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ABSTRACT. A stress-strain relation for dry snow in 
Greenland and Antarctica was derived. When this relation is 
integrated, it gives snow density as a function of time. For 
given surface density , temperature, and accumulation, the 
age of snow layers can be obtained as a function of depth 
in the snow-pack. Calculations compare well with 
observations. With some knowledge of the temperature range 
in the upper layer of the snow-pack, calculation for density 
versus depth can also be improved over the results where 
such temperature information was not used . 

INTRODUCTION 

The densification of snow has been studied by a 
number of investigators, including the pioneering works of 
Bader (1960, 1963), Benson (1962), and Anderson and 
Benson (1963). These authors calculated the density of dry 
snow for different depths. A study of the age of dry snow 
as a function of depth was done recently by Herron and 
Langway (1980), with good results , by treating the snow as 
two layers. 

In this paper we try to answer the questions: (1) Can 
an age-depth relation for dry snow as one continuous layer 
be derived without use of an empirical formula for the 
density-time relation? (2) What kind of stress-strain relation 
is required to arrive at the steady-state density profile 
described by Ling (l985)? 

Let us first consider snow at constant accumulation and 
constant temperature. Then, the process of snow 
densification is invariant with respect to the snow surface 
(Bader, 1960). If we want to know what the density of the 
snow-surface layer would be 10 years from now, all we 
have to do is to dig into the snow-pack and find the layer 
that is 10 years old and measure its density . 

THE STRESS-STRAIN RELA nON 

Consider the steady-state profile equation for dry snow 
from Ling (1985), where z is measured positive downward 
from the surface, 

P = Po + (Pm - po) (I - e-z / L ). (I) 

This is based on a non-linear differential equation relation 
between the change of pressure p and the change of density 
p: 

(la) 

where P is the density at depth z, Po is the surface density 
of snow, Pm is the maximum attainable density, and L is a 
characteristic length scale, set equal to 38 m according to 

Ling (1985) . Equation (I a) is obtained by (I) generalization 
of a simple physical model dp = c(Pm - p)dp to the form 
d(pll) = c(Pm - p)dp, and (2) by setting 11 = 2 for 
mathematical convenience, as in Ling (1985). Differentiating 
Equation (I) with respect to z yields 

dp/ dz = (I / L) (Pm - po)e-z/ L . (2) 

For any snow layer of infinitesimal thickness dz, the 
mass per unit area is 

(3 ) 

where A is the accumulation rate in m/ year of water 
equivalent, Pw is the dens ity of water, and dt is the 
infinitesimal difference between the time a particle at the 
bottom of the layer was deposited and the time a particle 
at the top was deposited. Using Equations (I) and (3) , and 
integrating with the assumption of constant accumulation 
rate A, one gets 

Equation (4) gives snow age as a function of snow 
depth, for constant temperature . Combining Equations (I), 
(2), and (3) to eliminate z yields 

dp/ dt = (APw/ pL) (Pm - p). (5) 

Integrating Equation (5) , from P = Po at time = 0 yields 

p - Po + Pm In[{Pm - p)/(Pm - po)] = -APwt / L. (6) 

Now the pressure at a layer, taking A to be constant in 
time, is the total weight per unit area above this layer, 
which can be obtained by mUltiplying Equation (3) by g 
and then integrating from t = 0 to t = t : 

(7) 

where t = 0 is the time when the particle was at the sur­
face. Substituting Equation (7) into Equation (5), to relate 
density to pressure, yields the stress-strain relation 

(I / p) (dp/ dt) = (Pm - p)p/ {p2gtL). (8) 

This indicates that the deformation rate of dry snow is 
proportional to the pressure or overload as well as to the 
factor (Pm - p) and is inversely proportional to the time t . 
When t = 0, the deformation rate will be infinite unless 
p " t also. That a sudden load on a layer of snow causes 
infinite strain has been shown from results of work done 
by Colbeck and others (1978), and Castes (1963). Therefore, 
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such behavior in the equation is quite desirable and '.or----:~'~=:;:;;:::::=:r;::==:J::======+===~ 
realistic. 

Substituting Equation (6) into Equation (8) to eliminate 
t now gives 

P 

dp 

dt 

Pm - P 
-----------.p. 

