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THE NECKLACE PROCESS
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Abstract

Start with a necklace consisting of one white bead and one black bead, and add new beads
one at a time by inserting each new bead between a randomly chosen adjacent pair of old
beads, with the proviso that the new bead will be white if and only if both beads of the
adjacent pair are black. Let Wn denote the number of white beads when the total number
of beads is n. We show that E Wn = n/3 and, with c2 = 2

45 , that (Wn − n/3)/c
√

n is
asymptotically standard normal. We find that, for all r ≥ 1 and n > 2r , the rth cumulant
of the distribution of Wn is of the form nhr . We find the expected numbers of gaps of
given length between white beads, and examine the asymptotics of the longest gaps.
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1. The necklace process

We start with a necklace consisting of one white bead and one black bead. We add beads
one at a time, putting each one into a gap (between beads) that is chosen at random, i.e. with
probability 1/n for each gap when there are n beads, with the proviso that the new bead is
white if and only if both adjacent beads are black. So it is impossible for two white beads to be
adjacent to each other. Our study of this process was stimulated by consideration of a simple
model of a communications network in which we have a cycle of active nodes, with new nodes
added in random positions. We call a node ‘white’ if it is still connected to the same neighbors
as when it first entered the system. We do this so that white nodes can be removed, backtracking
the construction process. The resulting ‘cycle’ process is not quite the same as our ‘necklace’
process, since in the ‘cycle’ process, when a new node is added next to a ‘white’ node, the new
node is white while the old white node becomes black. But the two processes are equivalent;
the effect of adding a node next to an existing white node in the ‘cycle’ process is the same as
adding a black node on the other side of this white node in the ‘necklace’ process. And these
two positions for the new node are equally likely.

Suppose that when there are n beads in the necklace, the number of white beads is Wn. We
will show that Wn is a Markov chain, and that the mean and variance of Wn are exactly n/3 (for
all n ≥ 3) and 2n/45 (for all n ≥ 4), respectively. The distribution of (Wn − n/3)/

√
2n/45 is

asymptotically standard normal.
We are unable to find formulae for the distribution of Wn, but we will show that there are

constants h1, h2, . . . (h1 = 1
3 ) such that the rth cumulant of the distribution of Wn is of the form
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kr(Wn) = nhr for n > 2r (there are anomalous values for n ≤ 2r). This suggests that perhaps
the distribution of Wn could be approximated by the distribution of a sum of n independent
copies of a random variable with cumulants hr, r = 1, 2, . . . ; but we show that there is no
such random variable.

We also derive, for each j ≥ 2, the expected number of gaps (between white beads) of length
exactly j in the necklace, and examine the asymptotics of the longest gap.

We show that our process is very different from (i) a process with a random permutation of
n/3 white beads and 2n/3 black beads, subject to the condition that no two white beads are
adjacent, and (ii) an urn model in which n/3 black beads are thrown randomly into n/3 gaps,
where each gap is bounded by a white–black pair. For example, in our process the expected
number of gaps (between white beads) of length 2 is 2n/15, whereas in the random-permutation
model this expected number is about n/6 and in the urn model it is about n/3e.

2. The number of white beads

When there are n beads in the necklace and a new bead is added in a random position, if it
is adjacent to an existing white bead then the number of white beads does not change (because
the new bead must be black). The number of such positions is 2Wn, one on each side of each
white bead. If the new bead is added between two black beads then the new bead is white, so
the number of white beads increases by 1. So, we have the following Markovian structure:

P(Wn+1 = Wn) = 2Wn

n
,

P(Wn+1 = Wn + 1) = 1 − 2Wn

n
. (1)

The conditional expectation of Wn+1, given Wn, is therefore

E(Wn+1 | Wn) = n − 2

n
Wn + 1,

and we have the recurrence relation

E(Wn+1) = n − 2

n
E(Wn) + 1.

Since W3 = 1, this implies that E(Wn) = n/3 for all n ≥ 3.
Note that we could have chosen to start with a necklace consisting of a single bead (of

either color). Then the second bead would have to be of the opposite color, and we have our
two-bead starting point. An alternative formulation would be to require that the necklace has
a unit circumference, starting with a single bead at x = 0 and adding the nth bead in position
Xn, where these Xs are independent, continuous random variables on (0, 1). For this model,
the distributions of the variables we are interested in (Wn and the numbers of beads in the gaps
between the white beads) are the same as for our model.

