consequently $\mathrm{supp} \hat{f}_j$ is finite for all $j \in \{1, 2, \ldots, n\}$, and the theorem is proved. //

COROLLARY 2. Suppose that S is a left translation-invariant subspace of $L^{\infty}(G)$, that

(17)
$$\omega(a) = \sup\{\|L_{\alpha}f - f\|_{\infty} : f \in S, \|f\|_{\infty} \le 1\}$$

for each $a \in G$, and that $\lim_{a \to 0} \omega(a) = 0$. Then U suppf is finite. $a \to 0$ $f \in S$ Proof. It follows from (17) and the proof of the main result of [2] that every $f \in S$ is equal almost everywhere to a uniformly continuous function. The problem is then reducible to that covered by the case E(G) = C(G) of Theorem 2. //

References

- [1] Walter R. Bloom, "Bernstein's inequality for locally compact abelian groups", J. Austral. Math. Soc. (to appear).
- [2] D.A. Edwards, "On translates of L^{∞} -functions", J. London Math. Soc. 36 (1961), 431-432.
- [3] R.E. Edwards, "Translates of L^{∞} functions and of bounded measures", J. Austral. Math. Soc. 4 (1964), 403-409.
- [4] R.E. Edwards, Functional analysis: Theory and applications (Holt, Rinehart and Winston, New York, Chicago, San Francisco, Toronto, London, 1965).
- [5] R.E. Edwards, Integration and harmonic analysis on compact groups (Notes on Pure Mathematics, 5. Australian National University, Canberra, 1970).
- [6] Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis, Volume I (Die Grundlehren der mathematischen Wissenschaften, Band 115. Academic Press, New York; Springer-Verlag, Berlin, Göttingen, Heidelberg; 1963).
- [7] Hans Reiter, Classical harmonic analysis and locally compact groups (Clarendon Press, Oxford, 1968).
- [8] Walter Rudin, Fourier analysis on groups (Interscience, New York, London, 1962; 2nd Printing, 1967).

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, ACT.