PO)] 
(9) [

Pm - Po 
p2 Pmln _(p -

Pm - P 

This is the stress-strain relation for dry snow which 
we will call a "non-linear stress-strain relation" since it is 
derived from d(p2) = c(Pm - p)dp. However, the usual way 
of writing the stress-strain relation for dry snow, as used 
by Bader (1960), Melior (1964), and Anderson (1976), 
among others, is dp/ pdt = p/ n where n is a "compactive 
viscosity factor". Bader (1960) pointed out that the 
assumption of Newtonian viscosity as written above can be 
used when p < 1000 g/ cm2, which occurs at depths of 
between 15 and 20 m. Here we will use it for depth far 
beyond this range to see how it works. Equation (9) thus 
gives 

PwA Pm - P 
--------------

n L2g 
p2 [Pm In _P_m_-_P_o_ 

Pm - P 

Re-arranging Equation (9) to integrate from P Po at time 
t = 0, gives 

P [Pmln 
Pm - Po ] 

r 
-(p-p) dp 

f 
Pm -P 0 PwA 

F - L2 g pdt. 
Pm -P 

Po 
0 (10) 

If the density ratio rep) = p/ Pm is introduced, from which 
dp = Pmdr, the first integral of Equation (10) may be 
written as 

in which ro indicates r(po)' If the change of variable 9(r) = 
(1 - r) - In(1 - r) is made, from which dr = (I - r)d9/ r, 
it becomes 

J

9(r) 

Pm 2 [9(r) - 9(ro)]d9 

9(ro) 

which can be directly integrated to give 

(11 ) 

The inverse function r(F) must be obtained if P is to 
be determined from a known value of the second integral 
of Equation (IO), which is equal to F . Thus, given a value 
of F, first the inverse of Equation (11) is used to get r, 
and then P is recovered from r by using the relation 
r = p/ Pm . The dependence of ,. on F is shown in Figure 
I a for selected values of the parameter r o. 

APPROXIMA TING THE INVERSE OF THE DENSITY 
INTEGRAL 

Because an inverse of Equation (11) has not been 
found, it is not possible to get r directly from any 
particular value of F. Instead, a simple empirical 
approximation is devised to get an estimate r* of it, given 
a value of F. It is constructed simply by matching a 
mathematical function closely to points on the inverse 
function r(F). 
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Fig. 1. a. Inverse of density integral. given by Equation ( la J. 
for indicated values of the parameter r o' The curves are 
tangent to the F = 0 axis at r = r 0 and they 
asymptotically approach r = 1 as F ~ "'. 
b. Error curves , for indicated values of the parameter r o ' 
arising from use of Equation ( 11) to approximate the 
inverse of the density integral. Each curve, whose 
coefficients are given in Table I . minimizes the maximum 
error I r* - r lover the interval ro ~ r ~ 1, at each end 
of which the error is identically zero. 

While constructing the approximation, points r(F) are 
obtained numerically. As Equation (11) readily gives F for 
any value of r, it is possible to search for that value of r 
corresponding to a particular desired F. In practice, it 
would be tedious to undertake such an interation any time 
one wanted to get r from F, so the approximating function 
is constructed as a reasonably accurate and very convenient 
way of estimating it. 

The form chosen here for r*(F) has exactly the correct 
behavior at the ends of the interval: r* = r 0 when F = 0, 
and r* = I when F ~ 00. The normalization on Pm is 
extended here by considering the ratio F / p:n instead of F 
itself. The devised function is 

(12) 

The empirically determined values of the two coefficients a 
and b are chosen to minimize the maximum value of 
I r* - r I occurring over the interval r 0 ~ r ~ I. Just as r 0 is 
a parameter of the function F(r), it is also a parameter of 
its approximation. Thus, the minimizing values of a and b 
depend on the value of r 0 (Table I). The error r* - r is 
shown as a function of r in Figure I b for selected values 
of the parameter ro' Other functional forms could be used 
to approximate the inverse function more accurately, but at 
the cost of greater algebraic and computational complexity. 

