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Abstract 

In product development, an automated generation of shape variations enables a rapid assessment 

of potentially appealing design directions. We present a framework for computing a product line-

up of automotive body shapes based on spectral methods for mesh processing. We calculate the 

eigenspace projections of 3D vehicle meshes and identify the relevant style as well as content 

components based on the eigenvalues. The style of a model is then transferred to arbitrary 

prototype content car shapes, which allows for a rapid portfolio generation of various car types 

with minimal user interaction. 

Keywords: 3D modelling, conceptual design, product families, style transfer, computational design 
methods 

1. Introduction 

The creation of visually appealing designs, which likewise provide an optimal technical performance 

under given environment conditions, is a core ingredient in any product development process. For some 

design tasks like automotive development, it is in addition relevant to reflect common features within a 

set of design instances to increase the recognition factor among a design family or product portfolio. In 

consequence, these features allow consumers an easy identification of common style and unity, or even 

branding. However, by working on a novel single design, e.g. a vehicle in a virtual design process, the 

potential to imagine how style elements of this novel design would transfer to other designs of a family 

may be limited without actually modelling it in a time-consuming manual process. Hence, in the present 

paper we propose a framework for computing a product line-up of 3D automotive body shapes, which 

relies on a transfer of style features on a set of prototypes in a semi-automated fashion. For this, we 

utilize the spectral eigendecomposition of the Laplace-Beltrami operator discretized for the triangulated 

3D surface meshes of car shapes and propose a scheme for 3D style transfer on meshes. 

Automated style transfer for 2D images has recently been developed based on convolutional neural 

networks due to the availability of large image repositories and increased computational (GPU) power. 

Neural style transfer (Gatys et al., 2016) has made a strong impact on the generation of artistic data as 

well as the generation of novel shapes and designs. Gatys et al. (2016) proposed a method to 

automatically divide image data into style and content information and utilized these information to 

compose novel artistic images comprising the content, e.g. a city skyline, of one image and the style, e.g. 

the style of famous painters, of a second image. For a more detailed review on available state-of-the-art 

methods, see Jing et al. (2017). 
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First attempts to realize neural style transfer for 3D geometries by geometric deep learning 

concluded in several challenges, e.g. on the choice of a reasonable base representation (voxels or 

point clouds) or on the layout of the deep neural net architecture. Friedrich et al. (2018) have 

proposed a framework for 3D neural style transfer based on three-dimensional voxel data for 

simplified car shapes. An improvement of the framework by a standardized Gram matrix based loss 

function for style has been introduced by Friedrich and Menzel (2019). Yang et al. (2019) also 

utilize voxels and point cloud representations for 3D shape transformation between two objects 

based on geometric deep learning. An alternative hybrid approach combines styles from images and 

content from 3D meshes resulting in texturized and deformed 3D models (Kato et al., 2018). In 

parallel to neural style transfer, many researches have created generative neural network setups like 

autoencoders in order to generate novel three-dimensional shapes by mixing latent features of 

different models. While Brock et al. (2016) utilized the voxel format, Achlioptas et al. (2018) have 

achieved similar results with point clouds. Both approaches yield promising results with the 

downside of geometric data formats, which are typically not used in virtual design. Umetani (2017) 

on the other hand has focused on autoencoder based shape generation on 3D mesh data by 

introducing an algorithm for the generation of compatible, homogeneous three-dimensional meshes 

of cars with a shared topology that enables the direct application of neural network based methods. 

In contrast to data-driven neural style transfer approaches like geometric deep learning, the field of 

geometry processing offers a variety of methods for directly operating on 3D shapes and 3D 

meshes. Traditional mesh processing was based on mesh operators like Laplacian matrices and 

spectral methods (Meyer et al., 2003; Sorkine, 2005; Reuter et al., 2006; Zhang et al., 2007). In 

