QUADRUPLE INTEGRAL EQUATIONS AND OPERATORS OF FRACTIONAL INTEGRATION

by M. IFTIKHAR AHMAD

(Received 2 December, 1969)
Cooke [1] modified a technique used by Erdélyi and Sneddon [2] to solve triple integral equations of a certain type. In this paper, we extend this method to solve the quadruple integral equations

$$
\begin{array}{ll}
L_{1}(\alpha, \rho) \equiv \int_{0}^{\infty} \xi^{-2 \alpha} \psi(\xi) J_{v}(\rho \xi) d \xi=F_{1}(\rho) & (0<\rho<a), \\
L_{2}(\beta, \rho) \equiv \int_{0}^{\infty} \xi^{-2 \beta} \psi(\xi) J_{v}(\rho \xi) d \xi=G_{2}(\rho) & (a<\rho<b), \\
L_{3}(\alpha, \rho) \equiv \int_{0}^{\infty} \xi^{-2 \alpha} \psi(\xi) J_{v}(\rho \xi) d \ddot{\xi}=F_{3}(\rho) & (b<\rho<c), \\
L_{4}(\beta, \rho) \equiv \int_{0}^{\infty} \xi^{-2 \beta} \psi(\xi) J_{v}(\rho \xi) d \xi=G_{4}(\rho) & (\rho>c), \tag{1d}
\end{array}
$$

where F_{1}, G_{2}, F_{3} and G_{4} are prescribed functions of ρ and $\psi(\xi)$ is to be determined. With no loss of generality we shall assume that $G_{2}(\rho) \equiv 0, G_{4}(\rho) \equiv 0$.

1. Operators. We recall here a few definitions and properties of the operators used in solving the integral equations (1). Cooke [1] has defined \dagger the operators ${ }_{a}^{b} I_{\eta, \alpha}$ and ${ }_{c}^{d} K_{n, \alpha}$ by the formulae

$$
\begin{array}{ll}
{ }_{a}^{b} I_{\eta, \alpha} f(x)=\frac{2 x^{-2 \alpha-2 \eta}}{\Gamma(\alpha)} \int_{a}^{b}\left(x^{2}-u^{2}\right)^{\alpha-1} u^{2 \eta+1} f(u) d u & (\alpha>0), \\
{ }_{a}^{b} I_{\eta, \alpha} f(x)=\frac{x^{-2 \eta-2 \alpha-1}}{\Gamma(1+\alpha)} \frac{d}{d x} \int_{a}^{b}\left(x^{2}-u^{2}\right)^{\alpha} u^{2 \eta+1} f(u) d u & (-1<\alpha<0), \\
{ }_{c}^{d} K_{\eta, \alpha} f(x)=\frac{2 x^{2 \eta}}{\Gamma(\alpha)} \int_{c}^{d}\left(u^{2}-x^{2}\right)^{\alpha-1} u^{-2 \alpha-2 \eta+1} f(u) d u & (\alpha>0), \\
{ }_{c}^{d} K_{\eta, \alpha} f(x)=-\frac{x^{2 \eta-1}}{\Gamma(1+\alpha)} \frac{d}{d x} \int_{c}^{d}\left(u^{2}-x^{2}\right)^{\alpha} u^{-2 \alpha-2 \eta+1} f(u) d u & (-1<\alpha<0) . \tag{5}
\end{array}
$$

For $\alpha=0$, these are just the identity operators. Note that with these definitions ${ }_{0}^{x} I_{\eta, \alpha}$ and ${ }_{x}^{\infty} K_{\eta, \alpha}$ are simply the Erdélyi-Kober operators [5]. In these cases we will drop the indices on the left and write them as $I_{\eta, \alpha}$ and $K_{\eta, \alpha}$. We also observe that (2), (3) make sense if $b<x$ and similarly (4), (5) are defined only if $c>x$.
\dagger Cooke uses $\left.{ }_{\left({ }_{a}^{b}\right)}^{(b)} I_{\eta, \alpha},{ }_{(d)}^{d}\right) K_{\eta, \alpha}$, but our notation seems convenient.

