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Introduction
The first publication on the Buckminsterfullerene carbon

molecule (C50) was in 1985 by Kroto et al. [1]. Not much else hap-
pened right after that since samples of C60 were not available for
further study. It was the discovery of Kratschmer and Huffman's
group [2] in 1990 that really opened up the field. They found a
method to produce C60 in gram quantity. This made it possible
for researchers around the world to investigate C60 properties and
further advanced the field of nanocarbon research. Establishing
the existence of a third crystalline form of carbon is one of the most
exciting fundamental discoveries in science to date. Inasmuch as
we were at the same university with Huffman, we characterized
numerous carbon samples produced in his laboratory. It was cer-
tainly an exciting time. Iijima found conditions of the arc-discharge
technique that could produce multi-walled nanotubes [3]. We also
worked closely with a local industry in Tucson, Materials Electro-
chemical Research Corporation, on commercial-scale production
of carbon nanotubes, various encapsulations of nanotubes, and
single-walled nanotubes.

Recently, M. Terrones [4] and V.N. Popov [5] published excel-
lent reviews on the synthesis, growth mechanisms, properties, and
applications of carbon nanotubes. Terrones shows that the publica-
tions on carbon materials have grown exponentially from dozens
in early 1991, to over 1,500 in 2001 [4]. Progress is being made not
only on the improvement of the production and characterization
techniques for nanotubes but also on their applications. Important
mechanical, electrical and thermal properties are reported. This
article will summarize the main production methods, fundamental
principles of the relationship between structure and properties of
nanotubes, and several applications based on the electronic and
mechanical properties of nanotubes.
Processing Methods

Carbon nanotubes (CNTs) can be produced using three main
methods: arc-discharge, laser ablation, and
catalytic growth. Recent development es-
tablished that solar energy can also be used
as an alternative to produce CNTs. Each
method still needs to be improved upon to
reduce cost and for large-scale production
of defect-free nanotubes for industrial ap-
plications.
Arc-discharge

This technique produces fullerenes in
the soot and CNTs in the cathodic deposit
(negative rod) of the appartus. The relative
amount of fullerenes versus CNTs depends
mostly on the gas pressure in the chamber.
Transmission electron microscopy (TEM)
revealed that each nanotube is comprised of
coaxial tubes of graphitic sheets, ranging in

number from 2 to about 50, later called multi-walled carbon nano-
tubes (M WNTs). The tips of the tubes are usually closed by curved,
polygonal, or cone-shaped caps. MWNTs have many shapes and
sizes. Typical diameters are between 10 and 50 nm with lengths
of several micrometers. In 1993, we were one of the first to fill the
inner cores of MWNTs with yttrium carbide [6]. That year, Iijima
and Ichihashi [7] and Bethune et al. [8] almost simultaneously
reported the arc-discharge and catalyst-assisted synthesis of single-
walled nanotubes (SWNTs). The use of argon, iron, and methane,
was critical for the synthesis of SWNTs. TEM revealed that SWNTs
were curved and tangled together to form bundles. The nanotubes
had diameters of about 1 nm with a board diameter distribution
between 0.7 and 1.65 nm. We found that using a mixture of Fe/Co
and Co/Ni increased the yield of SWNTs [9].
Laser ablation

This was the technique Kroto et al. used to produce C60 in 1985
[1]. In 1996, Smalley and co-workers used this method to produce
high yields (>70%) of SWNTs at 1200°C [10]. Small amounts of Ni
and Co were added to the graphite rods. The synthesized nanotubes
formed bundles (ropes) with uniform diameters of 5 - 20 nm and
lengths from tens to hundreds of micrometers. The ropes were
found to be metallic and it was argued that a particular (10, 10)
type might be the dominant component.

Both arc-discharge and laser ablation techniques have the
advantage of high yields of SWNTs and the drawback that (1) they
must operate at high temperatures >3000°C to evaporate carbon
atoms from solid targets, and (2) the nanotubes are bundled, which
makes it difficult to separate for usage.
Catalytic growth

The process is also known as hydrocarbon pyrolysis or chemical
vapor decomposition (CVD). In this process, fullerenes and CNTs
are produced by hydrocarbon (e.g. methane, benzene, acetylene,
naphthalene, ethylene, etc.) decomposition over metal catalysts (e.g.
Co, Ni, Fe, Pt, and Pd deposited on substrates such as silicon, graph-
ite, or silica) in a tube reactor at 550 - 750° C It was suggested that
the nanotubes grow out of pores in the catalyst nanoparticles by tip
growth or base growth depending on the contact forces between the
catalyst particles and the substrate. High-quality SWNTs could be
grown on silicon wafers by the CVD technique [11] using methane,
Fe/Mo catalyst, and high reaction temperatures of 850 - 1000°C.