2004, Sorkine et al. (2004) proposed to extract high-frequency details from one geometry and 

transfer them to another shape based on Laplacian processing which provides an excellent starting 

point for an automated style transfer between 3D vehicle shapes. In this paper, we transfer the 

general concept of style and content from neural style transfer to classic mesh processing with the 

help of recent three-dimensional datasets originating from generative neural network setups. We 

utilize the spectral representation of a 3D mesh object and extract features that can be associated 

with either style or content. Since we rely on a homogeneous mesh dataset, we are able to mix style 

and content from different 3D models and create novel shapes. This allows us to generate complete 

automotive product portfolios in a semi-automatic fashion in a matter of minutes. The generated 

portfolio shapes are intended to be an inspiration for the designers during the concept development 

phase for new automotive models. Rather than fully functional 3D meshes, we aim to combine 

visual features associated with style and content in order to obtain innovative design inspiration 

prototypes with the proposed design exploration tool. Given compatible datasets, the approach is not 

limited to automotive development only, but universally applicable on all kinds of object classes 

given the availability of data sets and mesh constraints. 

The paper is structured as follows. In section 2, we introduce the mathematical fundamentals for 

spectral mesh processing which forms the basis for our proposed framework. In section 3, we detail 

the connection to style transfer, describe our dataset and formulate our approach, which we apply to 

a standard benchmark design and representative geometries from the automotive domain. Finally, 

we conclude our work in section 4 and give ideas for potential improvements. 

2. Mesh processing 

In the following, we review the triangular mesh definition and its mesh Laplacian operators, which we 

will use to perform the mesh processing. Our focus lies on mesh compression and mesh smoothing based 

on spectral mesh methods. For a comprehensive overview of all applications based on mesh Laplacians, 

we refer to Zhang et al. (2007). Furthermore, Meyer et al. (2003), Reuter et al. (2006) and Sorkine et al. 

(2004, 2005) give further inside on the theoretical principles of mesh Laplacians and their applications. 

2.1. Mesh notation 

We use the notation ℳ = (ℰ, 𝑉) for a geometric, triangular, three-dimensional mesh, where V 

describes the vertices and ℰ the edges of the mesh. The edge list ℰ includes the topological 
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information in form of a list of index pairs (𝑖, 𝑗) which indicates an edge between vertex 𝑖 and 

vertex 𝑗. The vertices are organized in a matrix 𝑉 ∈ ℝ𝑛×3 where 𝑛 denotes the total number of 

vertices and each row encodes the three dimensional coordinate vector of the vertex,  𝑣𝑖 =
[𝑥𝑖, 𝑦𝑖, 𝑧𝑖] with 𝑖 ∈ [1, 𝑛]. 

2.2. Mesh Laplacians 

Mesh Laplacians are linear operators which can be applied to discrete meshes and which are 

derived from the Laplace-Beltrami operator defined on locally Riemannian Manifolds (Sorkine, 

2005). 

The Laplace-Beltrami operator applied to a function 𝑓 on a continuous 2D Riemann manifold is 

defined as 

∆(𝑓) ∶=  𝑑𝑖𝑣(𝑔𝑟𝑎𝑑(𝑓)) =  ∇ ∙ ∇𝑓 (1) 

Equation (1) can be discretized for the application to discrete triangulated mesh ℳ in three 

dimensions and is generally written as 

𝐿𝑓 = 𝑏𝑖
−1 ∑ 𝜔𝑖𝑗(𝑓𝑖 − 𝑓𝑗)𝑗∈𝑁(𝑖)  (2) 

The operator acts on each vertex 𝑣𝑖 taking only the local neighbourhood 𝑁(𝑖) of the vertex into 

account. Usually, only first order neighbours are considered. The edge weight 𝜔𝑖𝑗 is a positive 

scalar representing the interconnection of vertices 𝑖 and 𝑗, and the factor 𝑏𝑖
−1 represents a suitable 

normalization which might be different for each vertex 𝑖. In the general form, 𝑓 is an abritrary 

function defined on each vertex. 

If we take the actual mesh’s vertex coordinates v𝑖 as function value 𝑓, we obtain a vector 𝛿𝑖 for each 

vertex. This so-called differential coordinate 𝛿𝑖 (Sorkine, 2005) is normal to the local mesh surface 

and its norm encodes the curvature of the surface. The differential coordinate is a local mesh 

descriptor used for mesh processing and manipulation (Sorkine, 2005). Most relevant for our 

considerations are the specifications of the general Mesh Laplacian in the combinatorial or in the 

geometric form. 