The modified operator $S_{\eta, \alpha}$ of the Hankel transforms is defined by

$$
\begin{equation*}
S_{\eta, \alpha} f(x)=2^{\alpha} x^{-\alpha} \int_{0}^{\infty} \xi^{1-a} J_{2 \eta+\alpha}(x \xi) f(\check{\zeta}) d \xi \tag{6}
\end{equation*}
$$

Sneddon [4] has shown the following relations between the Erdélyi-Kober and Hankel operators.

$$
\begin{align*}
I_{\eta+\alpha, \beta} S_{\eta, \alpha} & =S_{\eta, \alpha+\beta}, \tag{7}\\
K_{\eta, \alpha} S_{\eta+\alpha, \beta} & =S_{\eta, \alpha+\beta}, \tag{8}\\
S_{\eta+\alpha, \beta} S_{\eta, \alpha} & =I_{\eta, \alpha+\beta}, \tag{9}\\
S_{\eta, \alpha} S_{\eta+\alpha, \beta} & =K_{\eta, \alpha+\beta}, \tag{10}
\end{align*}
$$

provided that the conditions for the existence of the various operations are satisfied. The inverse operators are

$$
\begin{align*}
{ }_{a}^{b} I_{\eta, \alpha}^{-1} & ={ }_{a}^{b} I_{\eta+\alpha,-\alpha} \tag{11}\\
{ }_{c} K_{\eta, \alpha}^{-1} & ={ }_{c}^{d} K_{\eta+\alpha,-\alpha}, \tag{12}\\
S_{\eta, \alpha}^{-1} & =S_{\eta+a,-\alpha} \tag{13}
\end{align*}
$$

We require two lemmas also given by Cooke [1], which define the product of pairs of operators.

Lemma A. Let ${ }_{a}^{b} I_{\eta, \alpha},{ }_{d}^{x} I_{\eta, \alpha}^{-1}$ be operators as defined in (2), (3) and (11). Then

$$
\begin{equation*}
{ }_{d}^{x} I_{\eta, \alpha a}^{-1 b} I_{\eta, \alpha} f(x)=\frac{2 \sin \pi \alpha}{\pi} x^{-2 \eta}\left(x^{2}-d^{2}\right)^{-\alpha} \int_{a}^{b} \frac{\left(d^{2}-t^{2}\right)^{\alpha} t^{2 \eta+1} f(t)}{x^{2}-t^{2}} d t \tag{14}
\end{equation*}
$$

provided that $x>d \geqq b>a$.
Lemma B. Let ${ }_{a}^{b} K_{\eta, a},{ }_{x}^{d} K_{\eta, a}^{-1}$ be operators as defined in (4), (5), and (12). Then

$$
\begin{equation*}
{ }_{x}^{d} K_{\eta, \alpha}^{-1}{ }_{a}^{b} K_{\eta, \alpha} f(x)=\frac{2 \sin \pi \alpha}{\pi} x^{2 \eta+2 \alpha}\left(d^{2}-x^{2}\right)^{-\alpha} \int_{a}^{b} \frac{\left(t^{2}-d^{2}\right)^{\alpha} t^{-2 \alpha-2 \eta+1} f(t)}{t^{2}-x^{2}} d t \tag{15}
\end{equation*}
$$

provided that $x<d \leqq a<b$.
2. Solution of the equations (1). We transform the equations (1) into a form to which the operational theory is applicable by substituting

$$
\begin{equation*}
\psi(\xi)=\xi A(\xi), \quad f_{i}(\rho)=(2 / \rho)^{2} F_{i}(\rho) \tag{16}
\end{equation*}
$$