T ABLE I. THE OPTIMIZING COEFFICIENTS OF THE 
F-INVERSE APPROXIMATION, EQUATION (11) 

Parameter Coefficients Maximum I r* - r I 
ro a b over r 0 ~ r ~ 1 

0.10 0.4382 0.2644 0.0196 
0.15 0.4340 0.2836 0.0183 
0.20 0.4389 0.3006 0.0164 
0.25 0.4485 0.3162 0.0144 
0.30 0.4620 0.3305 0 .0124 
0.35 0.4781 0.3438 0.0105 
0.40 0.4965 0.3562 0.0088 
0.45 0.5165 0.3679 0.0073 
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The accuracy of the approximation would be improved 
if the requirements of exact behavior at the end points 
were relaxed. For the case ro = 0.1, relaxing the r* = I 
condition at F = co, by replacing the factor I - Po by a 
third free coefficient, would reduce the maximum error 
I r* - r I by 8%; relaxing the r* = r 0 condition at F = 0 as 
well, by replacing the ro term by a fourth free coefficient, 
would reduce it by an additional 18%. Also for the ro = 

0.1 case, shortening to rp ~ r ~ r max the interval over 
which the maximum error I r* - r I is to be minimized , by 
using different values for the two coefficients a and b, 
would reduce the maximum error by 16% for r = 0.7, 
by 3% for 0.8, and by none for 0.85 or greate~axBecause 
the error is already of the order of density-measuring error, 
and because achieving those small error reductions would 
impair the convenience of using the approximation, the 
values of the coefficients given in Table I are used here 
with the simple form given by Equation (12); the end-point 
conditions are met, and the maximum error is minimized 
over the full interval r 0 ~ r ~ 1. 

THE TEMPERATURE CORRECTION 

Equation (10) is for dry snow at constant temperature; 
but the effects of temperature variation on the densification 
of snow can be quite substantial, and therefore should be 
included. The snow temperature varies annually in the upper 
10 m so that values significantly higher than the mean 
value, T m' are encountered each year. Bader (1963) 
corrected for this by calculating an equivalent temperature, 
Te' which is higher than T m because the higher tempera­
tures in the annual variations are most effective in 
modifying the rates of densification in the top 10 m. We 
use the temperature factor 13 = B

1
exp(-E/ RT) as in Glen 

(1955), Bader (1963), Anderson (1976), and Herron and 
Langway (1980). One may write (I / p)(dp/ dt) <x 

B1exp(-E/ RT) but (I / p)(dp/ dt) <X P as in Equation (9). Thus 
(I / p)(dp/ dl) <x pB1exp(-E/ RT). To include the temperature 
effect, we need only multiply p by B1exp(-E/ RT) on the 
right-hand side of Equation (10). When T = T m' 13 = I , so 
13 1 = exp(E/ RT m) and B = ex p(E/ RT m - E/ RT). Here E is 
the activation energy, which is taken to be 
1.33 x 10 5 J/ mole according to Glen (1955). The gas 
constant R is taken to be 8.3 J / kmole. T is the temperature 
of the snow, and T m is the temperature at the depth of 
10 m. At this depth the annual variation in temperature is 
less than 0.5 deg. 

We assume a temperature distribution as follows: 
T = T m + lITexp{-.:(n/ Ta)! )Cos(2m/ T) - .:(n/ TaY! ) based on 
the work of Weller and Schwerdtfeger (1968), and Benson 
(1962), where LIT is the annual temperature amplitude (that 
is, half the total annual range) at the snow surface of a 
specific station, assumed to be 15 deg in this work, and T 

is the period , taken here to be I year, and ex is the 
thermal diffusivity which is equal to k/ pc where k is the 
thermal conductivity of snow and c is the specific heat. 
The thermal conductivity of snow varies from 0.04 to 
1.22 J m-I S-I for snow up to 2.5 m in depth, as shown by 
Lange (1985) in his work on measurements in the Antarctic. 
Here, we use a representative value of k = 0.837 J m-I 
S- 1 K -I for the upper 10 m of snow. Now, p = 0.4 Mg m-3 

and c = 1.967 x 10 -3 J kg- 1 K - I (from Melior, 1977), so 
ex = 1.064 x 10-6 m 2 S-I. Thus, Equation (10), along with 
Equation (11), with the inclusion of the temperature factor, 
is 