2.3. Combinatorial Laplacian 

The combinatorial, or also known as graph Laplacian, is solely derived from the graph information 

encoded in the edge list ℰ. The matrix representation of the graph Laplacian is given in its 

normalized form by 

𝐿𝑐𝑜𝑚𝑏 = 1 − D−1𝐴, (3) 

where the adjacency matrix 𝐴 and the diagonal matrix D are defined as follows. 

𝐴𝑖𝑗 = {
1  if (𝑖, 𝑗) ∈ ℰ,
0 otherwise

 (4) 

𝐷𝑖𝑗 = {
𝑑𝑖 = |𝑁(𝑖)|  if 𝑖 = 𝑗,

0 otherwise
 (5) 

If we combine Equations (2) and (3), we obtain the formula 

𝛿𝑖
𝑔𝑟𝑎𝑝ℎ

=
1

𝑑𝑖

∑ (v𝑖 − v𝑗)𝑗∈𝑁(𝑖)  (6) 

which gives us the differential coordinate of each vertex with the absolute norm approximating the 

curvature of the mesh at the vertex v𝑖. For low-resolution meshes, the curvature approximation as 

given by |𝛿𝑖
𝑔𝑟𝑎𝑝ℎ

| is not very accurate (Figure 1, left). Some vertices, which should have rather high 

curvature values, since they are pointy edged, are assigned a rather low value, whereas neighbouring 

vertices with expected low curvature are assigned a rather high curvature value. 
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Figure 1. Visualization of the curvature approximation at each vertex given by the norm of the 

differential coordinates calculated with the graph Laplacian (left) and geometric Laplacian 
(right). Purple colours imply low curvature, while red and yellow imply larger curvature. 

Curvatures are calculated for the vertices and interpolated on the mesh triangles. 

2.4. Geometric Laplacian 

In order to achieve better local approximation capabilities, Pinkall and Polthier (1993) and Meyer 

(2003) proposed to use geometric relations of the edges and vertices involved in Equation (1). 

Effectively, 𝜔𝑖𝑗 and 𝑏𝑖
−1 become a function of ℰ and 𝑉 in contrast to the combinatorial Laplacian. The 

geometric information to be included is provided by the angles 𝛼𝑖𝑗 and 𝛽𝑖𝑗 between edges opposing 

the edge connecting 𝑣𝑖 and 𝑣𝑗 in the mesh triangles adjacent to 𝑣𝑖 and 𝑣𝑗. By using these angles to 

define so-called cotangent weights, the geometric Laplacian is given as follows: 

(𝐿𝑔𝑒𝑜𝑚𝑓)
𝑖

=
1

|Ω𝑖|
∑

1

2
(cot 𝛼𝑖𝑗 + cot 𝛽𝑖𝑗)(𝑓𝑖 − 𝑓𝑗)𝑗∈𝑁(𝑖) . (7) 

Hereby, Ω𝑖 denotes the size of the Voronoi cell of the vertex 𝑣𝑖. We are now able to calculate the 

differential coordinates 𝛿𝑖
𝑔𝑒𝑜𝑚

 and the curvature in the same way as done in section 2.3. Apparently, 

the approximation of the curvature is more in line with the expected curvature (Figure 1, right). 

2.5. Mesh compression 

Differential coordinates and the according Laplacians are used in a variety of applications for mesh 

and graph processing. For a comprehensive overview, we refer to the overviews given by Sorkine 

(2005) and Zhang et al. (2007). The application described in this work relies on the mesh processing 

and compression based on the eigenvalue decomposition of the Laplacians. The eigenvectors of the 

Laplacian matrix 𝐿 are organized into columns of an orthogonal matrix 

𝐸 =  {e1, ⋯ , 𝑒𝑛}  ∈ ℝ𝑛×𝑛 where 𝐸𝑇𝐸 = 𝐸 𝐸𝑇 = 1  (8) 

 with the corresponding sorted eigenvalues 

0 =  𝜆1 <  𝜆2 ≤ 𝜆3 ≤ ⋯ ≤ 𝜆𝑛 . (9) 