3. Moments

On seeing (1), one of the authors was of the opinion that a productive way to obtain asymptotic
results would be by setting up one or more martingales (functions of Wn and arbitrary para-
meters). However, after much effort, this approach did not seem to yield useful results. This
and all our more pedestrian attacks, attempting to obtain formulae or generating functions for
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the probability distribution of Wn, were hindered by the complexity of the problem. We find
it remarkable that underlying this complexity are some very simple relations involving the
moments.

From (1), using the result E(Wn) = n/3, we can derive a recurrence relation for the second
moment of Wn, namely

E(W 2
n+1) = n − 4

n
E(W 2

n ) + 2n + 1

3
,

so that, for n > 4, E(W 2
n ) = n2/9 + 2n/45 and var(Wn) = 2n/45. Similar calculations for

moments of orders 3, 4, 5, and 6 show that in each case, for sufficiently large n, each of the
corresponding cumulants is exactly a multiple of n. We have the following result.

Theorem 1. For process (1), there are constants h1, h2, . . . such that, for all r ≥ 1 and all
n > 2r , the rth cumulant of the distribution of Wn is nhr .

We prove this result in Section 8. Note that this implies that the distribution of (Wn−n/3)/
√

n

is asymptotically Gaussian (with zero mean and variance 2
45 ). The variance 2n/45 is one fifth

of the variance of a binomial distribution B(n, 1
3 ).

The form of the cumulants of Wn suggests that there might be a random variable Z, say,
perhaps with support (0, 1

2 ), so that the variable Wn would be distributed approximately as the
sum of n independent and identically distributed copies of Z. The possibility that Wn has an
(approximate) additive structure is plausible, because the evolution of the necklace between any
pair of white beads is independent of what happens elsewhere. However, we have the following
result (which we prove in Section 9).

Theorem 2. The constants h1, h2, . . . are not the cumulants of a proper distribution.

4. Gaps

There are simple relations involving the lengths of the gaps between white beads. Suppose
that when there are n beads altogether, there are G2(n) gaps of length 2, G3(n) gaps of length 3,
and so on. (We have G1(n) = 0 because no two white beads can be next to each other.) Then
we must have

G2(n) + G3(n) + G4(n) + · · · = Wn,

2G2(n) + 3G3(n) + 4G4(n) + · · · = n,

since the first sum is equal to the total number of gaps, which equals the number of white beads,
and the second sum equals the total number of beads.

When a new bead is added, several things may happen. If the new bead is adjacent to an
existing white bead, the gap on that side of that bead becomes longer by 1. If the new bead is
between two black beads, which lie in a gap of length j , say, (where j ≥ 3) then this gap is
deleted and is replaced by two shorter gaps with lengths summing to j + 1. In Section 10 we
describe an examination of the possible cases and show that the expected numbers of counts
satisfy recurrences similar to the one for E(Wn), above; namely, for j ≥ 2 and n > j + 2,

E(Gj (n + 1)) = n − j − 2

n
E(Gj (n)) + (j + 3)bj ,

where bj = (j − 1)(j + 2)2j /(j + 3)!. This leads to the following exact result (which we
prove in Section 10).
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Theorem 3. In the necklace process, for j ≥ 2 and n ≥ j + 3, the expected number of gaps
of length j is E(Gj (n)) = nbj , where bj = (j − 1)(j + 2)2j /(j + 3)!.

Also, we find that E(Gj (j+2)) = E(Gj (j+3)) (this value of E(Gj (j+2)) does not conform
to the formula in Theorem 3). The only other nonzero values are E(Gj (j)) = 2j−2/(j − 1)!.

We present two more results on gaps, leaving the proofs as exercises for the reader. First,
let L1(n) be the length of the gap between the original white bead and its closest neighbor
(clockwise). Then, for 2 ≤ k ≤ n − 2, we have

P(L1(n) = k) = 2k−1(k − 1)

(k + 1)!
and P(L1(n) = n) = 2k−2/(k − 1)!. Hence, E(L1(n)) → (e2 − 1)/2 = 3.195, a little larger
then the overall average length, which is 3.