zigzag

armchair zigzag chiral

armchair

Fig. 1. (left) Molecular models of SWNTs
exhibiting different chiralities: (a) armchair; (b) zig-zag
arrangement; and (c) chiral configuration. [4]

Fig. 2. (right) Graphene sheet and vector
convention. The diagram shows several ways to roll
thesheet over, resulting in different types of tubes. Note
that all armchair tubes are metallic, as well as certain
zig-zag tubes. [4]
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Armchair tube (5,5)

b)
Energy (eV)

Zigzag tube (7,0)

At this condition, base growth
is favored due to the increased
metal-support interactions.
Solar production

When solar energy is focused
(flux 500 - 1000 W/cm2 and
the temperature reaches 2800
- 3000° C) on a carbon-metal
target in an inert atmosphere,
SWNTs and MWNTs can be pro-
duced [12-14]. It is also possible
to use solar energy in a pyrolytic
processes to produce MWNTs,
particularly, the catalytic decom-
position of CH4 and C4H10 in the
presence of Ni/Al2O3 or Co/MgO
[15]. This method is potentially
advantageous but further research
needs to be carried out to improve
the quality of the products.
The Structure and Electronic
Properties of Carbon Nano-
tubes

Each single-walled nanotube
is a roll-up of a hexagonal gra-
phene sheet, which can be "non-
chiral" or "crural" arrangements [16]. In the non-chiral geometries,
the honeycomb lattice, located at the top and bottom of the tube,
is always parallel to the tube axis. These configurations are known
as armchair and zig-zag structures (Fig. 1 a, b). In the armchair
structure, two C-C bonds on opposite sides of each hexagon are
perpendicular to the tube axis, whereas in the zig-zag arrangement,
these bonds are parallel to the tube axis. All other configurations
in which the C-C bonds lie at an angle to the tube axis are known
as chiral or helical structures (Fig. lc). Theoretical studies on the
electronic properties of carbon tubes indicate that all armchair tubes
are metallic, as well as zig-zag arrangements exhibiting values of m,
n multiples of three [17]. It is amazing that SWNTs can be either
metallic or semiconducting depending on the choice of (m,n) (Fig.
2 and Fig. 3), although there is no difference in the chemical bond-
ing between the carbon atoms within the tubes and no doping or
impurities are present. The unique electronic properties of CNTs
are caused by the quantum confinement of electrons normal to the
nanotube axis. In the radial direction, electrons are confined by the
monolayer thickness of the graphene sheet. Consequently, electrons
can propagate only along the nanotube axis. Recently, Quyang et
al. reported that an isolated armchair SWNT, exhibiting a metallic
behavior, will become semiconducting when bundled together [18].
Fig. 4(a) illustrates the relationship of pseudogaps as a function of
the tube radii and (b) models of isolated tube versus a bundle of
three tubes and their corresponding energy diagrams.

Structural features in multi-walled tubes are more complex
than those in SWNTs. Fig. 5(a) shows a TEM image of a multi-
walled tube with caps. Curvatures at the caps result from inserting
six pentagons into the hexagonal structure. Fig. 5(b) illustrates the
dependence of the apex angle on the number and location of the
pentagons introduced in the hexagonal carbon network: angles of
19.2° and 38.9° are created by adding four and five pentagons in the
flat graphene structure. The nanotube cap showing in Fig. 6(a) con-
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Fig. 3. (left) Density of states exhibiting the valence band (negative values), the conduction band (positive value),
and the Fermi energy (Ef; centered at 0 eV) for (a) a metallic armchair (5,5) tube which has a metallic character;
(b) a zig-zag tube revealing semiconducting behavior caused by the energy gap located between the valence and
conduction band. [4]

Fig. 4. (right) Pseudogaps in armchair SWNTs. (a) Summary of the observed energy gaps versus tube radius.
Triangle represents experimental data point. In the inset, the dot-dash line is a fit to the background of the normalized
conductance data. Theoretical results are also shown for comparisons. The solid circles are for an (8,8) tube and the
open squares are for a (10, 10) tube, (b) Upper: model of an isolated (8,8) tube and corresponding energy schematic.
Lower: model of a bundle of three (8,8) tubes and corresponding band diagram near EF. [18]

tains negative curvature due to the presence of a pentagon-heptagon
pair (arrows) [19]. Figures 6 (b) and (c) are a molecular model of a
nanotube containing a pentagon-heptagon pair, which resembles
the image shown in fig 6(a). Fig. 7 illustrates three examples of L-,
T-, and Y- shaped tubes. All curvatures contain pentagon-heptagon
pairs in order to bend the flat hexagonal sheets.