In order to project the vertices v𝑖 into the mesh’s spectral domain and obtain the spectral coefficients 

c𝑖 , the matrix of eigenvectors has to be multiplied with the vertices, 

𝐶 = 𝐸𝑇𝑉 with 𝑉 ∈ ℝ𝑛×3 .  (10) 

The original vertices are consequently reconstructed with the inverse operation, 

V = 𝐸C. (11) 

It turns out that the coefficients ordered according to (9) relate to low and high frequency mesh properties 

in a similar way as Fourier coefficients (Sorkine, 2005; Zhang et al., 2007). Thus, we can use these 

coefficients to perform mesh compression in form of low-pass filtering. In Figure 2, we show the 

compressed Stanford bunny in a 242 vertices low polygon version based on the mesh operators 𝐿𝑐𝑜𝑚𝑏 and 

𝐿𝑔𝑒𝑜𝑚. We took only the smallest 24 eigenvalues and corresponding spectral coefficients of Equation (10) 

and reconstructed the shape according to Equation (11) with the truncated versions of 𝐸 and C. The 

reconstructions are far from being perfect with both approaches, but in general, the geometric approach 
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produces smoother results with less artefacts and reproduces the overall shape and features most similar to 

the original. Hence, we base all following transformations on the geometric Laplacian 𝐿𝑔𝑒𝑜𝑚. 

 
Figure 2. 24 Eigenvalue based, compressed Stanford Bunny with 242 vertices (left: original, 

middle: Reconstruction based on combinatorial Laplacian, right: Reconstruction based on 
geometric Laplacian) 

It is common knowledge that the lowest non-zero eigenvalue 𝜆2 encodes the centre of mass of the 

mesh. It takes a minimum of three non-zero spectral coefficients to generate three-dimensional 

structures with the inverse transformation according to Equation (11). Figure 3 illustrates various 

reconstructions of shapes with truncated sets of spectral coefficients from the geometric Laplacian. 

Taking the coefficients related to the first four eigenvalues already produces a three-dimensional shape 

(top left). Increasing the number of included coefficients leads to a steady improvement of the 

reconstructed shape, where higher order eigenvectors introduce more high-frequency details. 

Including only 100 coefficients, which is less than half the total number of eigenvectors, produces a 

reasonable approximation of the original mesh. The overall structure of the mesh is quickly lost, once 

the low order coefficients are omitted (Figure 3, bottom right). 

 

 
Figure 3. Mesh reconstructions based on different numbers of eigenvectors according to  

Equation (11); top row: 𝝀𝟏 ⋯ 𝝀𝟒, 𝝀𝟏 ⋯ 𝝀𝟔, 𝝀𝟏 ⋯ 𝝀𝟐𝟓;  

bottom row: 𝝀𝟏 ⋯ 𝝀𝟏𝟎𝟎, , 𝝀𝟏 ⋯ 𝝀𝐧=𝟐𝟒𝟐, , 𝝀𝟗 ⋯ 𝝀=𝐧=𝟐𝟒𝟐 (strong zoom) 
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In addition, we compute and viusualize the low and high frequency relation of the eigenvectors by 

overlaying the components 𝑒𝑖𝑘;  𝑘 ∈ [1, 𝑛] of the individual eigenvectors onto the mesh geometry. The 

lower order eigenvectors represent smooth functions on the complete mesh, whereas increasing 

oscillations or strong localizations are visible for higher order eigenvectors (Figure 4). For example, 

the lowest eigenvalues influence only very localized areas of the mesh. 

 
Figure 4. Overlay of eigenvectors 𝒆𝒊 onto the mesh geometry; top row; 𝒊 = 𝟏, 𝒊 = 𝟒, 𝒊 = 𝟐𝟎; 

bottom row: 𝒊 = 𝟏𝟎𝟎, 𝒊 = 𝟐𝟒𝟏, 𝒊 = 𝟐𝟒𝟐 

3. Eigendecomposition based mesh mixing 

At this point, we draw an analogy to the idea of neural style transfer (Gatys et al., 2016; Friedrich et 

al., 2018; Friedrich and Menzel, 2019) and interpret the low frequency components of a mesh as 

content of the model and the high frequency components as style. Low frequency components let 

the viewer recognize the overall object shape but omit certain details like surface texture, which is 

in direct correlation to the content representation in neural style transfer. Similarly, we argue that 

the high frequency transformation, as depicted in Figure 3 bottom right, contains model information 

usually interpreted as style information like small structures and texture. 