Next, let Llast(n) be the length of the gap between the last white bead to enter and its
clockwise closest neighbor. Then

P(Llast(n) = k) → 3

n

∞∑
j=k+1

Gj(n);

whence, E(Llast(n)) → (3e2 − 17)/2 = 2.584, a little smaller than 3.

5. Random permutations

It is interesting to compare these results with those of the model that arranges black and
white beads at random, subject to having no two white beads adjacent. When n is large, Wn is
close to n/3, so it makes sense to compare the expected number of gaps of various lengths in
our necklace process with n = 3m to those in the random-permutation process with m white
beads and 2m black beads. We can view this latter process as randomly permuting (in a ring)
m black beads and m white–black pairs. It is easy to derive the result, in this process, that, for
m > 1, the expected number of gaps of length j is

E(Gj (n)) = m(2)m(j−2)

(2m − 1)(j−1)
,

where k(i) = k(k − 1)(k − 2) · · · (k − i + 1) = k!/(k − i)!. Thus, for large m, the expected
number of gaps of length j is asymptotically m/2j−1, which is not the same as our result for
our necklace process.

6. Random urns

Another comparison is with the model in which m black beads are thrown at random into
m urns, each of which already contains one black bead. Here the urns are defined as the gaps
between the white beads in a ring that starts (with n = 2m) with m white–black pairs. Again
we take m = n/3. For this model, the expected number of urns that end up with j black beads
is

E(Gj (n)) =
(

m

j − 1

)
(m − 1)m+1−j

mm
.

In Table 1 we compare the results for the three processes we have discussed for the case in
which m = 1000.
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Table 1: Expected numbers of gaps of various lengths for three processes, where n = 3000.

Length Necklace Random Urns
of gap process permutations process

2 400 500 368
3 333 250 368
4 171 125 184
5 67 63 61
6 21 31 15
7 6 16 3
8 1 8 1
9 0 4 0

10 0 2 0
11 0 1 0
12 0 0 0

7. Asymptotics

We have presented formulae for the expected number of gaps of length j each for three
different processes. To compare the lengths of the longest gaps, we use standard asymptotic
techniques to derive, for each process, the length jlongest for which E(Gj (n)) is approximately
equal to 1. We find that, for the necklace process, and also for the urns process,

jlongest ∼ ln n

ln ln n
,

while, for the random-permutation process,

jlongest ∼ ln n

ln 2
.

Apart from these asymptotic results, we have nothing to say about the distribution of the
longest gap.

8. Proof of Theorem 1

The cumulant-generating function of Wn (which must exist and have a convergent Taylor
series for small t , because Wn has finite support) is

fn(t) = log(E(exp(tWn)))

= k1(n)t + k2(n)t2

2
+ k3(n)t3

3! + · · · .

The basic recurrence (1) gives

fn+1(t) = fn(t) + log

(
et − 2

n
(et − 1)f ′

n(t)

)
, (2)

and, using a Taylor series expansion, we can show that k1(n) = n/3, k2(n) = 2n/45, and so
on, for n > 4. We need to prove this ‘and so on’ for all n > 2r .
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We define the function h(t) that solves the differential equation

eh(t) = et − 2(et − 1)h′(t) (3)

and h(0) = 0, which is found to be

h(t) = log

( √
y

arctan(
√

y)

)
,

where y = et − 1. Note that the function h(t) is

h(t) = − log
∫ 1

0

du

1 + yu2 ,

and has a Taylor series expansion

h(t) = h1t + h2t
2

2
+ h3t

3

3! + · · · ,

which converges for |t | < ln 2. Also, h1 = 1
3 and h2 = 2

45 .
We will show that, for all r ≥ 1, kr(n) = nhr , provided that n > 2r . We already know that

this is true for r = 1. Suppose that we have shown this for all j ≤ r − 1. From (2) we have,
as t → 0,

fn(t) = nh(t) + (kr (n) − nhr)
tr

r! + O(tr+1).

Using [t r/r!]g(t) to denote the coefficient of t r/r! in g(t), from (3) we have

kr(n + 1) = kr(n) +
[
t r

r!
]

log

(
et − 2

n
(et − 1)f ′

n(t)

)

= kr(n) +
[
t r

r!
]

log

(
et − 2

n
(et − 1)

(
nh′(t) + (kr (n) − nhr)

tr−1

(r − 1)!
))

.

