IS COMA A YOUNG AGGREGATE OF OLD SUBCLUSTERS ?

Y. Mellier¹, G. Mathez¹, A. Mazure² 1 : Observatoire de Toulouse 2 : Observatoire de Meudon

EVOLUTION OF GRAVITATIONAL SYSTEMS IS CURRENTLY BELIEVED TO FOLLOW A 3-STAGE SCHEME: STAGE 1: SUBCLUSTERS FORM FIRST DURING VIOLENT RELAXATION STAGE 2: DYNAMICAL FRICTION → MASS SEGREGATION STAGE 3: CONTRACTION OF CORE, EXPANSION OF HALO

CURRENT IDEAS ARE THAT THE COMA CLUSTER IS AN ARCHETYPE OF A WELL RELAXED SYSTEM AFTER COMPLETION OF VIOLENT RELAXATION. BUT :

SUBSTRUCTURE STILL DOES EXIST IN COMA TOGETHER WITH STRONG LUMINOSITY SEGREGATION AND ANTI-SEGREGATION AT HIGH LUMINOSITY (Fitchett & Webster 1987, Valtonen & Byrd 1979, Capelato et al. 1980, Mellier et al. 1987) IS THIS EVIDENCE FOR BEGINNING OF STAGE 1 OR FOR END OF STAGE 2 ?

CROSS-IDENTIFICATION OF THE PHOTOMETRIC GODWIN, METCALFE & PEACH (1983) CATALOGUE WITH THE KENT & GUNN (1982) SPECTROSCOPIC CATALOGUE AND DETAILED ANALYSIS OF THE VELOCITY DISTRIBUTION IN COMPLETE SAMPLES SHOWS 1) IN THE CLUSTER CENTRE THE VELOCITY DISPERSIONS OF GALAXIES ARE :

	BRIGHT	280±80 KM/S
	INTERMEDIATE	1600±360 KM/S
	FAINT	1180±170 KM/S
2) HISTOGRAM OF VELOCITI	ES WITH RESPECT TO THE	BRIGHTEST GALAXIES IN THE
COMPOSITE POPULATION O	F SUBCLUSTERS GIVES	A SINGLE GAUSSIAN FIT
REJECTABLE AT THE 95 % C	ONFIDENCE LEVEL, BEST F	IT NEEDS TWO POPULATIONS
EXTENDING Cowie & Hu'S (1986) RESULTS TO CLUSTE	R SUBSTRUCTURE
OUR CONCLUSIONS : SUBCL	USTERS IN STAGE 3, WHOL	E CLUSTER IN STAGE 1
LOW VELOCITY DISPERSION	CORES MADE OF MASSIVE	GALAXIES HAVE EJECTED
INTERMEDIATE-MASS GALAX	IES - THESE ARE NOW	FORMING HIGH VELOCITY
DISPERSION EXPANDING HAL	OES WHICH ARE MERGING -	HENCE WE ASK IF HIGH M/L
VALUES FOUND IN CLUSTERS	COME FROM APPLYING TH	E VIRIAL THEOREM TO A
POPULATION IN EXPANSION	IN UNEVOLVED WHOLE CLUS	TERS ?

J. Audouze et al. (eds.), Large Scale Structures of the Universe, 535. © 1988 by the IAU.