Therefore, we propose to perform eigendecomposition based style transfer by mixing the high and 

low frequency parts of two separate triangular meshes. However, since we directly transfer spectral 

coefficients with their corresponding eigenvectors, we are limited to compatible meshes that share 

the same graph structure ℰ and only the vertex positions 𝑉 are allowed to differ. Additionally, 

similar semantic regions have to be encoded by similar sets of vertices. In case of e.g. cars, we have 

to assume that the set of vertices modelling the front lights of the first triangular mesh has to be at 

least in a similar geometric region on the second triangular mesh. 

Consequently, in this first simple approach we do not achieve a style representation with invariance to 

e.g. translation or rotation, which is in contrast to neural style transfer. Hence, we cannot perform a 

general style transfer of arbitrary objects but instead focus on a model family like different types of 

cars with the same mesh topology. 
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3.1. Vehicle dataset for style transfer 

In the following, we utilize the automotive datasets provided by Umetani (2017) to illustrate our proposed 

framework. The automotive body shapes have homogenous meshes, which results in identical mesh graph 

structures given by ℰ. Furthermore, due to the way Umetani’s meshes are generated, the vertices have a 

rough semantic similarity from one mesh to another, meaning vertices on the front bumper of one car are 

also located on the front bumper of all other cars, etc. This is true for most car types like sedans and 

SUVs, but might differ slightly for more distinct types like pickups or buses. The individual meshes 

consist of 𝑛 = 6146 vertices. We transform the original quad meshes by Umetani to triangular meshes. 

In addition to the original mesh geometries, we derive a set of automotive prototypes representing 

different categories like compact, SUV and sport. For doing this, we take the original meshes of a 

representative of each category and manually remove fine details in order to obtain car shapes, which 

solely embody the coarse shape of the category. The editing preserves the topology and the rough 

vertex positions. The resulting five category prototypes are depicted in Figure 5. 

 
Figure 5.  Automotive prototypes derived from Umetani’s (2017) dataset 

However, in general, our method does not rely on shape prototypes necessarily. We achieve very 

similar prototype models when applying spectral low pass filtering but as we include more high 

frequency components, the prototypes change in an unfavourable manner as more detailed structures 

appear on the prototype instead of refining only the global appearance (Figure 6). Thus, we base our 

final portfolio stylization on the shape prototypes derived from Umetani’s dataset. 

 

 
Figure 6. Low pass filtered automotive model. Top row: Compact car prototype derived from 

Umetani’s dataset; Bottom row: Original model of compact car prototype 

3.2. Style transfer method based on eigenspace projections 

As stated above, the meshes of all different geometries in our dataset have the same topology. Hence, 

we create a new set of vertices 𝑉𝑚𝑖𝑥 by a modification of the mesh reconstruction of Equation (11) and 

generate a linear combination of the spectral coefficients and eigenvectors of two different geometries, 

i.e., the content and style meshes as follows: 

𝑉𝑚𝑖𝑥 = 𝐸𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝑊𝑐𝑜𝑛𝑡𝑒𝑛𝑡𝐶𝑐𝑜𝑛𝑡𝑒𝑛𝑡 + 𝐸𝑠𝑡𝑦𝑙𝑒𝑊𝑠𝑡𝑦𝑙𝑒𝐶𝑠𝑡𝑦𝑙𝑒 (12) 

Here, 𝑊 are diagonal 𝑛 × 𝑛 matrices with 0 ≤ 𝑤𝑖𝑖 ≤ 1. Setting 𝑤𝑖𝑖 = 0 omits eigenfrequency 

information corresponding to the eigenvalue 𝜆i. For our models generated in this work, we usually 
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consider the first 100 eigenvalues of the content source mesh and eigenvalues from no. 100 to 3000 as 

style source. The exact setting depends on the used models for the content and style source as well as 

on the subjective preference of the user. The weighting 𝑊 is not necessarily binary. We can easily 

model smooth transitions or even over amplify e.g. high frequency features. 