Table 1 Properties of single-walled carbon nanotubes [20]

Property

Size

Density

Tensile Strength

Resilience

Current Carrying
Capacity

Field Emission

Heat
Transmission

Temperature
Stability

Cost

Single-walled Nanotubes

0.6 to 1.8 nanometer in
diameter

1.33 to 1.40 g/cm3

45 billion Pa

Can be bent at large angles
and re-straightened without
damage

Estimated at 1 billion A/cm2

Can activate phosphors at 1 to
3 volts if electrodes are spaced
1 micron apart

Predicted to be as high as
6,000 w/m.K at room T

Stable up to 2,800°C in
vacuum, 750°C in air

$300 to $l,000/g currently

By comparison

Electron beam
lithography can create
lines 50 nm wide, a few
nm thick

Aluminum has a
densityof2.7g/cm3

High-strength steel
alloys break at about 2
billion Pa

Metals and carbon
fibers fracture at grain
boundaries

Copper wires burn
out at about 1 million
A/cm2

Molybdenum tips
require fields of 50 to
100 V/um and have
very limited lifetimes

Nearly pure diamond
transmits 3,320 w/m.K
Metal wires in
microchips melt at 600
to l,000°C

Gold is selling for
about $18/g in 2/2006
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0 = 38.9° 9=19.2°
Fig. 5. (a) TEM image of a multi-walled tube with caps. The spacing

between layers of graphene sheets is 0.34 nm. (b) Molecular models
showing an apex angle depending on the number of pentagons introduced,
in the hexagonal carbon network: angles of 19.2" and 38.9° are created by
adding four and five pentagons in the graphene structure.

Structural and physical properties of single-walled carbon
nanotubes are summarized in Table 1 [20]. The last column of the
Table is provided
for comparison.
Mechanical Prop-
erties

Carbon nano-
tubes have high
stiffness and axial
strength as a result
of carbon-carbon
sp2 bonding. Prac-
tical application
of nanotubes re-
quires more study
of the their elas-
tic response, their
inelastic behavior
and buckling, yield
strength and frac-
ture mechanisms.
Fig. 8 shows the
remarkable resil-
ience of a MWNT-
-it can be bent in a
large angle without

Fig. 6. (a) Nanotube cap showing negative
curvature due to the presence of a pentagon-
heptagon pair (arrows); (b) and (c) molecular
models of a nanotube containing a pentagon-
heptagon pair resembling the image shown in
(a). [4].

breaking. The average value for Young's modulus for MWNTs is
1.8 T Pa [21], much higher than the value for typical carbon fibers
of 680 GPa. Other mechanical strength measurements on SWNTs
and MWNTs (produced using pyrolytic routes) have revealed

lower values of Young's modulus [4]. The values are dependent on
the crystallinity of the materials and the number of defects pres-
ent within the structure. The mechanical axial tension applied to
bundles of SWNTs shows fascinating results because each nanotube
is very thin, and coupling between tubes is weak. In the case where
a tubule breaks, there is almost no effect on the rest of the tubes.
Therefore, the chain reaction of fracture is hindered and cracks
are blocked [22].
Examples of Applications
Field Emission Sources

When a potential is applied between a CNT surface and an
anode, electrons are easily emitted from the CNT tip (electron tun-
neling from the tips into the vacuum). Using this principle, CNTs
can be used as efficient field emission sources for the fabrication
of multiple electronic devices such as flat panel displays, intense
light sources or bright lamps, and X-ray sources. Generally, nano-
tube-emission surfaces are fabricated by creating various types of
nanotube composite polymers that are vacuum stable. The clear
advantages of using CNTs as electron emission devices are (a) stable
field emission over prolonged time periods, (b) long lifetimes of the
components, (c) low emission threshold potentials, (d) high current
densities, and (e) the absence of the need for ultrahigh vacuum. Very
large current densities, as high as 4 A/cm2, have been reported (23).
Samsung (Korea) has produced low-cost prototypes of nanotube
color (9-inch) displays that can play moving images [24] (see Fig.
9 a). Recently, it was reported that B-doped MWNTs can exhibit
enhanced field emission compared to that of intrinsic MWNTs (Fig.
9 b-c). This phenomenon is due to the presence of B atoms at the
nanotube tips, which results in an increased density of states (DOS)
close to the Fermi level. Thus, B-doped tubes may have great poten-
tial as building blocks for stable and intense field emission sources.
This will open new avenues for vacuum microelectronics.