by means of this we get

$$
\begin{array}{ll}
L_{1}(\alpha, \rho) \equiv 2^{2 \alpha} \rho^{-2 \alpha} \int_{0}^{\infty} \xi^{1-2 \alpha} A(\xi) J_{v}(\rho \xi) d \xi=f_{1}(\rho) & (0<\rho<a) \\
L_{2}(\beta, \rho) \equiv 2^{2 \beta} \rho^{-2 \beta} \int_{0}^{\infty} \xi^{1-2 \beta} A(\xi) J_{v}(\rho \xi) d \xi=0 & (a<\rho<b) \\
L_{3}(\alpha, \rho) \equiv 2^{2 \alpha} \rho^{-2 \alpha} \int_{0}^{\infty} \xi^{1-2 \alpha} A(\xi) J_{v}(\rho \xi) d \xi=f_{3}(\rho) & (b<\rho<c), \\
L_{4}(\beta, \rho) \equiv 2^{2 \beta} \rho^{-2 \beta} \int_{0}^{\infty} \xi^{1-2 \beta} A(\xi) J_{v}(\rho \xi) d \xi=0 & (\rho>c) \tag{17d}
\end{array}
$$

Let I_{1} denote the interval $(0, a), I_{2}$ the interval $(a, b), I_{3}$ the interval (b, c) and I_{4} the interval (c, ∞). For a function f in $L_{2}(0, \infty)$ we shall write $f_{1}+f_{2}+f_{3}+f_{4}$, where

$$
f_{i}=f \quad \text { on } \quad I_{i} \quad \text { and }=0 \quad \text { on } \quad I_{j} \quad(i, j=1,2,3,4 ; i \neq j)
$$

and similarly for g. Using the S-operator defined in (6), we see that the integral equations (17) reduce to the form

$$
\begin{align*}
& S_{\frac{1}{2}-\alpha, 2 \alpha} A(\rho)=f(\rho), \tag{18}\\
& S_{\ddagger v-\beta, 2 \beta} A(\rho)=g(\rho) \tag{19}
\end{align*}
$$

Here f_{1} and f_{3} are prescribed, $g_{2}=0=g_{4}$ but g_{1}, f_{2}, g_{3} and f_{4} are to be determined. Let us take as trial solution

$$
\begin{equation*}
A(\rho)=S_{\frac{1}{2}+\beta,-\alpha-\beta} l(\rho) \tag{20}
\end{equation*}
$$

Substituting this value of $A(\rho)$ in (18), (19) and using formulas (9), (10) we have

$$
\begin{align*}
& f=I_{\dot{t} v+\beta, \alpha-\beta} l \tag{21}\\
& g=K_{\dot{z} v-\beta, \beta-\alpha} l . \tag{22}
\end{align*}
$$

Also, we have

$$
\begin{align*}
l & =I_{\frac{1}{2} v+\beta, \alpha-\beta}^{-1} f \tag{23}\\
& =K_{\frac{1}{2} \nu-\beta, \beta-\alpha}^{-1} g . \tag{24}
\end{align*}
$$

We proceed to determine l. The subscripts on all the operators will be dropped for brevity sake. All I 's will be supposed to have subscripts $\frac{1}{2} v+\beta, \alpha-\beta$ understood and all K 's to have $\frac{1}{2} \nu-\beta, \beta-\alpha$.

Evaluating (23) on I_{1}, we get

$$
\begin{equation*}
l_{1}={ }_{0}^{\rho} I^{-1} f_{1} \tag{25}
\end{equation*}
$$

Taking (24) on I_{4}, we have

$$
\begin{equation*}
l_{4}={ }_{\rho}^{\infty} K^{-1} g_{4}=0 \tag{26}
\end{equation*}
$$

Evaluate (22) on I_{2}; then

$$
{ }_{\rho}^{b} K l_{2}+{ }_{b} K l_{3}+{ }_{c}^{\infty} K l_{4}=0,
$$

which gives

$$
\begin{equation*}
l_{2}=-{ }_{\rho}^{b} K^{-1}{ }_{b}^{c} K l_{3} . \tag{27}
\end{equation*}
$$

Applying Lemma B, we have

$$
\begin{equation*}
l_{2}(\rho)=-\frac{2 \sin \pi(\beta-\alpha)}{\pi} \rho^{v-2 \alpha}\left(b^{2}-\rho^{2}\right)^{\alpha-\beta} \int_{b}^{c} \frac{\left(1^{2}-b^{2}\right)^{\beta-\alpha} t^{-v+2 \alpha+1} /_{3}(t)}{t^{2}-\rho^{2}} d t . \tag{28}
\end{equation*}
$$