3.3. Evaluation of style transfer for vehicles models 

In order to estimate the success of the generated automotive models by eigendecomposition mixing, 

we compare the results to a simple baseline method, which just takes the average of the vertex 

positions between content and style mesh for each vertex. The mean models smoothly blend between 

content and style shape and do not consider the fact that the overall shape should be close to the 

content source (Figure 7). For example, the mean models have a length exactly in between the content 

and style mesh instead of keeping the length of the content source mesh. We also observe in the area 

of the trunk on both examples that the rough shape of the content source is noticeably neglected while 

our eigendecomposition approach performs as desired. 

 
      Content shape  Style shape    Mean shape  Eigendecomposition 

Figure 7. Comparison of automotive body shapes produced by a mean operator and 
eigendecomposition mixing. 1. Column: Prototype/content source, 2. Column: Style source,  

3. Column: Mean result, 4. Column: Eigendecomposition result 

Additionally, we note that shape-mixing approaches based on latent vector representations from 

autoencoders, as presented by Umetani (2017), in principal suffer from the same issues as a simple mean 

mesh. In adverse situations, the generated latent vector does not represent a geometry even close to one of the 

source meshes, which is especially true for non-variational autoencoders. Furthermore, our own experience 

has shown that autoencoders tend to smooth details, in which we are especially interested. In contrast, the 

proposed approach has the ability to transfer sharp features from the style shape onto the content shape. 

3.4. Portfolio generation by eigenspace projections 

The framework proposed above enables us to generate an automotive design portfolio in very short 

time in a semi-automated manner. At first, we identify style features, i.e. high-frequencies of the 

eigendecomposition, and transfer them on the set of car shape prototypes. Since we only have to 

calculate the eigenvectors of a potentially unseen new style source, while we can fall back to our 

precomputed prototypes for each category, the computational effort is minimal. We experienced that a 

default configuration for 𝑊 yields reasonable results in most cases. Nevertheless, it is possible to 

perform a manual fine-tuning of the eigendecomposition mixing in real time afterwards for each 

prototype. The results of the style transfer for two example vehicle portfolios sets are visualized in 

Figure 8. 
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Figure 8. Two exemplary automotive portfolios, the style features of the left car are 
transferred to the set of five prototypes (Figure 5) 

4. Conclusion 

In this paper, we introduced a 3D style transfer based on the spectral eigendecomposition of mesh 

Laplacians. Starting from prototype content shapes, we transfer style elements from a different car mesh 

to all prototype shapes. This framework enables a rapid generation of automotive portfolios 

homogeneously stylized as defined by the style car shape. As advantage, the proposed method allows a 

user working on a novel (car) design to visualize the current style features on a portfolio of designs in an 

online fashion, which supports decision making processes. The generated portfolio acts as a creative 

inspiration and starting point for follow up design tasks and studies. The method is not limited to 

automotive models as used in this work but generally applicable on any compatible dataset under the 

given mesh constraints. We have discussed the differences and advantages of our approach in the style 

transfer context compared to other mesh mixing methods. We are also able to selectively combine global 

and local features enabling us to respect given constraints like overall car length or the height of specific 

parts such as the trunk. This is essential for a proper portfolio generation process. Since the computational 

expensive parts of the algorithm are executed beforehand, the proposed approach and design exploration 

tool provide an excellent usability with real-time editing capabilities. Additionally, the proposed method 

has only very few and very intuitive free parameters. By adjusting those mixing coefficients, the style 

transfer can be fine-tuned in order to increase or avoid desired or unwanted features. 
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On the contrary, the current approach only supports style transfer between meshes with the exact same 

topology. One future direction is to extend the approach to handle meshes with different topologies. 

Besides, different topology meshes style transfer would allow for functional models closer to production 

instead of meshes for pure visual evaluation, which would further facilitate development and design. 

Additionally, a homogenous mesh generator with semantic awareness would strongly increase the output 

quality. This generator could place vertices on identical components across highly differing automotive 

categories that would prevent undesired artefacts like e.g. windshield wipers on trunks. 

