MOMENTS OF RANDOM SUMS AND ROBBINS' PROBLEM OF OPTIMAL STOPPING

ALEXANDER GNEDIN,* *Utrecht University*ALEXANDER IKSANOV,** *National Taras Shevchenko University of Kiev*

Abstract

Robbins' problem of optimal stopping is that of minimising the expected *rank* of an observation chosen by some nonanticipating stopping rule. We settle a conjecture regarding the *value* of the stopped variable under the rule that yields the minimal expected rank, by embedding the problem in a much more general context of selection problems with the nonanticipation constraint lifted, and with the payoff growing like a power function of the rank.

Keywords: Stopping time; Robbins' problem of minimising the expected rank; Poisson embedding; random sum

2010 Mathematics Subject Classification: Primary 60G40; 60G50

Let X_1, \ldots, X_n be independent random variables sampled sequentially from the uniform [0, 1] distribution, and let $Y_1 < \cdots < Y_n$ be their order statistics. The rank R_j of the variable X_j is defined by setting $R_j = k$ on the event $X_j = Y_k$. Robbins' problem of optimal stopping [3] is that of minimising the expected rank E R_{τ} over all stopping times τ that assume values in $\{1, \ldots, n\}$ and are adapted to the natural filtration of the sequence X_1, \ldots, X_n . Let τ_n be the optimal stopping time. The minimum expected rank E R_{τ_n} increases as n grows, and converges to some finite limit v whose exact value is unknown. The closest known upper bound is slightly less than $\frac{7}{3}$. Finding v or even improving the existing rough bounds remains a challenge. A major source of difficulty is that the optimal stopping time τ_n is a very complicated function of the sample. It seems that τ_n has not been computed for n > 3. Moreover, for large n, there is no simplification, and the complexity of the optimal stopping time persists in the ' $n = \infty$ ' limiting form of the problem [6].

In a recent paper Bruss and Swan [4] stressed that it is not even known if $\limsup_n n \to X_{\tau_n}$ is finite. They mentioned that the property was first conjectured in [2]. Although the conjecture emerged in connection with attempts to bound v by comparison with the much simpler problem of minimising $\to X_{\tau}$ (or minor variations of the problem), it seems that the question is of independent interest as a relation between the stopped sample value and its rank. In this note we settle the conjecture by proving a considerably more general assertion.

Proposition 1. Fix p > 0. For $n = 1, 2, ..., let \sigma_n$ be a random variable with range $\{1, ..., n\}$ and arbitrary joint distribution with $X_1, ..., X_n$. Then

$$\limsup_{n} \mathbb{E}[R_{\sigma_{n}}]^{p} < \infty \quad \Longrightarrow \quad \limsup_{n} n^{p} \, \mathbb{E}[X_{\sigma_{n}}]^{p} < \infty.$$

Received 5 July 2011; revision received 24 August 2011.

^{*} Postal address: Department of Mathematics, Utrecht University, Postbus 80010, 3508 TA Utrecht, The Netherlands. Email address: a.v.gnedin@uu.nl

^{**} Postal address: Faculty of Cybernetics, National Taras Shevchenko University of Kiev, Kiev 01033, Ukraine. Email address: iksan@univ.kiev.ua

In particular, $\lim_{n\to\infty} n^p E[X_{\tau_n}]^p < \infty$ for τ_n , the stopping time minimising $E[R_{\tau}]^p$ over all stopping times adapted to X_1, \ldots, X_n .

We defer the proof to the end of the note. The idea is to bound X_{σ_n} by exploiting properties of a random walk with negative drift.

Let $\xi, \xi_1, \xi_2, \ldots$ be independent and identically distributed (i.i.d.) nonnegative random variables with $\mu = E \xi \in (0, \infty)$. Let $S_k := \xi_1 + \cdots + \xi_k$, and, for $\lambda > \mu$, let $M_{\lambda} := \sup_{k>0} (S_k - \lambda k)$.

Proposition 2. For p > 0,

$$\mathrm{E}\,\xi^{p+1} < \infty \iff \mathrm{E}\,M_{\lambda}^{p} < \infty.$$

Proof. The moment condition on ξ is equivalent to $E[(\xi - \lambda)^+]^{p+1} < \infty$, and the result follows from Lemma 3.5 of [1].

Corollary 1. Suppose that $E \xi^{p+1} < \infty$, and let σ be a nonnegative integer random variable with $E \sigma^p < \infty$. Then $E S_{\sigma}^p < \infty$.

Proof. The proof follows from
$$S_{\sigma}^{p} \leq (M_{\lambda} + \lambda \sigma)^{p} \leq c_{p}(M_{\lambda}^{p} + \lambda^{p} \sigma^{p})$$
, where $c_{p} := 2^{p-1} \vee 1$.

