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Abstract

In this note, we prove that the Gauss–Picard modular group PU(2, 1;21) has Property (FA). Our result
gives a positive answer to a question by Stover [‘Property (FA) and lattices in SU(2,1)’, Internat. J.
Algebra Comput. 17 (2007), 1335–1347] for the group PU(2, 1;21).
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1. Introduction

Whether a group G has Property (FA) is an important question in the study of lattices in
semisimple Lie groups. In the study of Property (FA), there is a fundamental theorem
due to Serre [6].

THEOREM 1.1. A group G has Property (FA) if and only if:

(1) G is finitely generated;
(2) G does not split as a nontrivial free product with amalgamation;
(3) G does not admit a homomorphism onto Z.

Since the irreducible lattices in Sp(n, 1) for n ≥ 2, F4(−20), and semisimple
Lie groups with R-rank at least two always have Property (FA) (see [1]), the
remaining interesting cases are the fundamental groups of real and complex hyperbolic
manifolds, that is, lattices in PSO0(n, 1) and PU(n, 1).

In [5] there are many cocompact Fuchsian groups, that is, lattices in PSL(2, R),
which split as a free product with amalgamation. It is well known that cocompact
Fuchsian triangle groups have Property (FA) and the classical modular group
PSL(2, Z) does not have Property (FA), since PSL(2, Z) is a free product of two
finite cyclic groups Z2 and Z3.

Let 2d denote the ring of algebra integers in the quadratic number field Q(
√
−d),

where d is a square-free positive integer. In [3] Frohman and Fine proved that the
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Bianchi group PSL(2;2d) splits as a nontrivial free product with amalgamation for
d 6= 3. But in [6] Serre proved that PSL(2;23) has Property (FA).

As the complex hyperbolic analogue of Bianchi group PSL(2;2d), the group
PU(2, 1;2d) is called the Picard modular group, which is a subgroup of PU(2, 1)

with entries in 2d .
The study of Property (FA) of Picard modular groups was begun by Stover in [7],

where the author proved the following theorem.

THEOREM 1.2. PU(2, 1;23) and SU(2, 1;23) have Property (FA).

This theorem indicates that there is a connection between certain real and complex
hyperbolic lattices. In the same paper [7], Stover asked the following question.

QUESTION 1.3. Does PU(2, 1;2d) or SU(2, 1;2d) have Property (FA) for d 6= 3?

The aim of this note is to show the following result.

THEOREM 1.4. PU(2, 1;21) and SU(2, 1;21) have Property (FA).

2. Preliminaries

2.1. Complex hyperbolic space. In this subsection, we recall some basic material
about complex hyperbolic space. More details can be found in [2, 4].

Let C2,1 denote the three-dimensional complex vector space C3 equipped with the
Hermitian form

〈z, w〉 = z1w̄3 + z2w̄2 + z3w̄1,

where z = (z1, z2, z3)
t and w = (w1, w2, w3)

t . The vector x t stands for the transpose
of vector x . Consider the subspaces of C2,1:

V− = {z ∈ C2,1
| 〈z, z〉< 0},

V0 = {z ∈ C2,1
− {0} | 〈z, z〉 = 0}.

Complex hyperbolic space H2
C is defined to be the complex projective subspace

P(V−) equipped with the Bergman metric, where P : C2,1
− {0} → CP2 is the

canonical projection onto the complex projective space. We consider the complex
hyperbolic space H2

C as the Siegel domain {z = (z1, z2) ∈ C2
| 2<(z1)+ |z2|

2 < 0}.
The boundary of complex hyperbolic space is ∂H2

C = P(V0), which can be identified
with the one-point compactification N̄ of the Heisenberg group N by stereographic
projection. The point at infinity is q∞ = (1, 0, 0)t .

The group of biholomorphic transformations of complex hyperbolic space H2
C is

PU(2, 1), which is the projectivization of the unitary group U(2, 1) preserving the
Hermitian form. If we consider the special unitary group SU(2, 1), it is clear that
SU(2, 1) is a threefold cover of PU(2, 1) by the subgroup {I, ωI, ω2 I }, where I stands
for the identity matrix and ω stands for the primitive cube root of unity.

2.2. Property (FA). Let G be a group, and ϒ be a tree with an action by G. Let ϒG

denote the subtree of fixed points of the G-action. We say that G has Property (FA)
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if ϒG
6= ∅ for every tree ϒ on which G acts without inversions. Although Theorem 1.1

is fundamental, we have the following two propositions which will be crucial in the
proof of Theorem 1.4 in the next section.