But, from (3), this is

kr(n) +
[
t r

r!
](

h(t) + log

(
1 − 2(et − 1)e−h(t) t r−1

(r − 1)!
kr(n) − nhr

n

))

= kr(n) + hr − 2r
kr (n) − nhr

n

= n − 2r

n
kr(n) + (2r + 1)hr ,

and it follows that no matter what kr(2r) is, for all n > 2r , we have kr(n) = nhr .

9. Proof of Theorem 2

The constants hr for r = 1, 2, 3, and 4 are 1
3 , 2

45 , − 2
945 , and − 22

4725 , respectively. (These
can be derived from the distribution of W9, which is easily found to be P(W9 = (1, 2, 3, 4)) =
(1, 60, 192, 62)/315).) Hence, the first four moments of the random variable Z − 1

3 (if it
exists) must be µ1 = 0, µ2 = 2

45 , µ3 = − 2
945 , and µ4 = 2

1575 . But a standard condition for the
existence of a random variable with these moments is that the determinant of the 3×3 matrix M

with Mij = µi+j , i, j = 0, 1, 2, should be nonnegative. But here the determinant is − 32
893 025 .
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10. Proof of Theorem 3

We derive the expectations E(Gj (n)). Suppose that when the necklace contains n beads, the
number of gaps of length j is Gj(n) for all j . Then

∑
Gj(n) = Wn and

∑
jGj (n) = n. We

have G3(3) = 1 and Gj(3) = 0 for all j 	= 3. Also, Gj(n) = 0 for j > n. In the following,
for clarity we write Gj for Gj(n), the probabilities are conditional on the state of the necklace
at stage n. On examining the possibilities when a new bead is added, we find that

P(G2(n + 1) = G2 − 1) = 2G2

n
,

P(G2(n + 1) = G2) = 2G3 + 2G4 + 3G5 + 4G6 + 5G7 + · · ·
n

,

P(G2(n + 1) = G2 + 1) = 2G4 + 2G5 + 2G6 + 2G7 + · · ·
n

,

P(G2(n + 1) = G2 + 2) = G3

n
,

so that

E(G2(n + 1)) = G2 + −2G2 + 2G3 + 2G4 + 2G5 + · · ·
n

= n − 4

n
G2 + 2

n
Wn.

Similarly, we find that

E(G3(n + 1)) = G3 + 2G2 − 3G3 + 2G4 + 2G5 + · · ·
n

= n − 5

n
G3 + 2

n
Wn,

E(G4(n + 1)) = G4 + 2G3 − 4G3 + 2G4 + 2G5 + · · ·
n

= n − 6

n
G4 + 2

n
(Wn − G2),

E(G5(n + 1)) = G5 + 2G4 − 4G5 + 2G6 + 2G7 + · · ·
n

= n − 7

n
G5 + 2

n
(Wn − G2 − G3),

and, generally, for j ≥ 4, we have

E(Gj (n + 1)) = n − j − 2

n
Gj + 2

n

(
Wn −

j−2∑
i=2

Gi

)
.

Hence, it is easy to show that, for n ≥ j + 3, we have the unconditional probabilities

E(Gj (n)) = (j − 1)(j + 2)2j

(j + 3)! n.

There are anomalous values for n ≤ j + 2. We find that Gj(n) is 0 for n < j , and also for
n = j + 1. Also, Gj(j) = 2j−2/(j − 1)!, since at each stage the new bead must be adjacent

https://doi.org/10.1239/jap/1208358967 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1208358967


278 C. MALLOWS AND L. SHEPP

to the single existing white bead. We will show that

Gj(j + 2) = Gj(j + 3) = (j − 1)2j

(j + 1)! .

To see this, note that Gj(j + 2) is 0 except when Wj+2 = 2, and that the necklace contains
exactly one gap of length 2 and one gap of length j . The second white bead could of been
added when the number of beads was any of 3, 4, . . . , j − 1. Each of these possibilities has
the same probability, namely 2j /(j + 1)!, so the total probability is (j − 1)2j /(j + 1)!, as we
claim.
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