- (E/ RT)}dl 

r p exp{(E/ RT m) 

o ( 13) 

where T is as given above. The t coordinate is chosen so 
that I = 0 in the middle of the year when the surface layer 
was deposited, and this is done uniformly for any specific 
layer during the calculation. Depth ( z ) is always available as 
a measured quantity. However, since we need to integrate 
Equation (13), we need depth in terms of time. This can be 
approximated by using Equation (4). After expanding 
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e -t,z/ L) into a Taylor series and keeping the first three 
terms: 

Therefore, 

z ~ 
-Po + (Po 

2 
+ (2APw(Pm - Po )1)/ L P 
(Pm - po) / L 

Equation (12) is used to get p from the right-hand side of 
Equation (13) and the corresponding depth, from Equation 
(3), is 

J
l dl 

z = P A -
w P 

o 
( 14) 

where the density distribution as a function of I is obtained 
from Equation (13). 

RESULTS 

Equations (13) and (14) have been used to calculate the 
age of snow layers at five stations - Crete, Site 2, and 
Milcent of Greenland; and Byrd Station and Little America 
V, Antarctica. Table II shows the input data used for the 
five stations. The relations between observed age and depth 

TABLE H. PARAMETERS USED FOR FIVE SNOW 
STATIONS 

A Po Tm 
m/ a Mg m-3 K 

Site 2, Greenland 0.4 0.358 249.7 

Byrd Station, 
Antarctica 0.15 0.366 247.0 

Milcent, Greenland 0.50 0.360 251.0 

Little America V, 
Antarctica 0.221 0.360 249.0 

Crete, Greenland 0.265 0.360 243.0 

for the five stations are from Herron and Langway (1980), 
and Gow (1968). Figure 2 shows comparisons of calculated 
age at given depth with observed data, with and without 
the temperature correction. Figure 3 shows comparisons of 
calculated density-depth curves with observation for Byrd 
Station and Little America V (the two stations for which 
tabulated density-depth data are available to the authors), 
with and without the temperature correction. There does not 
seem to be much difference for the age versus depth cal­
culation where we include the temperature correction; 
however, there is some improvement for the calculation of 
the density versus depth when we include the temperature 
correction, as shown in Figure 3, even though for Byrd 
Station the agreement is still not very satisfactory in the 
upper 20 m (Fig. 3a). 

The lack of agreement in the upper 20 m results 
because we have ignored the discontinuity in physical 
properties which occurs at a porosity of about 40%, i.e. a 
density of 0.55 Mg m-3 (Benson, 1962; Anderson and Benson, 
1963). The significance of the change in predominant 
densification mechanisms at this "critical density" in 
Antarctic snow was emphasized by Robertson and Bentley 
(I975) in their study of seismic velocity gradients. Equation 
(I2) was also used in the above calculations; the approxim­
ations are so close to the exact calculations that the 
differences are negligible (see Table I for the maximum 
error). Thus, the approximation in Equation (12) can be 
used with confidence in actual calculations. 
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Fig . 2. Snow age versus depth for selected sites. Full curves show calculation with temperature VariatIOn, 
and dashed curves show calculation with cOllstant temperature. Actual values (x) are from Herroll alld 
Langway ( 1980). 

CONCLUSION 

90 100 

90 100 

That the results of the calculation are good leads us to 
believe that the stress-strain relation , Equations (9) and (10), 
is usable for Greenland and Antarctic snow. 

The accuracy of the results is comparable to that of 
Herron and Langway (1980). Our model is a one-layer 
continuous formulation, while the model by Herron and 
Langway is discontinuous at the density of 0.55 Mg m-3

. 

We have developed a stress-strain relation for dry snow 
in Greenland and Antarctica. It is used to calculate the 
age-depth relation of dry snow, and the results are quite 
encouraging when given the accumulation rate, surface-snow 
density, and deep-core temperature. The average error with 
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respect to the observed age is less than 3%, while the 
maximum error is about 7.5%. 

With temperature correction for the top 10 m of snow, 
we are able to improve on density-depth calculations. 

We believe this method will be valid only in the case 
of dry snow in the cold regions . However, it could be 
extended for dry snow in other regions by changing 
parameters such as the characteristic length L. 

When one wants to study wet snow or snow under 
strong thermodynamic influences such as melting and 
freezing, perhaps the method has to be modified or a 
totally different approach might be needed . 
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