It has also been demonstrated experimentally that nanotube
based-lamps are relatively cheap to manufacture and have exhibited
lifetimes of 8000 h and high efficiency, superior to that for the green
(phosphorous) light bulbs [23]. Wei et al. used strands of single-
walled and multiwalled nanotubes replacing tungsten [25] in a lamp
configuration. Carbon nanotube filaments light up at lower volt-
ages and are more efficient than their tungsten counterparts. The
generation of X-rays can also be achieved if metal targets replace
the phosphorous screen and the accelerating voltage is larger [26].
It is possible that many field emission applications may be replaced
by CNTs in the future.

Fig. 7. TEM images of (a) an L-shaped tube; (b) a T-shaped tube; and (c) a Y-shaped tube. Location and numbers of pentagon-heptagon pairs determine
the curvatures, therefore the overall shape of the tube.
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Fig. 8. TEM image of a MWNT buckling
without damage.

Scanning Probe
Tips

From the field
emitting behavior
described above, it
has been shown that
MWNTs attached to
the tips of an atomic
force microscope
(AFM) (Fig. 10) can
improve the image
lateral resolution
of the instrument
by a factor of 10
or more, allowing

clearer views of proteins and other large molecules [27]. The me-
chanical strength of MWNTs and the ability to bend and recoil are
additional properties that make MWNTs a competitive choice for
long-life microscope tips. The following are two current obstacles.
Although commercially available, each tip is still made individually
and the nanotube tips do not improve vertical resolution. However,
they do allow imaging of deep pits in nanostructures that were
hidden previously.
Nanotube Electronic Devices

This is one of the most exciting applications of carbon nano-
tubes. Sanders et al. fabricated a three-terminal switchable device
based upon a single nanotube molecule [28]. The transistor, which
operates at room temperature (Fig. 11), consists of a semiconducting
single-walled nanotube connected to metal nanoelectrodes. The
switching speed is excellent due to its low capacitance. Manipu-
lating and controlling the chirality of the nanotubes and thus the
electronic properties of the device are challenging. Collins et al.
[29] demonstrated a method using electrical breakdown to peel

CATHODE
.ELECTRODES

1E-3

1E-6

1E-7

o MWNT
• B-doped MWNT -

0.2 0.3 04 0.5 0.6 0.7 0.S

Fig. 10. (a,b) SEM images of a standard AFM tip with MWNTs at the end; (c) TEM image of the AFM tip
showing the MWNT structure attached to the end of the scanning probe microscopy tip. [27]

Fig. 11. (a) Three-dimensional AFM image of the SWNT deposited on two electrodes (source and drain
electrodes). This system behaves as a room temperature transistor; (b) Schematic of single-nanotube transistor. A
semiconducting SWNT is contacted by two Au electrodes. An Al wire, covered by a few nanometers-thick oxide
layer, is used as a gate. [28]

Fig. 9. (a) Sketch of a TV display using CNTs; (b) Side view of the
localized states seen at the edges of a boron-saturated zig-zag (9,0) CNT The
work function of this tube is 1.7 eV lower than that of the same nanotube

made exclusively of carbon atoms; (c)
J-E emission characteristics measured
in parallel plate configuration of
the B-doped nanotube films and
comparable films of pure carbon arc-
produced MWNTs. It is clear that
the emission for the doped tubes is
excited at lower voltages. Inset shows
the Fowler-Nordheim plots for each
curve. [24]

outer layers of MWNTs until the
desired electronic property of the
outer shell is obtained. The same
method can be used to reduce the
SWNTs bundles size to meet pre-
ferred electronic characteristics.
However, controlled growth in
order to achieve selective chirali-
ties needs to be investigated and
exploited.
Conclusions

In this review, the structure,
properties and applications of
carbon nanotubes are presented.
CNTs have unique properties
and great potential for novel
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technologies in the near future. It is now a widely-shared view that
carbon-based materials are likely to be a major field in the twenty
first century technology.
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