We first apply Corollary 1 to a Poisson embedded, limiting form of the stopping problem with continuous time [6]. Let ξ_1, ξ_2, \ldots be i.i.d. rate-one exponential variables, let S_k be as above, and let T_1, T_2, \ldots be i.i.d. uniform [0, 1] random times, independent of the ξ_j s. The points (T_k, S_k) are the atoms of a homogeneous planar Poisson process \mathcal{P} in $[0, 1] \times [0, \infty)$. To introduce the dynamics, consider an observer whose information at time $t \in [0, 1]$ is the (infinite) configuration of points of \mathcal{P} within the strip $[0, t] \times [0, \infty)$, that is, $\{(T_k, S_k) : T_k \leq t\}$. The rank of point (T_k, S_k) is defined as $R_{T_k} = k$, meaning that S_k is the kth smallest value among S_1, S_2, \ldots The piece of information added at time T_k is the point (T_k, S_k) , but not the rank R_{T_k} .

Suppose that the objective of the observer is to minimise $E[R_{\tau}]^p$ over stopping times τ that assume values in the random set $\{T_1, T_2, \ldots\}$ and are adapted to the information flow of the observer. For the optimal stopping time τ_{∞} , it is known from the previous studies that $E[R_{\tau_{\infty}}]^p < \infty$ (see [5] and [6]). Taking $\sigma = R_{\tau_{\infty}}$, we have $E[S_{\sigma}]^p < \infty$. The case p = 1 corresponds to the infinite version of Robbins' problem of minimising the expected rank.

Returning to our main task, we wish to apply the above to a finite sample of fixed size. To this end, we shall use the familiar realisation of uniform order statistics through sums of exponential variables, as

$$(Y_k, 1 \le k \le n) \stackrel{\mathrm{D}}{=} \left(\frac{S_k}{S_n}, 1 \le k \le n\right).$$

Introducing the event $A_n := \{n/S_n > 1 + \varepsilon\}$, we can estimate, for $1 \le k \le n$,

$$n^{p}Y_{k}^{p} = n^{p}Y_{k}^{p}\mathbf{1}_{A_{n}} + n^{p}Y_{k}^{p}\mathbf{1}_{A_{n}^{c}} \leq n^{p}\mathbf{1}_{A_{n}} + (1+\varepsilon)^{p}S_{k}^{p} \leq n^{p}\mathbf{1}_{A_{n}} + c_{p}(1+\varepsilon)^{p}(M_{\lambda}^{p} + \lambda^{p}k^{p}),$$

where we have used $S_k \leq M_{\lambda} + \lambda k$. Using a large deviation bound for the probability of A_n and sending $\varepsilon \to 0$, we conclude that, for any random variable σ_n with values in $\{1, \ldots, n\}$,

$$\limsup_{n} n^{p} E[Y_{\sigma_{n}}]^{p} \leq c_{p} \lambda^{p} \limsup_{n} E \sigma_{n}^{p} + c_{p} E M_{\lambda}^{p}.$$

Finally, taking $\sigma_n = R_{\tau_n}$, Proposition 1 follows from

$$\lim_n \sup_n n^p \, \mathrm{E}[X_{\tau_n}]^p \le c_p \lambda^p \lim_n \sup_n \mathrm{E}[R_{\tau_n}]^p + c_p \, \mathrm{E}\, M_\lambda^p < \infty,$$

since $E[R_{\tau_n}]^p$ converges to a finite limit (see [5] and [6]).

Acknowledgement

This note was completed during the second author's visit to Utrecht, supported by the Department of Mathematics at Utrecht University and the Dutch stochastic cluster STAR.

References

- [1] ALSMEYER, G. AND IKSANOV, A. (2009). A log-type moment result for perpetuities and its application to martingales in supercritical branching random walks. *Electron. J. Prob.* 14, 289–312.
- [2] ASSAF, D. AND SAMUEL-CAHN, E. (1996). The secretary problem: minimizing the expected rank with i.i.d. random variables. *Adv. Appl. Prob.* **28**, 828–852.
- [3] Bruss, F. T. (2005). What is known about Robbins' problem? J. Appl. Prob. 42, 108–120.
- [4] Bruss, F. T. and Swan, Y. C. (2009). A continuous-time approach to Robbins' problem of minimizing the expected rank. *J. Appl. Prob.* **46**, 1–18.
- [5] GIANINI, J. AND SAMUELS, S. M. (1976). The infinite secretary problem. Ann. Prob. 3, 418-432.
- [6] GNEDIN, A. V. (2007). Optimal stopping with rank-dependent loss. J. Appl. Prob. 44, 996–1011.