Finally, evaluating (21) on I_{3}, we have

$$
\begin{equation*}
l_{3}={ }_{b}^{o} I^{-1} f_{3}-{ }_{b}^{p} I^{-1}{ }_{0}^{a} I I_{1}-{ }_{b}^{p} I^{-1}{ }_{a}^{b} I_{2} . \tag{29}
\end{equation*}
$$

Since f_{3} and l_{1} are known functions, the function

$$
\begin{equation*}
d(\rho)={ }_{b}^{{ }_{b}} I^{-1} f_{3}(\rho)-{ }_{b}^{p} I^{-1}{ }_{o}^{a} I_{1} \tag{30}
\end{equation*}
$$

is known. Applying Lemma A to the last term on the right-hand side of (29) and substituting (28), (30) in that equation, we obtain

$$
\begin{align*}
l_{3}(\rho)=d(\rho) & +\frac{2 \sin \pi(\alpha-\beta)}{\pi} \rho^{-v-2 \beta}\left(\rho^{2}-b^{2}\right)^{\beta-\alpha} \\
& \times \int_{a}^{b}\left(b^{2}-y^{2}\right)^{\alpha-\beta} y^{\nu+2 \beta+1}\left\{\frac{2 \sin \pi(\beta-\alpha)}{\pi} y^{\nu-2 \alpha}\left(b^{2}-y^{2}\right)^{\alpha-\beta}\right. \\
& \left.\times \int_{b}^{c} \frac{\left(t^{2}-b^{2}\right)^{\beta-\alpha} t^{-v+2 \alpha+1} l_{3}(t)}{t^{2}-y^{2}} d t\right\} \frac{1}{\rho^{2}-y^{2}} d y . \tag{31}
\end{align*}
$$

Inverting the order of integration, we get

$$
\begin{align*}
l_{3}(\rho)= & d(\rho)-\frac{4 \sin ^{2} \pi(\alpha-\beta)}{\pi^{2}} \int_{b}^{c}\left\{\rho^{-v-2 \beta}\left(\rho^{2}-b^{2}\right)^{\beta-\alpha}\right. \\
& \times\left(t^{2}-b^{2}\right)^{\beta-\alpha} t^{-v+2 \alpha+1} \int_{a}^{b}\left(b^{2}-y^{2}\right)^{2(\alpha-\beta)} y^{2 v-2 \alpha+2 \beta+1} \\
& \left.\times \frac{1}{\left(t^{2}-y^{2}\right)\left(\rho^{2}-y^{2}\right)} d y\right\} l_{3}(t) d t . \tag{32}
\end{align*}
$$

Putting $4 \pi^{-2} \sin ^{2} \pi(\alpha-\beta)=-\lambda$, and the expression within the curly brackets equal to $K(\rho, t)$, we obtain

$$
\begin{equation*}
l_{3}(\rho)=d(\rho)+\lambda \int_{b}^{c} K(\rho, t) l_{3}(t) d t \tag{33}
\end{equation*}
$$

which is a Fredholm's integral equation of the second kind and can be solved by known methods. The equations (25), (26), (28) and (33) completely determine l and our problem is formally solved.

Acknowledgement. I am indebted to Professor W. A. Al-Salam for his encouragement and help during the preparation of this paper.

REFERENCES

1. J. C. Cooke, The solution of triple integral equations in operational form, Quart. J. Mech. Appl. Math. 18 (1965), 57-72.
2. A. Erdélyi and I. N. Sneddon, Fractional integration and dual integral equations, Canad. J. Math. 14 (1962), 685-693.
3. H. Kober, On fractional integrals and derivatives, Quart. J. Math. (1), 11 (1940), 193-211.
4. I. N. Sneddon, Mixed boundary value problems in potential theory (North-Holland Publishing Company, Amsterdam, 1966).

Department of Mathematics

University of the Punjab (New Campus)
Lahore, Punjab
Pakistan