References 

Achlioptas, P. et al. (2018), “Learning representations and generative models for 3d point clouds”, in 35th International 

Conference on Machine Learning, ICML 2018. pp. 67-85. Available at: http://arxiv.org/abs/1707.02392  

(accessed 14 November 2019) 

Brock, A. et al. (2016), “Generative and Discriminative Voxel Modeling with Convolutional Neural Networks”. 

Available at: http://arxiv.org/abs/1608.04236 (accessed 14 November 2019). 

Friedrich, T., Aulig, N. and Menzel, S. (2018), “On the Potential and Challenges of Neural Style Transfer for 

Three-dimensional Shape Data”, EngOpt 2018: Proceedings of the 6th International Conference on 

Engineering Optimization, Springer International Publishing. https://doi.org/10.1007/978-3-319-97773-7 

Friedrich, T. and Menzel, S. (2019), “Standardization Of Gram Matrix For Improved 3D Neural Style Transfer”, 

2019 IEEE Symposium Series on Computational Intelligence (SSCI), Xiamen, China. (accepted). 

Gatys, L., Ecker, A. and Bethge, M. (2016), “A Neural Algorithm of Artistic Style”, Journal of Vision, Vol. 16 

No. 12. https://doi.org/10.1167/16.12.326 

Jing, Y. et al. (2017), “Neural Style Transfer: A Review”, pp. 1-25. Available at: http://arxiv.org/abs/1705.04058. 

Kato, H., Ushiku, Y. and Harada, T. (2018), “Neural 3D Mesh Renderer”, Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition, pp. 3907-3916. https://doi.org/ 

10.1109/CVPR.2018.00411 

Meyer, M. et al. (2003), “Discrete Differential-Geometry Operators for Triangulated 2-Manifolds”, Visualization 

and Mathematics III, pp. 35-57. https://doi.org/10.1007/978-3-662-05105-4_2 

Pinkall, U. and Polthier, K. (1993), “Computing discrete minimal surfaces and their conjugates”, Experimental 

Mathematics, Vol. 2 No. 1, pp. 15-36. https://doi.org/10.1080/10586458.1993.10504266 

Reuter, M., Wolter, F.E. and Peinecke, N. (2006), “Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and 

solids”, CAD Computer Aided Design, Vol. 38 No. 4, pp. 342-366. https://doi.org/10.1016/j.cad.2005.10.011 

Sorkine, O. et al. (2004), Laplacian Surface Editing, Eurographics Symposium on Geometry Processing. 

Sorkine, O. (2005), “Laplacian Mesh Processing”, Eurographics, (Section 4), pp. 53-70. https://doi.org/10. 

1128/JVI.00468-10. 

Umetani, N. (2017), “Exploring Generative 3D Shapes Using Autoen-coder Networks”, SIGGRAPH Asia 

Technical Brief. https://doi.org/10.1145/3145749.3145758. 

Yang, Z., Jiang, H. and Zou, L. (2019), “3D Conceptual Design Using Deep Learning”, Science and Information 

Conference. Springer, pp. 16-26. https://doi.org/10.1007/978-3-030-17795-9_2 

Zhang, H., Van Kaick, O. and Dyer, R. (2007), “Spectral Methods for Mesh Processing and Analysis”, {STAR} 

Proceedings of Eurographics, Vol. 92 No. RC-20404, pp. 1-22. https://doi.org/10.1.1.132.8135. 

https://doi.org/10.1017/dsd.2020.162 Published online by Cambridge University Press

http://arxiv.org/abs/1707.02392
http://arxiv.org/abs/1608.04236
https://doi.org/10.1007/978-3-319-97773-7
https://doi.org/10.1167/16.12.326
http://arxiv.org/abs/1705.04058
https://doi.org/10.1109/CVPR.2018.00411
https://doi.org/10.1109/CVPR.2018.00411
https://doi.org/10.1007/978-3-662-05105-4_2
https://doi.org/10.1080/10586458.1993.10504266
https://doi.org/10.1016/j.cad.2005.10.011
https://doi.org/10.1128/JVI.00468-10
https://doi.org/10.1128/JVI.00468-10
https://doi.org/10.1145/3145749.3145758
https://doi.org/10.1007/978-3-030-17795-9_2
https://doi.org/10.1.1.132.8135
https://doi.org/10.1017/dsd.2020.162