PROPOSITION 2.1 [7, Proposition 2.4]. Suppose that G is a finitely presented group
and N E G a normal subgroup such that N and G/N have Property (FA). Then G
also has Property (FA).

PROPOSITION 2.2 [7, Proposition 2.5]. Suppose that G is a group with subgroups
A = 〈ai 〉 and B = 〈b j 〉 with G = 〈A, B〉 and that G acts on a tree ϒ . If ϒ A, ϒ B

6= ∅

and every ai b j has a fixed point on ϒ , then ϒG
6= ∅.

3. Proof of Theorem 1.4

In this section we give a proof of Theorem 1.4 which is similar to the proof of
Theorem 1.2 in [7].

Let D(21) denote the diagonal subgroup of SU(2, 1;21) and N (21) denote the
subgroup of strictly upper triangular matrices. The Borel subgroup of upper triangular
matrices is

B(21)=N (21) o D(21).

It is clear that the Borel subgroup of PU(2, 1;21), which is the projectivization of
the Borel subgroup in SU(2, 1;21), equals the subgroup 0∞, the stabilizer of q∞ in
PU(2, 1;21). The following theorem, proved by Falbel et al. in [2], is crucial in the
proof of Theorem 1.4.

THEOREM 3.1. The Gauss–Picard modular group PU(2, 1;21) has a presentation

〈I0, Q, T : I 2
0 = Q2

= (I0 Q)3
= (I0T )12

= (I0 QT )8
= [(I0T )3, T ]

= [Q, T ] = Identity〉.

We use the same notation as in [2]. Furthermore, Falbel et al. [2] proved that
the Gauss–Picard modular group can be generated by R, Q, T, I0 and that the Borel
subgroup 0∞ has the presentation

0∞ = 〈R, Q, T : Q2
= R4

= (R−1 QT )4
= [R, T ] = [Q, T ] = Identity〉.

PROOF OF THEOREM 1.4. It is clear that the groups SU(2, 1;21) and PU(2, 1;21)

are isomorphic, since there is a unique cube root of unity in 21. Hence it is enough to
prove that the Gauss–Picard modular group PU(2, 1;21) has Property (FA).

Firstly, we prove that the Borel subgroup 0∞ has Property (FA). To do this,
according to Theorem 1.1, we need to show that 0∞ cannot map onto Z and cannot
split as a free product with amalgamation. Assume that the Borel subgroup can map
onto Z; then we get a contradiction by considering the presentation of the group.
Therefore, the Borel subgroup cannot map onto Z.

To show that the Borel subgroup cannot split as a nontrivial product with
amalgamation, we consider the short exact sequence

1−→ Z−→ 0∞ −→1−→ 1,
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described in [2, Proposition 2, Section 3]. The subgroup 1⊂ Isom(Z[i]) is of index
two, and generated by a rotation Q̂ of order two and another rotation R̂ of order four.
We also have (Q̂ R̂)4

= 1. According to Proposition 2.2 the group 1 has Property
(FA), so it cannot split as a free product with amalgamation. Now suppose that 0∞
can split as a free nontrivial product with amalgamation. Since the Z factor is central in
0∞, the subgroup Z must be contained in the amalgamation subgroup. It follows from
the short exact sequence that the group 1 can split as a nontrivial free product with
amalgamation. This is a contradiction. Hence the Borel subgroup has Property (FA).

Finally, we show that the group PU(2, 1;21) has Property (FA) by applying
Proposition 2.2. We know that

PU(2, 1;21)= 〈I0, 0∞〉 = 〈I0, 〈R, T, Q〉〉.

Since 〈I0〉 = Z/2Z is a finite group, clearly it has Property (FA). We have shown that
0∞ has Property (FA). Now let us consider an action of PU(2, 1;21) on a tree ϒ . We
know that ϒ 〈I0〉, ϒ 〈R,T,Q〉

6= ∅. In order to prove that the products I0 R, I0T and I0 Q
have fixed points on ϒ , we just need to show that these elements have finite order.
This follows from the presentation of PU(2, 1;21), which is (I0 Q)3

= (I0 R)4
=

(I0T )12
= Identity. So we have shown that PU(2, 1;21) has Property (FA) and this

completes the proof. 2
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